Model-independent analysis of hadron-hadron scattering: a deep learning approach

Denny Lane B. Sombillo

Research Center for Nuclear Physics (RCNP), Osaka University National Institute of Physics, University of the Philippines Diliman

In collaboration with: Yoichi Ikeda (Kyushu University) Toru Sato (RCNP, Osaka University) Atsushi Hosaka (RCNP, Osaka University and ASRC, JAEA)

arXiv:2105.04898 arXiv:2104.14182

Outline

- Motivation and Overview
- Deep learning approach
 - Preparation: Generation of training dataset
 - Model development: Optimization of deep neural network (DNN) model
 - Inference stage: Application to the experimental data
- Summary and Outlook

Explanation of the observed near-threshold/threshold structures

- Threshold cusp
- Molecular state
- Virtual state
- Compact state

How to tell if a near-threshold structure is caused by a physical state?

- Phrase the question as a classification problem.
- **Deep learning approach** excels in solving a classification problem.

Deep learning approach: Use of **data** (simulated or real) to **improve the performance** of a **model** in accomplishing a specific **task**.

Extension to coupled-channel problem

Complete classification requires a model. <u>A. M. Badalyan et.al., Phys. Rep. 1982</u>

Information that can be obtained without using a model:

Pole configuration: number of nearby poles in each Riemann sheet

pole-counting method

D. Morgan, Nucl. Phys. A, 543,4,1992

two-pole structure of $\Lambda(1405)$ PhysRevC.68.018201; arXiv:0212026

Pole configuration can be used to construct an appropriate parametrization.

Model-independent analysis:

- No assumed functional form.
- No assumptions on poles
 - pole-shadow pair
 - Trajectory

Realizable in deep learning approach:

- DNN inference using raw data
- Poles are independent

The error bars can be handled systematically during the the DNN inference stage.

Proposed model-independent deep learning analysis:

Generating the training dataset

• Use general properties of S-matrix

Optimization of deep neural network (DNN) model

Include energy uncertainty

Apply trained-DNN on experimental data

 Use error bars in the data to generate inference amplitudes

Count the number of outcomes

Relevant Riemann sheets in a coupled two-channel scattering

General form of S-matrix:

- Hermitian below the lowest threshold
- Unitarity
- Analyticity

https://doi.org/10.1063/1.1703698 https://doi.org/10.1098/rspa.1960.0096

$$S_{11}(p_1, p_2) = \prod_m \frac{D_m(-p_1, p_2)}{D_m(p_1, p_2)}; \qquad S_{11} = 1 + 2iT_{11}$$
$$S_{22}(p_1, p_2) = \prod_m \frac{D_m(p_1, -p_2)}{D_m(p_1, p_2)} \qquad S_{22}S_{11} - S_{12}^2 = \prod_m \frac{D_m(-p_1, -p_2)}{D_m(p_1, p_2)}$$

The available experimental data will determine the relevant S-matrix element. Ensure that one $D_m(p_1, p_2)$ will produce one pole (conjugate pair).

How to control the pole configuration?

- Assign the pole position: $E_{\text{pole}}^{(m)} = E_R^{(m)} \pm i E_I^{(m)}$
- Control the Riemann sheet:

$$D_m(p_1, p_2) = \left[\left(p_1 - i\beta_1^{(m)} \right)^2 - \alpha_1^{(m)2} \right] + \lambda^{(m)} \left[\left(p_2 - i\beta_2^{(m)} \right)^2 - \alpha_2^{(m)2} \right] = 0$$

Absolute values of $\alpha_1^{(m)}$, $\alpha_2^{(m)}$, $\beta_1^{(m)}$, $\beta_2^{(m)}$ are determined by $E_{\text{pole}}^{(m)} = \frac{p_i^2}{2\mu_i} + T_i$ Hermiticity is automatically satisfied. Analyticity – do not choose $\beta_1^{(m)}$, $\beta_2^{(m)} > 0$ simultaneously

• Use $\lambda^{(m)}$ to ensure that only one pole per $D_m(p_1, p_2)$

$$D_m(p_1, p_2) = \left[\left(p_1 - i\beta_1^{(m)} \right)^2 - \alpha_1^{(m)2} \right] + \lambda^{(m)} \left[\left(p_2 - i\beta_2^{(m)} \right)^2 - \alpha_2^{(m)2} \right] = 0$$

$$\frac{p_1^2}{2\mu_1} + T_1 = \frac{p_2^2}{2\mu_2} + T_2$$

Quartic equation in p_1 (or in p_2)

- First 2 solutions: $E_{\text{pole}}^{(m)}$ and its conjugate partner.
- Other 2 solutions: $E_{\text{shadow}}^{(m)}$ and its conjugate partner.
 - Might mess up with causality
 - Dependent with $E_{pole}^{(m)}$
 - $\lambda^{(m)}$ can be set to push the shadow below T_1

What if there is an actual shadow in the amplitude?

Can an independent pole mimic the effect of shadow?

Effects of shadow pole (2-channel Breit-Wigner)

$$T_{11}(p_1, p_2) = \frac{\gamma_1}{E - E_{BW} + i\gamma_1 p_1 + i\gamma_2 p_2}$$
$$\gamma_2 \to 0$$

$$T_{11}(p_1, p_2) = \frac{\gamma_1}{E - E_{BW} + i\gamma_1 p_1}$$

No more cusp at $E = T_2$. No longer an explicit function of $\sqrt{2\mu_2(E - T_2)}$

A shadow placed at the same position as the main pole will uncouple one of the channel.

To simulate the limited energy resolution.

