Chemical Potential Formalism for Entropic Effects in Confined Polymers

Cheng-Hung Chang 張正宏

Institute of Physics, National Chaio Tung university Taiwan

Experimental motivations

Both tug-of-war and recoiling processes are caused by entropic forces.

A DNA is pulled into and escapes from a nanoslit. Chia-Fu Chou's lab (Academia Sinica, Taiwan)

The entropic effect for confined polymers

Experiments for entropic forces

 $\approx 0.17 \sim 0.51 \text{ pN}$

Entropy-Driven Single Molecule Tug-of-War of DNA at Micro-Nanofluidic Interfaces

Jia-Wei Yeh,^{†,‡,¶} Alessandro Taloni,^{‡,#,¶} Yeng-Long Chen,^{†,‡,⊥} and Chia-Fu Chou*,^{‡,‡,§,∥}

[†]Department of Physics, National Taiwan University, Taipei, Taiwan

[‡]Institute of Physics, [§]Research Center for Applied Sciences, and [∥]Genomics Research Center, Academia Sinica, Taipei, Taiwan

¹Department of Chemical Engineering, National Tsing-Hua University, Hsinchu, Taiwan

	Outside the channel	Inside the channel
coarse-grained BU	<i>C</i> ₀	CI
number of BU	n_{0}	$n_{ m I}$
configuration number of BU	$\Omega_{n_{\mathrm{O}}}$	$\Omega_{n_{\mathrm{I}}}$
excess configuration number caused by adding an extra BU outside/inside the channel	$\Phi_{n_0} = \frac{\Omega_{n_0+1}}{\Omega_{n_0}}$	$\Phi_{n_{\rm I}} = \frac{\Omega_{n_{\rm I}+1}}{\Omega_{n_{\rm I}}}$

Entropic recoiling force

If $C_{\rm I} = C_0$

Entropic free energy

 $-\tilde{T}S = -k_B\tilde{T}\ln(\Omega_{n_I}\Omega_{n_O})$ $k_B = \text{Boltzmann's constant}$ $\tilde{T} = \text{Kelvin temperature}$

The entropic recoiling force describes the tendency of a chain to escape from a channel,

$$\tilde{f}_R = \frac{-\tilde{T}\Delta S}{l} = \left(\frac{k_B\tilde{T}}{l}\right) \ln\left(\frac{\Omega_{n_I-1}\Omega_{n_O+1}}{\Omega_{n_I}\Omega_{n_O}}\right),\tag{1}$$

when the chain is shifted a distance / (BU size) out of the channel.

A dimensionless version of force

$$f_R = \frac{\tilde{f}_R l}{\varepsilon} = T \ln\left(\frac{\Omega_{n_I - 1} \Omega_{n_O + 1}}{\Omega_{n_I} \Omega_{n_O}}\right) = T \ln\left(\frac{\Phi_{n_o}}{\Phi_{n_I - 1}}\right)$$
(2)

with $T = \tilde{T} / \tilde{T}_{room}$ and $\varepsilon \equiv k_B \tilde{T}_{room}$.

If f'_R is the force of a second chain of the same form as (2), then

$$f_R = f_R' + T \ln(\alpha_R) \tag{3}$$

with
$$\alpha_R \equiv \frac{\Phi'_{n_I-1}\Phi_{n_O}}{\Phi_{n_I-1}\Phi'_{n_O}}$$
.

If
$$C_{I} \neq C_{0}$$

$$f = T \ln \left(\left(\tilde{\Phi}_{n_{0}} \right)^{n_{0}} \right)$$

$$f_R = T \ln \left(\frac{\left(\tilde{\Phi}_{n_I - 1} \right)^{n_i}}{\left(\tilde{\Phi}_{n_I - 1} \right)^{n_i}} \right) \quad (4)$$

$$\begin{split} \widetilde{\Phi}_{n_{I}} &\equiv \frac{g_{n_{I}+1}\Omega_{n_{I}+1}}{g_{n_{I}}\Omega_{n_{I}}} = \Psi_{n_{I}}\Phi_{n_{I}} \\ \widetilde{\Phi}_{n_{O}} &\equiv \frac{g_{n_{O}+1}\Omega_{n_{O}+1}}{g_{n_{O}}\Omega_{n_{O}}} = \Psi_{n_{O}}\Phi_{n_{O}} \end{split}$$

$$\begin{cases} \Psi_{n_0} \equiv \frac{g_{n_0+1}}{g_{n_0}} \\ \Psi_{n_I} \equiv \frac{g_{n_I+1}}{g_{n_I}} \end{cases}$$

Two forces of this form are related by

difference btw C_{I} and C_{0}

$$f_{R} = f_{R}' + T \ln(\tilde{\alpha}_{R}) \qquad \tilde{\alpha}_{R} = G \bar{\alpha}_{R} = \gamma \alpha_{R} \qquad (5)$$

$$G \equiv \frac{g_{n_{I}-1}'^{n_{i}} g_{n_{0}}^{n_{0}}}{g_{n_{I}-1}^{n_{i}} g_{n_{0}}'^{n_{0}}} \qquad \bar{\alpha}_{R} \equiv \frac{\Phi_{n_{I}-1}'^{n_{i}} \Phi_{n_{0}}^{n_{0}}}{\Phi_{n_{I}-1}^{n_{i}} \Phi_{n_{0}}'^{n_{0}}} \qquad \gamma \equiv G \frac{\bar{\alpha}_{R}}{\alpha_{R}}.$$

