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Symplectic Integrators

from Hairer et al, Geometric Numerical Integration 

14 I. Examples and Numerical Experiments

Table 2.2. Data for the outer solar system

planet mass initial position initial velocity

−3.5023653 0.00565429
Jupiter m1 = 0.000954786104043 −3.8169847 −0.00412490

−1.5507963 −0.00190589

9.0755314 0.00168318
Saturn m2 = 0.000285583733151 −3.0458353 0.00483525

−1.6483708 0.00192462

8.3101420 0.00354178
Uranus m3 = 0.0000437273164546 −16.2901086 0.00137102

−7.2521278 0.00055029

11.4707666 0.00288930
Neptune m4 = 0.0000517759138449 −25.7294829 0.00114527

−10.8169456 0.00039677

−15.5387357 0.00276725
Pluto m5 = 1/ (1.3 · 108) −25.2225594 −0.00170702

−3.1902382 −0.00136504
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Fig. 2.4. Solutions of the outer solar system

To this system we apply the explicit and implicit Euler methods with step size
h = 10, the symplectic Euler and the Störmer–Verlet method with much larger
step sizes h = 100 and h = 200, repectively, all over a time period of 200 000
days. The numerical solution (see Fig. 2.4) behaves similarly to that for the Kepler
problem. With the explicit Euler method the planets have increasing energy, they
spiral outwards, Jupiter approaches Saturn which leaves the plane of the two-body
motion. With the implicit Euler method the planets (first Jupiter and then Saturn)
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Canonical Transformations

x = (p, q) z = (P, Q)
Change of variables

(∇xz) J (∇xz)T = Jwhich satisfies

·z = ∇zK(z)Jone has where K(z) = H ∘ x(z)

symplectic condition

Preserves Hamiltonian dynamics in the “latent phase space”



Statistical mechanics perspective
• Canonical transformation deforms phase space density 

• Symplectic condition => Jacobian determinant = 1 

• Liouville theorem: incompressible flow in phase space

ρ(x) = e−βH(x)



Example: Cartesian <—> Polar 

H = 1
2 (p2

x + p2
y )

+ V(x, y)

K = 1
2 (p2

r + 1
r2 p2

φ)
+ V(r, φ)

(px, py, x, y) (pr, pφ, r, φ)

How to design “useful” canonical transformations ? 



Neural Canonical Transformations



Intuition

If the mapping f is 1-to-1, then the total area (or volume) should

not change after the transformation from x to z .

Figure 1: Mapping from one probability density to another. Source:

Lecture 19 notes

12

Neural transformation in 1d

%(z)

ρ(x)

latent space 

physical  
space “neural net”



https://blog.openai.com/glow/

Glow 1807.03039
https://deepmind.com/blog/wavenet-generative-model-raw-audio/ 
https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/

WaveNet 1609.03499 1711.10433

Neural transformations in higher dims

https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://deepmind.com/blog/high-fidelity-speech-synthesis-wavenet/


Representation Learning

Goodfellow, Bengio, Courville, http://www.deeplearningbook.org/

Page 6 
Figure 1.2

http://www.deeplearningbook.org/


Automatic chemical design  
Gomez-Bombarelli et al,1610.02415

Learning representation for science

Galaxy evolution 
Schawinski et al, 1812.01114 Hy
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▪ With the optimal discriminator, training GAN is equivalent to minimizing Jensen-Shannon 
divergence as 

What happens during the training of GAN?

Why GAN Works?

http://videolectures.net/site/normal_dl/tag=1129740/deeplearning2017_courville_generative_models_01.pdf
Christian Leidig et. al, CVPR 2017

the only solution is
Monte Carlo update

Representation learning in statistical physics

Renormalization group

Physics happens on a manifold 
Learn neural nets to unfold that manifold

Effective theory emerges upon 
transformation of the variables



Neural Renormalization Group 

Neural Network Renormalization Group

Shuo-Hui Li1, 2 and Lei Wang1, ⇤

1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

We present a variational renormalization group approach using deep generative model composed of bijectors.
The model can learn hierarchical transformations from physical variables to renormalized collective variables.
Conversely, it directly generates statistically independent physical configurations by iterative refinement at var-
ious length scales. The generative model has an exact and tractable likelihood, which provides renormalized
couplings between the collective variables and supports unbiased rejection sampling of the physical variables.
To train the neural network, we employ probability density distillation, in which the training loss is a variational
upper bound of the physical free energy. The approach could be useful for automatically identifying collective
variables and e↵ective field theories.

