5th East Asia Joint Seminars on Statistical Physics (ITP-CAS, Beijing, 25 October 2019)

# A systematic Markovian approximation method for weakly active particles

Yongjoo Baek
Seoul National University

Zigan Zhen, Michael E. Cates University of Cambridge



#### Outline

- \* An active particle as a Brownian particle driven by Gaussian colored noise
- \* Simple Markovian approximation: "UCNA"
  - \* Application to motility-induced phase separation
- \* Systematic Markovian approximation
  - \* Application to non-equilibrium currents and long-range effects
- \* Implications

#### Passive vs. Active



Reservoir

Mechanical energy

Heat/work

$$K * \dot{\hat{x}} = -V'(\hat{x}) + \hat{\eta}$$

Fluctuation-Dissipation Theorem (FDT)

$$\langle \hat{\eta}(t)\hat{\eta}(s)\rangle = TK(|t-s|)$$

Active particle

Reservoir

Ambient/stored energy

Mechanical energy

Heat/work

$$K * \dot{\hat{x}} = -V'(\hat{x}) + \hat{v}$$

No FDT 
$$\langle \hat{v}(t)\hat{v}(s)\rangle \neq TK(|t-s|)$$

$$K * \dot{\hat{x}} = -V'(\hat{x}) + \hat{v}$$

$$\langle \hat{v}(t)\hat{v}(s)\rangle = \frac{D}{\tau} e^{-|t-s|/\tau}$$

$$K(|t - s|) = 2\delta(t - s)$$

(Self-propulsion as Gaussian colored noise)

(Fast reservoir at low temperature)

$$\dot{\hat{x}} = -V'(\hat{x}) + \hat{v}$$

$$\dot{\hat{x}} = -V'(\hat{x}) + \hat{v}$$
  $\langle \hat{v}(t)\hat{v}(s)\rangle = \frac{D}{\tau} e^{-|t-s|/\tau}$  (Self-propulsion as Gaussian colored n

Gaussian colored noise)

Escherichia coli



[from Howard Berg's lab webpage]

Light-activated colloidal surfers



[Palacci et. al., Science 339, 936 (2013)]

$$\dot{\hat{x}} = -V'(\hat{x}) + \hat{v}$$

$$\dot{\hat{x}} = -V'(\hat{x}) + \hat{v} \qquad \langle \hat{v}(t)\hat{v}(s) \rangle = \frac{D}{\tau} e^{-|t-s|/\tau} \qquad \begin{array}{l} \text{(Self-propulsion as Gaussian colored n} \\ \end{array}$$

Gaussian colored noise)

Run-and-tumble particles



$$D = \frac{v^2}{2\alpha}, \quad \tau = \frac{1}{\alpha}$$

Active Brownian particles



$$D = \frac{v^2}{2D_r}, \quad \tau = \frac{1}{D_r}$$

$$\dot{\hat{x}} = -V'(\hat{x}) + \hat{v} \qquad \langle \hat{v}(t)\hat{v}(s) \rangle = \frac{D}{\tau} e^{-|t-s|/\tau} \xrightarrow[\tau \to 0]{} 2D\delta(t-s)$$
 (reduces to EQ dynamics)

NEQ driving at the level of each particle for nonzero  $\tau$ .

\* **Objective:** identify the NEQ features of active particles by studying the effects of small but nonzero  $\tau$  through a Markovian approximation.

### Phase separation

- \* Phase separation at EQ requires attractions.
- Short-range repulsion
  + Self-propelled particles
  ⇒ Phase separation
  (No attraction needed!)
- \* Motility-Induced Phase Separation (MIPS): phase separation due to reduced motility in high-density regions

#### 2D lattice model of bacteria



[Redner, Hagan, & Baskaran, PRL (2013)]

#### Unified Colored-Noise Approximation (UCNA)

$$\dot{\hat{x}} = -V'(\hat{x}) + \hat{v}$$
  $\langle \hat{v} \rangle = 0$   $\langle \hat{v}(t) \, \hat{v}(s) \rangle = \frac{D}{\tau} \, e^{-|t-s|/\tau}$ 



$$\dot{\hat{x}} = -V'(\hat{x}) + \hat{v} \qquad \dot{\hat{v}} = -\frac{1}{\tau}\hat{v} + \hat{\xi} \qquad \left\langle \hat{\xi} \right\rangle = 0 \qquad \left\langle \hat{\xi}(t)\hat{\xi}(s) \right\rangle = \frac{2D}{\tau^2}\delta(t-s)$$