(4) Label each amplitude according to its pole-configuration

Define the cost-function (SoftMax cross entropy)

$$C(w,b) = \frac{1}{X} \sum_{\vec{x}} \vec{a}(\vec{x}) \cdot \log\left[\vec{y}_{w,b}(\vec{x})\right]$$

X: total number of input amplitudes in training dataset \vec{x} : flattened input amplitude

 $\vec{a}(\vec{x})$: true classification label of the input amplitude

 $\overrightarrow{y}_{w,b}(\overrightarrow{x})$: label assigned by the DNN

Forward pass: estimate the present value of cost-function

The mis-match in the DNN labels allow us to estimate the value of C(w, b) for the present state of the DNN.

2021.05.28

Define the cost-function (SoftMax cross entropy)

$$C(w,b) = \frac{1}{X} \sum_{\vec{x}} \vec{a}(\vec{x}) \cdot \log\left[\vec{y}_{w,b}(\vec{x})\right]$$

2021.05.28

X: total number of input amplitudes in training dataset \vec{x} : flattened input amplitude

 $\vec{a}(\vec{x})$: true classification label of the input amplitude

 $\overrightarrow{y}_{w,b}(\overrightarrow{x})$: label assigned by the DNN

Backpropagation: update the values of (w, b) using gradient descent

Introduce a performance metric $Accuracy = \frac{Number of correct DNN labels}{Total number of labeled inputs}$

Typical performance plot 1.0 Orgono 0.0 10 20 Training anoth

Training epoch

Performance on training set

Performance on an independent testing set

Input layer: 3 x 37 Output layer: 35

Hidden nodes: ReLU Output nodes: softmax

Cost function: SoftMax cross-entropy

DNN model	Hidden layer
label	architecture
1	[200-200]
2	[200-200-200]
3	[200-200-200-200]
4	[100-100]
5	[100-100-100]
6	[100-100-100-100]

All DNN models are just guessing.

- Start with small easy examples. Elman 1993
- Slowly introduce new class until all examples are presented.
- Perform regular training loop

Chosen DNN architecture

Layer	Number of nodes	Activation Function
Input	111+1	
1st	200 + 1	ReLU
2nd	200 + 1	ReLU
3rd	200 + 1	ReLU
Output	35	Softmax
arXiv:2105.04898		
arXiv:2104.14182		

Curriculum02: Curriculum01 + 1 new class in the **two**-pole classification set

Curriculum32: Curriculum31 + last class in the four-pole classification set

First 100 epochs (currciculum01) – most **one pole**

At-most-one-pole: 4 classifications (or pole configurations) Random model accuracy (wild guessing): 25% Easy task: accuracy is about 99%

After 700 epochs (curriculum07) – most **two poles**

At-most-two-poles: 10 pole configurations Random model accuracy (wild guessing): 10% Accuracy is about 93%

After 1700 epochs (curriculum17) – most **three poles**

At-most-three-poles: 20 pole configurations Random model accuracy (wild guessing): 5% Accuracy is about 81%

After 3200 epochs (curriculum32) – most **four poles**

At-most-four-poles: 35 pole configurations Random model accuracy (wild guessing): 2.86% Accuracy is about 63.5%

Random model accuracy (wild guessing): 2.86%

Post-curriculum training accuracy: 76.5% Post-curriculum testing accuracy: 80.4% We now have a DNN that can detect up to four poles on any Riemann sheet.

Inference stage: Application

Inference stage: Application

- Pick random points in each error bar
- No model-fitting step is needed
- Generate 10⁶ amplitudes
- Feed to the trained DNN
- Count the number of outcomes

DNN inference on 10⁶

amplitudes using 1 error bar = 1σ

- 44.6% 1[bt]-1[bb]-2[tb]
- 34.1% 1[bt]-1[bb]-1[tb]
- 16.4% 0[bt]-1[bb]-3[tb]
- 4.9% 0[bt]-1[bb]-2[tb]

Inference stage: Application

DNN inference on 10^6 amplitudes using Gaussian distribution for each error bar

DNN inference on 10^6 amplitudes using uniform distribution for each error bar

- 60.3% 1[bt]-1[bb]-2[tb]
- 30.9% 1[bt]-1[bb]-1[tb]
- 7.5% 0[bt]-1[bb]-3[tb]
- 1.3% 0[bt]-1[bb]-2[tb]

Inference stage: Application (Discussion)

DNN inference on 10^6 amplitudes using uniform distribution for each error bar

- 60.3% 1[bt]-1[bb]-2[tb]
- 30.9% 1[bt]-1[bb]-1[tb]
- 7.5% 0[bt]-1[bb]-3[tb]
- 1.3% 0[bt]-1[bb]-2[tb]

Guide to parametrization

- Detected [bb] pole
 - Enhancement between $K\Lambda$ and $K\Sigma$ thresholds.
- Detected [bt] pole
 - Far from ηN threshold but within the counting region
 - Might be shadow of the detected [bb]
 - Detected [tb] poles
 - Only poles left to explain ηN enhancement

Summary and Outlook

Summary:

- Generate training dataset using the general properties of S-matrix.
- Optimization of DNN model with noisy dataset (energy resolution).
- DNN inference stage
 - No assumed functional form for the amplitude
 - No assumptions made on the detected poles

Use the DNN result to design an appropriate parametrization

Summary and Outlook

Outlook:

- Get the relevant partial wave (given the cross-section)
- Multi-DNN analysis
 - Pole configuration
 - Pole positions
- Inclusion of models to trace the pole's origin
- DNN applicable to any two-hadron scattering
- DNN to distinguish resonance and kinematical enhancements

Thank you for listening.