Renormalization group (RG) is one of the central schemes
in theoretical physics, whose broad impacts span from high-
energy [1] to condensed matter physics [2, 3]. In essence,
RG keeps the relevant information while reducing the dimen-
sionality of statistical data. Besides its conceptual impor-
tance, practical RG calculations have played important roles
in solving challenging problems in statistical and quantum
physics [4, 5]. A notable recent development is to perform
RG calculation using tensor network machineries [6–16]

The relevance of RG goes beyond physics. For exam-
ple, in deep learning applications such as image recognition,
the inference procedure resembles the RG flow from micro-
scopic pixels to categorical labels. Indeed, a successfully
trained deep neural network extracts a hierarchy of increas-
ingly higher-level of concepts in its deeper layers [17]. In light
of such intriguing similarities, References [18–21] drew con-
nections between deep learning and RG. References [22, 23]
employed neural networks for RG studies of physical prob-
lems, and Refs. [24–26] investigated phase transitions from a
machine learning perspective. Since the discussions are not
totally uncontroversial [19, 21, 22, 27, 28], it remains highly
desirable to establish a more concrete, rigorous, and construc-
tive connection between RG and deep learning. Such connec-
tion will not only bring powerful deep learning techniques into
solving complex physics problems but also benefit theoretical
understanding of deep learning from a physics perspective.

In this paper, we present a neural network based variational
RG approach (NeuralRG) for statistical physics problems. In
this scheme, the RG flow arises from iterative probability
transformation in a deep neural network. Integrating latest
advances in deep learning such as Normalizing Flows [29–36]
and Probability Density Distillation [37] and tensor network
architectures such as multi-scale entanglement renormaliza-
tion ansatz (MERA) [6], the proposed NeuralRG approach
has a number of interesting theoretical properties (variational,
exact and tractable likelihood, principled structure design via
information theory) and high computational e�ciency. The
NeuralRG approach is closer in spirit to the original proposal
based on Bayesian net [18] than recent discussions on Boltz-
mann Machines [19, 21, 22] and Principal Component Anal-
ysis [20].

Figure 1(a) shows the proposed neural net architecture.

Figure 1. (a) The NeuralRG network stacks bijectors into a hierar-
chical structure. The solid dots at the bottom are the physical vari-
ables x and the crosses are the latent variables z. The stars denote
the renormalized collective variables at di↵erent scales. Each block
is a bijective and di↵erentiable transformation parametrized by a bi-
jector neural network. The light gray and the dark gray blocks are
the disentanglers and the decimators respectively. The RG flows bot-
tom to top, which corresponds inferencing the latent variables from
a given physical configuration. While by sampling the latent vari-
ables according to a prior distribution and passing them downwards
one can generate the physical configuration directly. (b) The internal
structure of the bijector block consists of a real-valued non-volume
preserving flow [32].

Each building block is a di↵eomorphism, i.e., a bijective
and di↵erentiable function parametrized by a neural network,
which is denoted as a bijector [38, 39]. Figure 1(b) illustrates
a possible realization of the bijector using the real-valued non-
volume preserving flow (Real NVP) [32]. It is one of the
simplest normalizing flows [29–31, 33–36], a family of e�-
ciently invertible neural networks with tractable Jacobian de-
terminants.

The neural network relates the physical variables x and la-
tent variables z by a di↵erentiable bijective map x = g(z).
Their probability densities are also related through [40]

ln q(x) = ln p(z) � ln
������det

 
@x
@z

!������ , (1)

where q(x) is the normalized probability density of the phys-

G
enerative flow

RG
 fl

ow
Li and LW, PRL ‘18

Identify collective variables; and fast sampling w/ learned representation

high-level independent collective variables

https://github.com/li012589/NeuralRG

Normalizing flow with multi-scale neural network

physical variables



Neural Canonical Transformations

p
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Learn the network and the latent harmonic frequency together 
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Modular design of the symplectic network

z = &(x)
& = &1 ∘ &2 ∘ &3 ∘ ⋯

Compose symplectic primitives to a deep neural network 

(∇xz) J (∇xz)T = J

symplectic group



See also Bondesan, Lamacraft, 1906.04645

• Neural coordinate transformation

• Linear transformation: Symplectic Lie algebra  

• Continuous-time flow: Symplectic generating functions 

Neural symplectic primitives
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P = p (∇Qq)
Q = f(q) invertible  

neural net

Neural ODE, Chen et al, 1806.07366, Monge-Ampere flow, Zhang et al 1809.10188



Training approaches
Variational calculation Density estimation

ℒ = ∫ dx ρ(x)[ln ρ(x) + βH(x)] ℒ = − )x∼dataset [ln ρ(x)]

z ∼ %(0, Σ) x ∼ datasetx z
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Sample in the latent space Sample from dataset in the physical space

“learn from data”“learn from Hamiltonian”



How is this going to be useful ?
 

