Sex-ratio bias induced by mutation

Seung Ki Baek (白承起)^{1,*}

in collaboration with Minjae ${\rm Kim}^1$ and Hyeong-Chai Jeong 2

¹Dept. of Physics, Pukyong National University, Korea
²Dept. of Physics and Astronomy, Sejong University, Korea
*seungki@pknu.ac.kr

The 5th East Asia Joint Seminars on Statistical Physics Institute of Theoretical Physics, Chinese Academy of Sciences

A puzzle of evolution

- Human sex ratio at birth $\approx 107:100$
- Why so many males? [Darwin (1871)]
 Only a small number of males are needed, as far as the population growth is concerned.

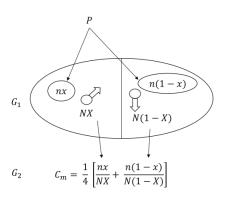
Fisher's idea

• If the sex ratio of the offspring generation is skewed toward males,

a female-biased mutant o higher chance to transmit its genes

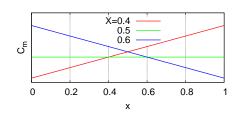
Formulation [Shaw & Mohler (1953)]

- ullet N= population size, n= number of offspring
- ullet X = fraction of males in the population
- ullet x = probability for an individual to have a male offspring
- C_m = genetic contribution of the individual with x



Neutral stability of the Fisherian ratio

$$C_m = \frac{1}{4} \left[\frac{nx}{NX} + \frac{n(1-x)}{N(1-X)} \right]$$



- C_m is greater when x is biased toward the rare sex.
- Any degree of heterogeneity in x if X = 1/2

$$C_m \xrightarrow{X=1/2} \frac{1}{4} \left[\frac{nx}{N/2} + \frac{n(1-x)}{N/2} \right] = \frac{n}{2N}$$

• More detailed description?

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

Genetic model [Seger & Stubblefield (2002)]

- ullet a: mutant, A: resident
- ullet Each individual has "sex" (Male or Female) and a "gene" (a or A).
- The gene is inherited from father or mother equally probably.
- ullet q_f $(q_m)=$ fraction of mutant lpha in females (males) $\ll 1$
- $ullet x\left(X
 ight)=$ offspring sex ratio when <u>father</u> has a (A) [Gellatly (2009)].

		daughters		sons	
$\checkmark \times $	fraction	\overline{a}	A	a	A
$a \times a$	$q_m q_f$	\tilde{x}		x	
$a \times A$	$q_m(1-q_f)$	$\frac{1}{2}\tilde{x}$	$\frac{1}{2}\tilde{x}$	$\frac{1}{2}x$	$\frac{1}{2}x$
$A \times a$	$(1-q_m)q_f$	$\frac{1}{2}\tilde{X}$	$\frac{1}{2}\tilde{X}$	$\frac{1}{2}X$	$\frac{1}{2}X$
$A \times A$	$(1-q_m)(1-q_f)$		\tilde{X}		X

$$\tilde{X} \equiv 1 - X, \qquad \tilde{x} \equiv 1 - x$$

Recurrence relation [Seger & Stubblefield (2002)]

o√ × ♀	fraction	daughters		sons	
		\overline{a}	A	a	A
$a \times a$	q_mq_f	\tilde{x}		x	
$a \times A$	$q_m(1-q_f)$	$\frac{1}{2}\tilde{x}$	$\frac{1}{2}\tilde{x}$	$\frac{1}{2}x$	$\frac{1}{2}x$
$A \times a$	$(1-q_m)q_f$	$\frac{1}{2}\tilde{X}$	$\frac{1}{2}\tilde{X}$	$\frac{1}{2}X$	$\frac{1}{2}X$
$\underline{A \times A}$	$(1-q_m)(1-q_f)$		\tilde{X}		\bar{X}

Male fraction r of the next generation

Seung Ki Baek (PKNU)

$$r = q_m q_f x + q_m (1 - q_f) \left(\frac{1}{2} x + \frac{1}{2} x\right) + (1 - q_m) q_f \left(\frac{1}{2} X + \frac{1}{2} X\right) + (1 - q_m) (1 - q_f) X$$