Elimination of  $\hat{v}$ 

$$\ddot{\hat{x}} = -\frac{1}{\tau} \left[ 1 + \tau V''(\hat{x}) \right] \circ \dot{\hat{x}} - \frac{1}{\tau} V'(\hat{x}) + \hat{\xi}$$

$$\ddot{\hat{x}} = 0$$

$$\dot{\hat{x}} = -\frac{V'(\hat{x})}{1 + \tau V''(\hat{x})} + \frac{\tau}{1 + \tau V''(\hat{x})} \circ \hat{\xi}$$

Stratonovich product

#### Unified Colored-Noise Approximation (UCNA)

$$\dot{\hat{x}} = -V'(\hat{x}) + \hat{v}$$
  $\langle \hat{v} \rangle = 0$   $\langle \hat{v}(t) \, \hat{v}(s) \rangle = \frac{D}{\tau} \, e^{-|t-s|/\tau}$ 

Colored noise = Ornstein–Uhlenbeck process

$$\dot{\hat{x}} = -V'(\hat{x}) + \hat{v} \qquad \dot{\hat{v}} = -\frac{1}{\tau}\hat{v} + \hat{\xi} \qquad \left\langle \hat{\xi} \right\rangle = 0 \qquad \left\langle \hat{\xi}(t)\hat{\xi}(s) \right\rangle = \frac{2D}{\tau^2}\delta(t-s)$$



Elimination of  $\hat{v}$ 

$$\ddot{\hat{x}} = -\frac{1}{\tau} \left[ 1 + \tau V''(\hat{x}) \right] \circ \dot{\hat{x}} - \frac{1}{\tau} V'(\hat{x}) + \hat{\xi}$$

$$\ddot{\hat{x}} = 0$$

$$\partial_t P = \partial_x \left( \frac{V'P}{1 + \tau V''} \right) + D \left( \partial_x \frac{1}{1 + \tau V''} \right)^2 P$$

#### Equilibrium-like solutions

$$\partial_t P = \partial_x \left( \frac{V'P}{1 + \tau V''} \right) + D \left( \partial_x \frac{1}{1 + \tau V''} \right)^2 P$$

has a zero-current steady-state solution

$$P^{\rm s} \sim \exp\left[-\frac{V}{D} - \tau \left(\frac{V'^2}{2D} - V''\right)\right]$$

Effective attraction if V'' > 0

- Detailed balance holds in the steady state.
- \* Even repulsive walls can be effectively attractive, allowing high-density clusters to form.
  - ⇒ Equilibrium-like mechanism of MIPS

### Generalizations to higher dimensions

#### **UCNA**

Two particles in 1D



#### Radial potential



[Maggi et al., Sci. Rep. 5, 042601 (2015)], [Marconi & Maggi, Soft Matter 11, 8768 (2015)]

### Density gradients & currents

#### Density gradients of *E. coli*

- Asymmetric obstacles

   + Self-propelled particles
   ⇒ Rectified currents &

   Density gradients
- Micromotors



E. coli-driven ratchet [Di Leonardo et. al., PNAS 107, 9541 (2010)]







[Galajda et. al., J. Bacteriol. 189, 8704 (2007)]

But the UCNA can only yield equilibrium-like solutions.

Why do we fail to identify any rectified currents?

Artifact of the approximation? Shortcoming of the model?

Need for a systematic small-τ expansion.

### Small-\tau expansion

$$\dot{\hat{x}} = -V'(\hat{x}) + \hat{v} \qquad \qquad \partial_t \, \delta(\hat{x}(t) - x) = \left[\partial_x V' - \hat{v} \, \partial_x\right] \delta(\hat{x}(t) - x) 
\equiv \hat{L}(t) 
P(x,t) = \left\langle \mathcal{T} e^{\int_0^t ds \, \hat{L}(s)} \right\rangle \delta(\hat{x}(0) - x_0)$$

Time-ordering operator

$$= \mathcal{T} \exp \left[ \sum_{n=1}^{\infty} \frac{1}{n!} \left\langle \left[ \int_{0}^{t} ds \, \hat{L}(s) \right]^{n} \right\rangle_{c} \right] \delta(\hat{x}(0) - x_{0})$$