Entropic drift & tension forces

The entropic drift force describes the tendency of the drift of the whole chain from the right to the left space,

$$f_D = T \ln\left(\frac{\Omega_{n_R-1}\Omega_{n_L+1}}{\Omega_{n_R}\Omega_{n_L}}\right) = T \ln\left(\frac{\Phi_{n_L}}{\Phi_{n_R-1}}\right).$$
 (6)

The entropic tension force is the tendency of polymer stretching inside the channel,

$$f_T = T \ln \left(\frac{\Omega_{n_L+1} \Omega_{n_I-1} \Omega_{n_R} + \Omega_{n_L} \Omega_{n_I-1} \Omega_{n_R+1}}{\Omega_{n_L} \Omega_{n_I} \Omega_{n_R}} \right)$$
$$= T \ln \left(\frac{\Phi_{n_L} + \Phi_{n_R}}{\Phi_{n_I-1}} \right).$$
(7)

All these forces are related to a second force of the same type by

Upper & bottom bounds of forces (candidates for reference forces)

A correspondence between the entropic force for confined polymers & the chemical potential for solutions.

$$f = f^{\bullet} + T \ln(\alpha), \quad \alpha = \gamma \beta \qquad \gamma = 1$$
granular chain

$$f = f^{\bullet} + T \ln(\alpha), \quad \alpha = \gamma \beta \qquad \gamma = 1$$
granular chain
inter-unit factor β
intra-unit factor γ

$$\mu = \mu^{\bullet} + R\tilde{T} \ln(a), \quad a = rc \qquad r = 1$$
dilute solution

$$\mu = \mu^{\bullet} + R\tilde{T} \ln(a), \quad a = rc \qquad r = 1$$
dilute solution

$$\mu = \mu^{\bullet} + R\tilde{T} \ln(a), \quad a = rc \qquad r = 1$$
dilute solution

$$\mu = \mu^{\bullet} + R\tilde{T} \ln(a), \quad a = rc \qquad r = 1$$
dilute solution

$$\mu = \mu^{\bullet} + R\tilde{T} \ln(a), \quad a = rc \qquad r = 1$$
dilute solution

$$\mu = \mu^{\bullet} + R\tilde{T} \ln(a), \quad a = rc \qquad r = 1$$
dilute solution

Numerical experiments

Two ways to extract entropic forces:

- Jarzynski equality
- Recursion formula (count microstates)

Force relation between different types of polymers

Force relation btw different channel widths & stiffnesses

Entropic drift & tension forces of tug-of-war

Entropic forces calculated by the RF coincide with our analytical formulas.

Our study reveals the overestimated traditional scaling approach.

In a, b, c, monomer number outside the channel N = 4, 20, **100**, $\xi = n_1 / (N - n_1)$.

100

Applications

Comparison with existing experiments

experiments	Polymers & channel	f _R ^{exp} (pN)	f _R ^{theor} (pN)
Α 200 nm C 1 μm 100 hm	A dsDNA recoiling from a nano channel 90 nm wide, 100 nm deep. (Biophysical J.) Modeled by a strip of width 110 nm.	≈ 0.22	≈ 0.18
	A dsDNA recoiling from an array of nanopillars 35 nm in diameter with a center-to-center spacing of 160 nm, free space width 125 nm (Phys. Rev. Lett.) Modeled by a strip of width 125 nm.	≈ 0.04	≈ 0.12
f	A dsDNA undergoing (i) a tug-of-war scenario and (ii) a recoiling-retraction scenario in a nanoslit of 110 nm in height (Nano Lett.) Modeled by a slit of height 110 nm.	≈ 0.30	≈ 0.28

A simple theory provides simultaneous consistency with several experimentally indirectly "measured" forces.

Predictions

experiments	Polymers & channel	Entropic forces (pN)
alamy stock photo	A ssDNA, partly confined in a 2D nanochannel or a 3D circular nanotube of width 1.6 nm. Modeled by an SC comprising beads of three nucleotide bases.	f _R ^{theor} ≈ 11.32 (nanochannel) 21.76 (nanotube)
	A ssDNA oligomer threaded through an α -hemolysin (10 nm long, inner size 1.4 \sim 4.1 nm. Modeled by an NSC through a channel of the same width as the bead, with a hypothesized effective stiffness = $1 \sim 10^2$ pN/nm.	f _T ^{theor} ≈ 1.47~14.09

General force scale: fN ~ pN

Upper bound seems to be $\approx 20 \text{ pN}$.

Summary

Theoretically (mathematical equivalence)

In practice (justify pure entropic contributions in experimental measurements)

pprox 0.04 pN

pprox 0.22 pN

pprox 0.17 \sim 0.51 pN

Upper bound of entropic forces in nature (≈20 pN)

Acknowledgement

(Biophysis group, Natl. Chiao Tung Uni, Taiwan)

Hong-Qing Xie

ARTICLE

https://doi.org/10.1038/s42005-019-0118-8

OPEN

Chemical potential formalism for polymer entropic forces

Hong-Qing Xie¹ & Cheng-Hung Chang¹

COMMUNICATIONS PHYSICS | (2019)2:24 | https://doi.org/10.1038/s42005-019-0118-8 | www.nature.com/commsphys

