

Neural Canonical Transformations

Lei Wang (王磊) <u>https://wangleiphy.github.io</u> Institute of Physics, CAS

Hamiltonian equations

$$\begin{cases} \dot{p} = -\frac{\partial H}{\partial q} \\ \dot{q} = +\frac{\partial H}{\partial p} \end{cases}$$

Hamiltonian equations

 $\begin{cases} \dot{p} = -\frac{\partial H}{\partial q} \\ \dot{q} = +\frac{\partial H}{\partial p} \end{cases}$

 $J = \left(\right)$

- Phase space variables
 - $\boldsymbol{x} = (p, q)$
 - Symplectic metric

Hamiltonian equations

 $\dot{p} = -\frac{\partial H}{\partial q}$ $\dot{q} = +\frac{\partial H}{\partial p}$

Phase space variables

Symplectic gradient flow

 $\mathbf{x} = (p, q)$

Symplectic metric

 $J = \begin{pmatrix} I \\ I \end{pmatrix}$

 $\dot{\mathbf{x}} = \nabla_{\mathbf{x}} H(\mathbf{x}) J$

Hamiltonian ec

V.I. Arnold

Mathematical Methods of Classical Mechanics

Second Edition

1815 × 2646

Symplectic Integrators

from Hairer et al, Geometric Numerical Integration

Canonical Transformations Change of variables $\boldsymbol{x} = (p,q) \quad \boldsymbol{\leftarrow} \quad \boldsymbol{z} = (P,Q)$

$$\left(\nabla_{x}z\right)^{T}=J$$

symplectic condition

which satisfies $\left(\nabla_x z\right) J\left($

one has

Preserves Hamiltonian dynamics in the "latent phase space"

Canonical Transformations

Change of variables z = (P, Q)

$$\left(\nabla_{\mathbf{x}} z\right)^T = J$$

symplectic condition

$\dot{z} = \nabla_{\tau} K(z) J$ where $K(z) = H \circ x(z)$

Statistical mechanics perspective

- Canonical transformation deforms phase space density $\rho(\mathbf{x}) = e^{-\beta H(\mathbf{x})}$
- Symplectic condition => Jacobian determinant = 1
- Liouville theorem: incompressible flow in phase space

Example: Cartesian <---> Polar $(p_x, p_y, x, y) \leftarrow$ $(p_r, p_{\varphi}, r, \varphi)$ $K = \frac{1}{2} \left(p_r^2 + \frac{1}{r^2} p_{\varphi}^2 \right)$ $r\sin($ $- \langle + V(r, \varphi) \rangle$ +V(x, y) $r\cos\varphi$ X

How to design "useful" canonical transformations ?

C C C

Neural Canonical Transformations

Neural transformation in 1d

latent space

"neural net"

Neural transformations in higher dims

https://blog.openai.com/glow/

Representation Learning

Goodfellow, Bengio, Courville, http://www.deeplearningbook.org/

Page 6 Figure 1.2

Learning representation for science

Automatic chemical design Gomez-Bombarelli et al, 1610.02415

Representation learning in statistical physics

Effective theory emerges upon transformation of the variables

Physics happens on a manifold Learn neural nets to unfold that manifold

Neural Canonical Transformations

Learn the network and the latent harmonic frequency together

Modular design of the symplectic network

 $z = \mathcal{T}(x)$ $\mathcal{T} = \mathcal{T}_1 \circ \mathcal{T}_2 \circ \mathcal{T}_3 \circ \cdots$

Compose symplectic primitives to a deep neural network

$$\left(\nabla_{\boldsymbol{x}} \boldsymbol{z}\right) J \left(\nabla_{\boldsymbol{x}} \boldsymbol{z}\right)^{T} = J$$

symplectic group

Neural symplectic primitives

Neural coordinate transformation

- Linear transformation: Symplectic Lie algebra
- Continuous-time flow: Symplectic generating functions See also Bondesan, Lamacraft, 1906.04645 Neural ODE, Chen et al, 1806.07366, Monge-Ampere flow, Zhang et al 1809.10188

$$\left(\nabla_Q q\right)$$

neural net

Training approaches

Variational calculation

"learn from Hamiltonian"

$$\mathscr{L} = \int d\mathbf{x} \,\rho(\mathbf{x}) \left[\ln \rho(\mathbf{x}) + \beta H(\mathbf{x}) \right]$$

Sample in the latent space

Density estimation

"learn from data"

 $\mathscr{L} = -\mathbb{E}_{\mathbf{x} \sim \text{dataset}} \left[\ln \rho(\mathbf{x}) \right]$

Sample from dataset in the physical space

Let's play with examples!

