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Experimental motivations

0.00 sec.

A DNA is pulled into and escapes from a
nanoslit. Chia-Fu Chou’s lab (Academia
Sinica, Taiwan)
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Both tug-of-war and
recoiling processes are
caused by entropic forces.



The entropic effect for confined polymers
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Experiments for entropic forces
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configuration number of BU Q. Oy,
excess configuration number o Qno+1 o Q41
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outside/inside the channel




Entropic recoiling force

fC, = C,

Entropic free energy

—TS = —kgT In(Q,, Qp,,

kg = Boltzmann’s constant

T = Kelvin temperature

The entropic recoiling force describes the tendency of a chain to
escape from a channel,

f _Tas _ (ksT | (Srim1n (1)
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when the chain is shifted a distance / (BU size) out of the channel.



A dimensionless version of force

rl Q10 ®
fR=fi=T1n( L= n0+1>=T1n(q) ”O) (2)
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WithT = T/Troom and € = kgTroom-

If f» is the force of a second chain of the same form as (2), then
fr = fr + TIn(ag) (3)
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Two forces of this form are related by difference btw C;and C,
fR = fé + Tln(d'R) &R = GC_(R = yap (5)
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Entropic drift & tension forces (b) f

The entropic drift force describes the j Y
tendency of the drift of the whole <:>
chain from the right to the left space, f
Q, 1) )
N = Tln( Rl nL+1) = Tln( L ) (6)
QTLRQTLL CDTlR—l

The entropic tension force is the tendency of polymer stretching
inside the channel,

fr =Tln (QnL+1Qn'_1QnR i Q”LQ""lﬂ”‘R*l)
T QnLQnIQnR

o, + P
=T1n< "C’I; ”R). (7)
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All these forces are related to a second force of the same type by

fx=fx +Tln(a) witha=yB, Xe€{RD,T} (8)
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A correspondence between the entropic force for confined polymers
& the chemical potential for solutions.

=14+ TIn(la), o= !
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Numerical experiments



Optical
tweezer

Two ways to extract
entropic forces:

* Jarzynski equality

e Recursion formula
(count microstates)




Force relation between different types of polymers
45

Pull non-self avoiding
chains (NSC) and self- 491
avoiding chains (SC)
into a channel by an «* 39|
optical tweezer.

Recursion
formula

Optical
tweezer

JarzynsKki
equality
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Force relation btw different channel widths & stiffnesses
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Entropic drift & tension forces of tug-of-war
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Entropic forces
calculated by the RF
coincide with our
analytical formulas.

Our study reveals the
overestimated
traditional scaling
approach.

In a, b, c, monomer
number outside the
channel N = 4, 20,

100,¢é=n,/(N-n,).



Applications



Comparison with existing experiments

experiments

Polymers & channel

fe™® (pN)

thheor (p N)

A dsDNA recoiling from a nano channel
90 nm wide, 100 nm deep. (Biophysical J.)
Modeled by a strip of width 110 nm.

~ 0.22

~ 0.18

A dsDNA recoiling from an array of
nanopillars 35 nm in diameter with a
center-to-center spacing of 160 nm, free
space width 125 nm (Phys. Rev. Lett.)
Modeled by a strip of width 125 nm.

~ 0.04

~ 0.12

fl

A dsDNA undergoing (i) a tug-of-war
scenario and (ii) a recoiling-retraction
scenario in a nanoslit of 110 nm in height
(Nano Lett.)

Modeled by a slit of height 110 nm.

~ 0.30

~ 0.28

A simple theory provides simultaneous consistency with

several experimentally indirectly “measured” forces.




Predictions

experiments Polymers & channel Entropic forces (pN)

A ssDNA, partly confined in a 2D
nanochannel or a 3D circular nanotube | f theor =~

of width 1.6 nm. 11.32 (nanochannel)
21.76 (nanotube)
Modeled by an SC comprising beads of
three nucleotide bases.

A ssDNA oligomer threaded through an
a-hemolysin (10 nm long, inner size 1.4 | f theor =
~4.1nm. 1.47~14.09

Modeled by an NSC through a channel of
the same width as the bead, with a
hypothesized effective stiffness = 1~107?
pN/nm.

General force scale: fN ~ pN Upper bound seems to be =20 pN.




Summary

Theoretically
(mathematical equivalence)

In practice

(justify pure entropic
contributions in
experimental
measurements)

Upper bound of
entropic forces in
nature (=20 pN)
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r=1
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~ 0.17 ~0.51 pN
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