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Eigenstate Thermalization Hypothesis

Omn = ⟨m |O |n⟩ = O(Ē)δm,n + e−S(Ē)/2 fO(Ē, ω)Rm,n

ansatz in the basis of eigenstates of H

J. M. Deutsch, Phys. Rev. A 43, 2046 (1991)
M. Srednicki, Phys. Rev. E 50, 888 (1994)

• diagonal components : depends only on En not explicitly on n 
• S(E) : thermodynamic entropy
• fO : smooth function of 
• Rm,n = O(1) “random” variables 

Ē = (En + Em)/2, ω = Em − En
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full system

S



Density operator 

S

full system

S
full system ρ(t)

subsystem S,  reduced density operator ρS(t) = TrS ρ(t)

ETH

lim
|S|→∞

TrS |En⟩⟨En | = ρS,eq

H = HS + HS + Hint

single eigenstate ensemble

“The full system acts as a thermal reservoir to its subsystems.” 
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Thermalization and its mechanism for generic
isolated quantum systems
Marcos Rigol1,2, Vanja Dunjko1,2 & Maxim Olshanii2

An understanding of the temporal evolution of isolated many-
body quantum systems has long been elusive. Recently, meaning-
ful experimental studies1,2 of the problem have become possible,
stimulating theoretical interest3–7. In generic isolated systems,
non-equilibrium dynamics is expected8,9 to result in thermaliza-
tion: a relaxation to states in which the values of macroscopic
quantities are stationary, universal with respect to widely differing
initial conditions, and predictable using statistical mechanics.
However, it is not obvious what feature of many-body quantum
mechanics makes quantum thermalization possible in a sense ana-
logous to that in which dynamical chaos makes classical therma-
lization possible10. For example, dynamical chaos itself cannot
occur in an isolated quantum system, in which the time evolution
is linear and the spectrum is discrete11. Some recent studies4,5 even
suggest that statistical mechanics may give incorrect predictions
for the outcomes of relaxation in such systems. Here we demon-
strate that a generic isolated quantum many-body system does
relax to a state well described by the standard statistical-mechanical
prescription. Moreover, we show that time evolution itself plays
a merely auxiliary role in relaxation, and that thermalization
instead happens at the level of individual eigenstates, as first pro-
posed by Deutsch12 and Srednicki13. A striking consequence of this
eigenstate-thermalization scenario, confirmed for our system, is
that knowledge of a single many-body eigenstate is sufficient to
compute thermal averages—any eigenstate in the microcanonical
energy window will do, because they all give the same result.

If we pierce an inflated balloon inside a vacuum chamber, very
soon we find that the released air has uniformly filled the enclosure
and that the air molecules have attained the Maxwell velocity distri-
bution, the width of which depends only on the total number and
energy of the air molecules. Different balloon shapes, placements, or
piercing points all lead to the same spatial and velocity distributions.
Classical physics explains this ‘thermodynamical universality’ as fol-
lows10: almost all particle trajectories quickly begin to look alike, even
if their initial points are very different, because nonlinear equations
drive them to explore the constant-energy manifold ergodically, cov-
ering it uniformly with respect to precisely the microcanonical mea-
sure. However, if the system possesses further conserved quantities
that are functionally independent of the hamiltonian and each other,
then time evolution is confined to a highly restricted hypersurface of
the energy manifold. Hence, microcanonical predictions fail and the
system does not thermalize.

In contrast, in isolated quantum systems not only is dynamical
chaos absent owing to the linearity of time evolution and the dis-
creteness of spectra11, but also it is not clear under what conditions
conserved quantities provide independent constraints on the relaxa-
tion dynamics. On the one hand, any operator commuting with
a generic, and thus non-degenerate, hamiltonian is functionally

dependent on it14, seemingly implying that conservation of energy
is the only independent constraint. On the other hand, even when
operators are functionally dependent, their expectation values—
considered as functionals of states—generally are not: for example,
two states may have the same mean energies but different means of
squared energies. For non-degenerate hamiltonians a maximal set of
constants of motion with functionally independent expectation
values is as large as the dimension of the Hilbert space; examples
include the projectors P̂a~ Yaj i Yah j to the energy eigenstates14

and the integer powers of the hamiltonian5.
The current numerical and analytic evidence from the study of