Time-ordered cumulants

*n*-th order contributes to  $O(\tau^{n/2})$ 

### Small-\tau expansion

$$P(x,t) = \mathcal{T} \exp \left[ \sum_{n=1}^{\infty} \frac{1}{n!} \left\langle \left[ \int_{0}^{t} ds \, \hat{L}(s) \right]^{n} \right\rangle_{c} \right] \delta(\hat{x}(0) - x_{0})$$

$$= \exp \left\{ \int_0^t ds \, \left[ M_0(s) + \tau M_1(s) + \tau^2 M_2(s) + \cdots \right] \right\}$$

M's can be calculated using the method of van Kampen, Physica **74**, 239 (1974)

$$\partial_t P = (M_0 + \tau M_1 + \tau^2 M_2 + \cdots) P$$

$$= \partial_x (V'P) + D \,\partial_x^2 P - \tau D \,\partial_x^2 (V''P)$$

$$+ \tau^2 D \left\{ \partial_x^2 \left[ \left( V'''^2 - V^{(3)}V' + DV^{(4)} \right) P \right] - \frac{3}{2} D \,\partial_x^3 (V^{(3)}P) \right\} + O(\tau^3)$$

#### UCNA

$$\partial_t P = \partial_x \left( \frac{V'P}{1 + \tau V''} \right) + D \left( \partial_x \frac{1}{1 + \tau V''} \right)^2 P$$

#### Small-\tau expansion

$$\partial_t P = \partial_x (V'P) + D \,\partial_x^2 P - \tau D \,\partial_x^2 (V''P)$$

$$+ \tau^2 D \left\{ \partial_x^2 \left[ \left( V''^2 - V^{(3)} V' + D V^{(4)} \right) P \right] - \frac{3}{2} D \,\partial_x^3 (V^{(3)} P) \right\} + O(\tau^3)$$

- \* The UCNA is equivalent to the small- $\tau$  expansion only at the zeroth order.
- \* At first order, self-propulsion modifies the diffusion coefficient. (may induce effective attraction if the potential is convex)
- \* Up to the second order, the effect of the Gaussian colored noise is equivalent to that of a non-Gaussian white noise with small but nonzero skewness.

# NEQ steady state on a ring

Nonzero if the potential is asymmetric

\* Current

$$J^{s} = \frac{\tau^{2}}{2} \frac{\int_{0}^{L} dx \, V^{(3)} V^{\prime 2}}{\int_{0}^{L} dx \, e^{-V/D} \int_{0}^{L} dx \, e^{V/D}} + O(\tau^{3})$$

\* Particle distribution

$$P^{\rm s} \sim \exp\left\{-\frac{V}{D} + \tau \left[V'' - \frac{V'^2}{2D}\right]\right\}$$

Agreement with the UCNA only up to first order

$$+ \tau^2 \left[ \frac{DV^{(4)}}{2} - \frac{(V''^2 + 4V^{(3)}V')}{4} \right]$$

[YB et al. PRL (2018)]  $\begin{array}{c}
V')\\
\hline
\end{array}$ Nonlocal effects

Generic long-range interactions

mediated by active particles

$$+\frac{\tau^2}{D} \int_0^x dx' \left[ \frac{V^{(3)}(x')V'(x')^2}{2} - \frac{J^{s}}{Z_0} e^{V(x')/D} \right] + O(\tau^3) \right\}$$

$$Z_0 \equiv \int_0^L dx \, \mathrm{e}^{-V/D}$$

# Steady-state current & density

1-d periodic ratchet potential



$$V_q(x) = \frac{\sin x}{1 + q^2 - 2q\cos x}$$

1-d skewed potential



Second-order correction: nonvanishing long-range effects

#### Modified Arrhenius Law

For small D,



 $x_{\rm m}$ 

Mean escape time:

Mean escape time: 
$$\langle t_{\rm esc} \rangle \sim \left\{ 1 + \frac{\tau}{2} \left[ V''(x_{\rm m}) - V''(x^*) \right] + \frac{\tau^2}{8} \left[ V''(x^*) - V''(x_{\rm m}) \right]^2 \right\}$$
 
$$\times \exp \left\{ \frac{1}{D} \left[ V(x^*) - V(x_{\rm m}) - \frac{\tau^2}{2} \int_{x_{\rm m}}^{x^*} dx \, V^{(3)}(V')^2 \right] \right\}$$
 Contributed by steady-state current