Let’s play with examples!

ADVANCES IN MATHEMATICS 9, 399-407 (1972) 

The Superperiod of the Nonlinear Weighted 
String (FPU) Problem* 

J. L. TUCK AND M. T. MENZEL 

University of California, Los Alamos Scientific Laboratory, 
Los Alamos, New Mexico 87544 

This paper gives some history of the problem, and includes superperiod data 
for quadratic and cubic nonlinear terms, together with a computation for a prime 
number of particles in the string. Extension of the problem to a circular array 
is discussed, and there is a bibliography. 

The Maniac I computer (N. Metropolis) started working at Los 
Alamos early in 1952. E. Fermi, who was visiting the Laboratory, 
J. R. Pasta, and S. M. Ulam entertained themselves by considering what 
new problems it opened up for study. One such, in classical fluid theory 
in its simplest approximation [ 11, considers a linear array of atoms linked 
by nonlinear forces. The results of the first calculations, which were 
coded by one of us (M.T.M.), were so surprising that the investigators 
were enticed into a study of nonlinear systems generally. The first 
system to be examined (Fig. I) consisted of a one-dimensional array 
of mass points linked by light Hookean springs-tension CC extension- 
made nonlinear by addition of a small term 01 (extension) [2] or 
fl (extension) [3]. 

‘i-l ‘i ‘itI 

FIGURE 1 

* Work performed under the auspices of the U. S. Atomic Energy Commission. 

399 
Copyright 0 1972 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 
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Example 1: Harmonic Chain
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FIGURE 1 

* Work performed under the auspices of the U. S. Atomic Energy Commission. 
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Copyright 0 1972 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

Fermi–Pasta–Ulam–Tsingou problem w/o nonlinearity

H = 1
2

n

∑
i= 1

[p2
i + (qi − qi−1)2]



Learning the normal modes
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Consistency check: neural nets can learn linear coordinate transformations



Example 2: Alanine Dipeptide

https://markovmodel.github.io/mdshare/ALA2/#alanine-dipeptide
250 ns molecular dynamics simulation data at 300 K 



More than 3 hours of video …



What do biologists see ?

slow motion of the  
two torsion angles

“Dimensional reduction” to manually designed collective variables 

stable  
conformations

Φ Ψ
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What does the neural net see ?

Unsupervised learning of  slow & nonlinear collective variables from data



Latent space interpolation

z1

z2



Latent space interpolation

Q1 ≈ Ψ

Q2 ≈ Φ



“50,000 grayscale 
images with 28x28 pixels”

“Stable conformations 
of a molecule with 784 
degrees of freedom”

Example 3: MNIST
Data scientists:

Physical Chemists:



Learning slow variables of MNIST
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Learning slow variables of MNIST
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Conceptual Compression

slow modes, keep

Gregor et al, 1604.08772 Dinh et al, 1605.08803

ω1

ω2

ω3

⋯

ω1 < ω2 < ω3 < ω4 < ⋯

ω4
fast modes, throw away

Encoder

f

Compress by keeping slow collective variables
Kingma et al, 1312.6114 
autoencoders/hierarchical network architecture/hyperbolic latent space…

qphysical latent Q



Neural Alice-Bob game

Encoder Decoder

throw away

f f−1

random noises

?
⋯ ⋯

Alice Bob
slow modes



Conceptual Compression of MNIST

Original 1/784 kept



Conceptual Compression of MNIST

2/784 keptOriginal



Conceptual Compression of MNIST

Original 3/784 kept



Conceptual Compression of MNIST

Original 4/784 kept



Conceptual Compression of MNIST

Original 5/784 kept



Conceptual Compression of MNIST

Original 10/784 kept



Conceptual Compression of MNIST

Original 15/784 kept



Conceptual Compression of MNIST

Original 20/784 kept



“A Hamiltonian Extravaganza”

Equivariant Hamiltonian Flows, 1909.13739

Hamiltonian Generative Network, 1909.13789

Symplectic ODE-Net, 1909.12077

—Danilo J. Rezende@DeepMind 

Neural Canonical Transformation with Symplectic Flows, 1910.00024

Hamiltonian Graph Networks with ODE Integrators, 1909.12790

Symplectic RNN, 1909.13334

Sep 26

Sep 27

Sep 29

Sep 30

http://tiny.cc/hgn 

Sep 25 ICLR 2020 Paper Submission deadline 



Thank You!

Linfeng Zhang ୟશ 
Princeton

Shuo-Hui Li ᅮᬄ  
IOP CAS

Chen-Xiao Dong ៰ᴯᄛ  
IOP CAS

Neural Canonical Transformation with Symplectic Flows, 1910.00024


