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We provide an 2(log(n)) lower bound for the depth of any quantum circuit generating the unique
groundstate of Kitaev’s spherical code. No cirenit-depth lower bound was known before on this code
in the general case where the gates can connect qubits even if they are far away; It is a known hurdle |
in computional complexity to handle general circunits, and indeed the proof requires introducing
new tP( hmques beyond 'rhose llb(-‘d to prove the Q(\/'F) lower bound which holds in the geometrical

case The lower nd.is.tig: p-bo-constants-sinee-a~-MERA cirenit, of logarithmic depth @
axtst® 1 16]. To the best, of our knowlpdgp this is the first time a quantum cirenit-depth lower lTﬂJTrJ:b
Tiswglven fnr a unique ground %t.atp of a gapped local Ham]h,(mlan Providing a lower bound in_thig~"

|case seems more challefigtng; correlations [41] and |

ibtandd,rd lower bound techniques [31] do not apply. We prove our lower bound by introducing the ;

ncw notion of y-separation, and analyzing its behavior using algebraic topology arguments. )}
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Does a Single Eigenstate Encode the Full Hamiltonian?
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The eigenstate thermalization hypothesis (ETH) posits that the reduced density matrix for a subsystem
correspondmg to an excited clgenstate s ermal.” Here we expound on this hypothes1s by askmg For which

seemmgly unrelated question: Is the Hamiltonian of a system encoded W'lthm a single elgemtate" We
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Determmmg a Iocal Hamiltonian from a single eigen-
state

. Xiao-Liang Qi'? and Daniel Ranard?
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We ask whether the knowledge of a single eigenstate of a local Hamiltonian is sufﬁ(,ient
to uniquely determine the Hapuiltonian...We. present gvidence that the answer is “yes”
for.gene 6cal Hamiltonians, given either the ground state or an exciteé In
fact, knowing only the two-point equal-time correlation functions of local observables with
respect to the eigenstate shounld generically be sufficient to exactly recover the Ha.mﬂtonla.n

inite-size systems, with numerical algorithms tha.t run in a time that is polynomi
systemn size. We IS0 investigate-the-large-syste Fhe-fhrewersttivity of the reconstruction
to error, and the case when correlation fl.lIlCthIlb are only known for observables on a fixed
sub-region. Numerical demonstrations support the results for finite one-dimmensional spin
chains (though caution must be taken when extrapolating to infinite-size systems in higher
dimensions). For the purpose of our analysis, we define the “k-correlation spectrum” of a
state, which reveals properties of local correlations in the state and may be of independent
interest.
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“The good old days

PHYSICAL REVIEW A 85, 40303(R) (2012)
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Correlations in excited states of local Hamiltonians
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Physical properties of the ground and excited states of a k-local Hamiltonian are largely determined by the
k-particle reduced density matrices (k-RDMs), or simply the k-matrix for fermionic systems—they are at least
enough for the calculation of the ground-state and excited-state energies. Moreover, for a nondegenerate ground
state of a k-local Hamiltonian, even the state itself is completely determined by its k-RDMs, and therefore
contains no genuine >k-particle correlations, as they can be inferred from k-particle correlation functions. It is
natural to ask whether a similar result holds for nondegenerate excited states. In fact, for fermionic systems, it
has been conjectured that any nondegenerate excited state of a 2-local Hamiltonian is simultaneously & unique
ground state of another 2-local Hamiltonian, hence is uniquely determined by its 2-matrix. And a weaker version
of this conjecture states that any nondegenerate excited state of a 2-local Hamiltonian is uniquely determined
by its 2-matrix among all the pure n-particle states. We construct explicit counterexamples to show that both
conjectures are false. We further show that any nondegenerate excited state of a k-local Hamiltonian is a unique
ground state of another 2k-local Hamiltonian, hence is uniquely determined by its 2k-RDMs (or 2k-matrix).
These results set up a solid framework for the study of excited-state properties of many-body systems.
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The grou nd states
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 Solve the equations Tr(p,(C)A;) = a;
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E:quation~so|vi ng, al gorithm

Tr(pg(@Ai) — Ay ]Cor Gl (61,...,Cm)

Or one can define
£(&) =D (Tr(pg(4s) — ai)’

And to minimize f(é)

An iterative algorithm:

S. Niekamp, T. Galla, M. Kleinmann, and O. Giihne, Journal of
Physics A: Mathematical and Theoretical 46, 125301 (2013).

Idea from information Projection. Convergence’?
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The ei genstates
Hly) = Aly) p= Y)Y
e ZciAi H (&) E=(Cly ., Cm)
T ;>|w> = 09) (H — X)*|p) = 0]¢)
H=(H -\’ H|y) = 0l)
) is a ground state of H

J.Chen, Z. J1, Z.. We1, and B. Zeng, Physical Review A 85,
040303 (2012).
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Whg two~|:>oint correlation
Hly) = M) p = [P) (]

s = Z Cz'Ai TI‘(,OAZ) — A, Nk Z C;a;

I:I — (Z Cz(Az 5T az)>

— Tr(pA;A;)

i these correlations were known == ground state algori’cl’um

X.-L. Q1, and D. Ranard, Quantum, 3, 159 (159).
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Without two~l:>oi nt correlation?
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Solve Tr(p(@)4;) = a; for &= (G, 5 e

Or to minimize f(&) for

£(& =) (Tr(p(DAs) — ;)
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Ground States
1st Excited States
2nd Excited States




The a!gorlthm
F@ = (Te(p(D4i) - a;)” Lo

1

random sample ¢}s

Let 20 = ¢ andk = 0

e Random samPling

o c]uasi~Newton

m Ctl"l O d B e e e F 4OVttt
e BFGS-formulato
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Hessian
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e Function: chain rule
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Summarg
Given H|y) = M) Anc B Z@;A@-

1

Fnd H O ]¥) bg onlg knowing (Y| A;|Y) = a;
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Outlook

e More rigorous treatment for uniqueness’?
e Information-theoretic meaning for
“eigenstatcs”?

o Complexitg analysis of algorithm’?

e Other algorithm (e.g. machine |eaming

algorithm) 2

| o Correlation—-—localitg?

~ ® Eigenstate thermalization?




B e o addio= -—-—-...__, - - .

Sk ab dad gl

bin B s gmin, W g i

References
S.-Y. Hou, N. Cao, S. Lu, Y. Shen, Y.-T. Poon and B. Zeng,

arX1v: 1903.06569 (2019).

B. Zeng, X. Chen, D.-L. Zhou, X.-G. Wen, Quantum
Information Meets Quantum Matter, Springer, (2019).

S. Niekamp, T. Galla, M. Kleinmann, and O. Giihne, Journal of
Physics A: Mathematical and Theoretical 46, 125301 (2013).

J.Chen, Z. J1,Z. Wel, and B. Zeng, Physical Review A 85,
040303 (2012).

X.-L. Q1, and D. Ranard, Quantum, 3, 159 (159).
D. Aharonov, and Y. Touati, arXiv: 1810.03912 (2018).

J. R. Garrison, and T. Grover, Physical Review X 8,021026
(2018).

- T T e e W i — e A S Y