Contributed by steady-state current Requires non-Gaussian effects

Same result also obtained by calculations based on path integrals

Refs: [Bray, McKane, Newman, PRA (1990)] [Luckock, McKane, PRA (1990)]

## Generalization to higher dimensions

$$\partial_t P = \partial_x (V'P) + D \,\partial_x^2 P - \frac{\tau D \,\partial_x^2 (V''P)}{\tau D \,\partial_x^2 (V''P)} + \tau^2 D \left\{ \partial_x^2 \left[ \left( V''^2 - V^{(3)} V' + D V^{(4)} \right) P \right] - \frac{3}{2} D \,\partial_x^3 (V^{(3)} P) \right\} + O(\tau^3)$$



Change of effective diffusivity

$$\partial_{t}P = \nabla \cdot (\nabla V)P + D\nabla^{2}P - \frac{\tau D \nabla \nabla : (\nabla \nabla V)P}{\tau D \nabla \nabla : (\nabla \nabla V) - (\nabla \nabla \nabla V) \cdot (\nabla V) + D(\nabla \nabla \nabla^{2}V)} + \tau^{2}D\nabla \nabla : [(\nabla \nabla V) \cdot (\nabla \nabla V) - (\nabla \nabla \nabla V) \cdot (\nabla V) + D(\nabla \nabla^{2}V)]P$$
$$- \frac{\tau^{2}}{2}D^{2}\nabla \nabla \nabla : (\nabla \nabla \nabla V)P + O(\tau^{3})$$

Non-Gaussian effects

### Steady-state current on 2-d tori

Asymmetric obstacle (dipole)



Elliptical obstacle (quadrupole)



Square obstacle (octopole)



\* At second order, asymmetric objects behave like a multipole source generating long-range currents.

### Bonus: Irreversibility

$$\hat{R}[x] \equiv \ln \frac{\mathcal{P}[x]}{\mathcal{P}[x^R]}$$

Before Markovian approximation

$$\left\langle \frac{d\hat{R}}{dt} \right\rangle_{NM}^{S} = \frac{D\tau^2}{2} \int dx \, \frac{e^{-V(x)/D}}{Z_0} V^{(3)}(x)^2 + O(\tau^3)$$

After Markovian approximation

$$\left\langle \frac{d\hat{R}}{dt} \right\rangle_{N}^{s} = \frac{9D\tau^{2}}{8} \int dx \, \frac{e^{-V(x)/D}}{Z_{0}} V^{(3)}(x)^{2} + O(\tau^{3})$$

$$\left\langle \frac{d\hat{R}}{dt} \right\rangle_{\mathrm{M}}^{\mathrm{s}} > \left\langle \frac{d\hat{R}}{dt} \right\rangle_{\mathrm{NM}}^{\mathrm{s}}$$
 Negative "hidden entropy" production!

### Summary

- \* The UCNA correctly captures the first-order effects of colored noise in the steady state but is unreliable for higher-order properties.
- \* A systematic small- $\tau$  expansion shows that, up to second order, the Gaussian colored noise is equivalent to the non-Gaussian white noise with nonzero skewness.
- \* The phase separation is described by an effective attraction at first order (EQ-like regime).
- \* Second-order corrections (non-Gaussian noise) are crucial for describing rectified currents and long-range effects.

### Implication for active field theory



A field theory with non-Gaussian noise determined by particle interactions?

cf. Case of constant noise cumulants: [Fodor, Hayakawa, Tailleur, van Wijland, PRE (2018)]

### Application to empirical models

#### Confined cell dynamics



$$\langle \Delta x_{\rm\scriptscriptstyle CM} \rangle \simeq -V_{\rm eff}'(x_{\rm\scriptscriptstyle CM}) \Delta t \qquad \langle \Delta x_{\rm\scriptscriptstyle CM}^2 \rangle \simeq 2D \Delta t \qquad \langle \Delta x_{\rm\scriptscriptstyle CM}^3 \rangle \simeq 9D \tau^2 \, V_{\rm eff}^{(3)}(x_{\rm\scriptscriptstyle CM}) \, \Delta t$$

Extra time scale can be estimated by examining the third cumulant