= $X + (x - X) q_m$

ullet fraction of mutant ${\mathcal Q}$ in males of the next generation

$$q'_m = \frac{q_m q_f x + q_m (1 - q_f) \frac{1}{2} x + (1 - q_m) q_f \frac{1}{2} X}{r}$$

22-25 October 2019

Fixed-point analysis [Seger & Stubblefield (2002)]

 $\begin{array}{ll} \bullet \ \mbox{Resident} = A & \mbox{with offspring sex ratio } X \\ \mbox{Mutant} & = a & \mbox{with offspring sex ratio } x \\ \end{array}$

$$q_f, q_m \ll 1$$

$$\begin{pmatrix} q_m' \\ q_f' \end{pmatrix} = \frac{1}{2} \begin{pmatrix} x/X & 1 \\ \tilde{x}/\tilde{X} & 1 \end{pmatrix} \begin{pmatrix} q_m \\ q_f \end{pmatrix}$$

- If resident $X = \frac{1}{2}$, \Rightarrow the matrix has $\lambda = 1$ for any mutant x, \Rightarrow evolutionarily stable ratio (i.e., Fisher's principle).
- This is not the whole story, though.

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久で

Continuous-time approximation

- $m{\epsilon} = ext{small}$ deviation from the Fisherian sex ratio, X=1/2
- If $X=\frac{1}{2}+\epsilon$, $\frac{dq_m}{dt}\approx c_1q_m-c_2q_m^2$

for the fraction of mutant lpha in males.

- $c_1 \propto \epsilon$: Restoring force vanishes as $\epsilon \to 0$ (neutral stability), $\therefore q_m \sim 1/t$
- The logistic equation can be solved.
 - \implies Male fraction r(t|X,x) at time t for given resident X and mutant x

→□▶→□▶→□▶→□▶ □ ∅<</p>

Renormalizing fluctuations

- ullet Mutants appear at rate μ with any probability of a male offspring.
 - \Rightarrow Average sex ratio over mutant $x \in (0,1)$

$$\overline{r}(t|X) = \int_0^1 r(t|X, x) dx$$

 \Rightarrow Effective population sex ratio X' experienced by another mutant at time $t=\mu^{-1}$

$$X' = \overline{r} \left(t = \mu^{-1} | X \right)$$

$$X \to X' \to X'' \to \ldots \to X^{(\infty)}$$

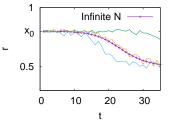
'Dressed' value

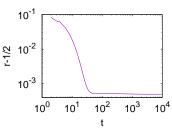
$$\epsilon^{(\infty)} = X^{(\infty)} - 1/2 \approx 0.36\mu - 1.46\mu^2$$

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

Cross-checks

- Monte Carlo
 - Every individual i has its own x_i (i = 1, 2, ..., N).
 - Choose a male(=father) and a female(=mother).
 - ullet An offspring's sex is determined by x_{father} , and it inherits either x_{father} or x_{mother} equally probably.
 - **③** Mutation $x_i \to x_i' \in (0,1)$ occurs with probability $\mu \ll 1$.



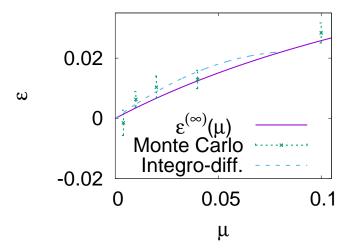


• Integro-differential equation for distribution $(N o \infty)$

$$\lim_{t \to \infty} r_{\rm fit}(\mu) \approx 1/2 + 0.5\mu - 2.8\mu^2$$

◆□▶◆□▶◆□▶◆□▶ □ 900

Results



Summary [Phys. Rev. E 99, 022403 (2019)]

- Correction to Fisher's theory
- Infinitely slow relaxation to the Fisherian ratio
 - lacktriangle Perturbed by any small mutation rate μ
 - Dynamic equilibrium, not captured by fixed-point analysis
- Father effect
 - Broken symmetry between males and females
- Predictions
 - $\mu \ge 0.05$ if responsible for 107:100
 - ▶ More sons if μ increases
 - ⇒ supported by empirical data [Scherb et al. (2013)]