How is this going to be useful?

 $H = \frac{1}{2} \sum_{i=1}^{n} \left[p_i^2 + (q_i - q_{i-1})^2 \right]$

Example 1: Harmonic Chain

Fermi–Pasta–Ulam–Tsingou problem w/o nonlinearity

Consistency check: neural nets can learn linear coordinate transformations

Learning the normal modes

Example 2: Alanine Dipeptide

250 ns molecular dynamics simulation data at 300 K https://markovmodel.github.io/mdshare/ALA2/#alanine-dipeptide

More than 3 hours of video ...

What do biologists see ?

slow motion of the two torsion angles

"Dimensional reduction" to manually designed collective variables

What does the neural net see ?

Unsupervised learning of slow & nonlinear collective variables from data

Latent space interpolation

Latent space interpolation

 $Q_2 \approx \Phi$ → $Q_1 \approx \Psi$

ļ

Example 3: MNIST

Data scientists:

"50,000 grayscale images with 28x28 pixels"

Physical Chemists:

"Stable conformations of a molecule with 784 degrees of freedom"

Learning slow variables of MNIST

Learning slow variables of MNIST

Conceptual Compression

physical q

Compress by keeping slow collective variables

Kingma et al, 1312.6114 Gregor et al, 1604.08772 Dinh et al, 1605.08803 autoencoders/hierarchical network architecture/hyperbolic latent space...

Neural Alice-Bob game

throw away

random noises

Original

2	3	J	17	0	ð	\$	-	C	35
5	7	3	50	3	6	9	5	B	
5	2	4	Y.	K	3	3	7	Ø	5
2	5	5	2	3	91	Ş	\mathcal{C}	1	1
7	S	5	ŝ	5	2	9	ar.	3	5
8	3	4	9	(A)	3	2		2	5
3	2	5	1	S	13	1	5	7	6
5	4	3	Ą	4	1	2	1.04	2	1
13	1	6	2	4	25	G	5	5	3
11	3	4	6	E	Ð	$\tilde{\mathbb{C}}$	0	3	

Original

Original

3	9	6	4	2.2	5	5	4	X	
E(9	0	3	Э.	3	8	9	7	
3	3	C	${\rm M}_{\rm eff}$	9	3	0	5	1	5
4	6	20	3	N)	3	g	4	5	9
4	3	2	3	9	3	3	$\overline{\mathbf{r}}$	9	4
6	0,	5	9	3	C)	7	5	IJ	
6	3	3	S	4	1. S	Ċ	õ	3	Ŀ
3	100	7	5		B	2		6-2	?
ŝ	9	0	T.	7	C	4	3	5	57.4
3	Ð	20	6	3	13	1	3	3	7

Original

Original

Original

6	-1	E	ų	3	4	3	9	Ý	17
у	9	C	3	E	ŝ	4	3	7	Ŧ
3	0	XA	C,	4	ŝ	Ø	5	in	5
5	4	7	9	Ö	4	Ś	1	53	9
4	2	3	3	9	3	-	9	S	10
1	1	g	9	প্র	9	7	2	Ţ,	5
0	0	3	8	9	5	6	S	3	6
S	3	9	3		4	2	Ŷ.	3	7
6	9	3	4	No.	75	4	7	B	Q
8	1	6	3	2	5	1	G	5	7

Original

Original

"A Hamiltonian Extravaganza" —Danilo J. Rezende@DeepMind

Sep 25 ICLR 2020 Paper Submission deadline

- Sep 26 Symplectic ODE-Net, 1909.12077 🙀 SIEMENS
- Sep 27 Hamiltonian Graph Networks with ODE Integrators, 1909.12790
- Sep 29 Symplectic RNN, 1909.13334
- Sep 30 Equivariant Hamiltonian Flows, 1909.13739

Hamiltonian Generative Network, 1909.13789

Neural Canonical Transformation with Symplectic Flows, 1910.00024 🐼 荣

Thank You!

Neural Canonical Transformation with Symplectic Flows, 1910.00024

Shuo-Hui Li 李烁辉 Chen-Xiao Dong 董陈潇 Linfeng Zhang 张林峰 IOP CAS IOP CAS Princeton

