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Passive vs. Active

Passive particle Reservoir

Mechanical energy

K*:éz—V’(i?)+ﬁ

Fluctuation-Dissipation Theorem W n o
(FDT) (7(#)7)(s)) = TE(|t — s])

Active particle Reservoir




A simple model of active particles

(B(8)i(s)) = T eIl

(Self-propulsion as
Gaussian colored noise)

(Fast reservoir at
low temperature)



A simple model of active particles

[from Howard Berg’s lab webpage]

e 0, —|t—s|/r (Self-propulsion as

T Gaussian colored noise)

Light-activated colloidal surfers

[Palacci et. al., Science 339, 936 (2013)]



A simple model of active particles

Xi= 7/ A A N L _t—s|/r (Self-propulsion as
T (x) g <v(t)v(8)> T - Gaussian colored noise)
Run-and-tumble particles Active Brownian particles

Tumbhng rate «
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A simple model of active particles

Pl (B(8)5(s)) = = e~ =5/, 9ps(t— )

T a7 —al,
(reduces to EQ dynamics)

NEQ driving at the level of each particle for nonzero .

* Objective: identify the NEQ features of active particles by
studying the effects of small but nonzero 7 through
a Markovian approximation.
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Phase separation

Phase separation at EQ
requires attractions.

Short-range repulsion
+ Self-propelled particles
—> Phase separation

(No attraction needed!)

Motility-Induced Phase
Separation (MIPS): phase
separation due to reduced
motility in high-density
regions

2D lattice model of bacteria
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[Redner, Hagan, & Baskaran, PRL (2013)]



Unified Colored-Noise Approximation (UCNA)

b= V@ 4o =0 (0(0)o(s) = Ze el

-
‘ Colored noise = Ornstein—Uhlenbeck process
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[Jung & Hanggi, PRA 35, 44464 (1987)], [Hanggi & Jung, Adv. Chem. Phys. (1994)]



Unified Colored-Noise Approximation (UCNA)

b= V@40 (=0 (1)) = = el

-
‘ Colored noise = Ornstein—Uhlenbeck process
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[Jung & Hanggi, PRA 35, 44464 (1987)], [Hanggi & Jung, Adv. Chem. Phys. (1994)]



Equilibrium-like solutions

V' P 1 <
o,P =0, <1+7V”) + D (ax 1—|—7’V”) P

has a zero-current steady-state solution

S V V,2 //
Pwexp{ 5 T<2D V)

Effective attraction if V" > 0

# Detailed balance holds in the steady state.

* Even repulsive walls can be effectively attractive,
allowing high-density clusters to form.
—> Equilibrium-like mechanism of MIPS



Generalizations to higher dimensions

Two particles in 1D

UCNA
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[Maggi et al., Sci. Rep. 5, 042601 (2015)], [Marconi & Maggi, Soft Matter 11, 8768 (2015)]



Density gradients & currents

Asymmetric obstacles
+ Self-propelled particles
—> Rectified currents &

Density gradients

Micromotors

E. coli-driven ratchet

|Di Leonardo et. al.,
PNAS 107, 9541 (2010)]

Density gradients of E. coli

500 micron

[Galajda et. al., J. Bacteriol. 189, 8704 (2007)]



But the UCNA can only yield equilibrium-like solutions.

Why do we fail to identify any rectified currents?

Artifact of the approximation?

Need for a systematic small-r expansion.
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Small-7 expansion

. At

P(z,t) = (Teo ) 6(3(0) — o
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Time-ordering operator

=T exp

22: <U ds L )r> 5(3(0) — o)

Time-ordered cumulants

n-th order contributes to O(T”/ 2)



Small-t expansion

e~ Ten |35 ([ o] )

0(2(0) — zo)

= exp{/ot ds [Mo(s) +7Mi(s) + 7 Ma(s) + - .}}

M’s can be calculated using the method of
van Kampen, Physica 74, 239 (1974)
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UCNA
V'P 1 z
P =20, D | 0, P
Or : <1—|—7‘V”>+ (6’ 1—|—7'V”>

Small-7 expansion

0P =0,(V'P)+Do>P — 1D 0:(V"P)

+72D {aﬁ (V"2 - VeV + DV@) P - gD ag(v<3>P)} +0(7%)

* The UCNA is equivalent to the small-zr expansion only at the zeroth order.

» At first order, self-propulsion modifies the diffusion coefficient.
(may induce effective attraction if the potential is convex)

» Up to the second order, the effect of the Gaussian colored noise is
equivalent to that of a non-Gaussian white noise with small but nonzero
skewness.



NE(Q) steady state on a ring

Nonzero if the potential is asymmetric

B L
Current G . [ de V@V - O(r)
2 fOL dre=V/D fOL dx eV/D
+ Particle distribution Generic long-range interactions
) Pt mediated by active particles
PE s o iy el [YB et al. PRL (2018)]
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Steady-state current & density

1-d periodic ratchet potential
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Second-order correction:

nonvanishing long-range effects



Modified Arrhenius Law

For small D,
22

Exit rate ~
A

Mean escape time:

Ps(xm)

Contributed by effective attraction

(o) ~ {1+ 3 V) = VOGN + T V() — V7 (o)}

X exp {% V(CIZ‘*) = V(ajm) = % /mw I V(3)(V/)2 }

m

Contributed by steady-state current

B Requires non-Gaussian effects

Same result also obtained by calculations based on path integrals
Refs: [Bray, McKane, Newman, PRA (1990)] [Luckock, McKane, PRA (1990)]



Generalization to higher dimensions

8,P = 0,(V'P) + D 6P — [Sic AN
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Change of effective diffusivity
P =V - -(VV)P+DV?*P—-71DVV :(VVV)P
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Non-Gaussian effects



Steady-state current on 2-d tori

Asymmetric obstacle (dipole) Elliptical obstacle (quadrupole)  Square obstacle (octopole)

* At second order, asymmetric objects behave like a
multipole source generating long-range currents.



Bonus: Irreversibility

S s s NP
R|x] = 1In Plak)

“ Betore Markovian approximation
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“ After Markovian approximation
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Summary

* The UCNA correctly captures the first-order effects of
colored noise in the steady state but is unreliable for
higher-order properties.

+ A systematic small-z expansion shows that, up to second

order, the Gaussian colored noise is equivalent to the non-
Gaussian white noise with nonzero skewness.

* The phase separation is described by an effective attraction
at first order (EQ-like regime).

+ Second-order corrections (non-Gaussian noise) are crucial

for describing rectified currents and long-range etfects.



Implication for active field theory

Easy, but Difficult, but
unsystematic systematic

Symmetry & | Active Model B+
conservation By (] n @ A)

)
j— V[F Arc/)F] (V) Ve

Energy influx

N

v v o
Particle . | Macroscopic
dynamics ’ i) 7 order/structure

A field theory with non-Gaussian noise
determined by particle interactions?

cf. Case of constant noise cumulants:
[Fodor, Hayakawa, Tailleur, van Wijland, PRE (2018)]



Application to empirical models

Confined cell dynamics

» U

:CCM

by = Vig(ta) € (EQEE)) = Lot/

T Deformation time scale

(Azg) = —Vig(wg)At  (Az2 ) ~2DAt |{Azd ) ~9Dr2 VY (z,,) At

Extra time scale can be estimated by examining the third cumulant