integrable systems suggests that there exists a minimal set of inde-
pendent constraints the size of which is much less than the dimension
of the Hilbert space but may still be much greater than one. In pre-
vious work3 we showed that an isolated integrable one-dimensional
system of lattice hard-core bosons relaxes to an equilibrium charac-
terized not by the usual Gibbs ensemble but by a generalized Gibbs
ensemble. Instead of just the energy, the Gibbs exponent contains
a linear combination of conserved quantities—the occupation
numbers of the eigenstates of the corresponding Jordan–Wigner fer-
mions—the number of which is still only a tiny fraction of the dimen-
sion of the Hilbert space. Yet this ensemble works, although the usual
one does not, for a wide variety of initial conditions15 as well as for a
fermionic system16; it also explains a recent experimental result, the
absence of thermalization in the Tonks–Girardeau gas1. Thus,
although at least some constraints other than the conservation of
energy must be kept, it turns out that only a relatively limited number
of additional conserved quantities with functionally independent
expectation values are needed; adding further ones is redundant.

As it is not clear which sets of conserved quantities—and some are
always present—constrain relaxation and which do not, it becomes
even more urgent to determine whether or not generic isolated
quantum systems relax to the usual thermal state. This question
has received increased theoretical attention recently, because of the
high levels of isolation1,2,17 and control18,19 possible in experiments
with ultracold quantum gases. However, despite numerous studies of
specific models, there is not yet consensus on how or even whether
relaxation to the usual thermal values occurs for non-integrable sys-
tems7. The conventional wisdom is that it does8,9, but some recent
numerical results indicate otherwise, either under certain conditions4

or in general5.
To study relaxation of an isolated quantum system, we considered

the time evolution of five hard-core bosons with additional weak
nearest-neighbour repulsions, on a 21-site, two-dimensional lattice,
initially confined to a portion of the lattice and prepared in their
ground state there. Figure 1a shows the exact geometry (see also
Supplementary Discussion); the relaxation dynamics begins when
the confinement is lifted. Expanding the initial-state wavefunction
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in the eigenstate basis of the final hamiltonian Ĥ as
y(0)j i~

P
aCa Yaj i, where Ca~ Ya j y(0)h i and the index a ranges

over all the basis eigenstates yaj i, the many-body wavefunction
evolves as y(t)j i~e{iĤ t y(0)j i~

P
aCae{iEat Yaj i, where the Ea

are the eigenstate energies. Thus, obtaining results that are numeric-
ally exact for all times requires the full diagonalization of the 20,349-
dimensional hamiltonian. The quantum-mechanical mean of any
observable Â evolves as

Â(t)
! "

: y(t) Â
## ##y(t)

! "
~
X

a,b

C!a Cbei Ea{Ebð Þt Aab ð1Þ

where Aab~ Ya Â
## ##Yb

! "
and the asterisk denotes complex conjuga-

tion. The long-time average of Â tð Þ
! "

is then

Â
! "

~
X

a

Caj j2Aaa ð2Þ

We note that if the system relaxes at all, it must be to this value. We
find it convenient to think of equation (2) as stating the prediction of

a ‘diagonal ensemble’, jCaj2 corresponding to the weight that Yaj i
has in the ensemble. In fact, this ensemble is precisely the generalized
Gibbs ensemble introduced in ref. 3 if as integrals of motion we
take all the projection operators P̂a~ Yaj i Yah j. Using these as con-
straints on relaxation dynamics, the theory gives the generalized
Gibbs density matrix (or constrained density matrix)
r̂c~ exp {

PD
a~1 laP̂a

$ %
, where la 5 2ln(jCaj2) and D is the

dimension of the Hilbert space. (We note, however, that for the
integrable system treated in ref. 3, the generalized Gibbs ensemble
was defined using a different, minimal set of independent integrals of
motion, the number of which was equal to the number of lattice sites
N, which is much less than D.)

If the quantum-mechanical mean of an observable behaves ther-
mally it should settle to the prediction of an appropriate statistical-
mechanical ensemble. For our numerical experiments we chose to
monitor the marginal momentum distribution along the horizontal
axis n(kx) and its central component n(kx 5 0) (see Supplementary
Information). In Fig. 1b, c we demonstrate that both relax to their
microcanonical predictions. The diagonal-ensemble predictions are
the same as these, but the canonical ones, although quite close, are
not. This is an indication of the relevance of finite-size effects, which
may be the origin of some of the apparent deviations from ther-
modynamics seen in the recent numerical studies of refs 4 and 5.

The statement that the diagonal and microcanonical ensembles
give the same predictions for the relaxed value of Â reads

X

a

Caj j2Aaa~ Ah imicrocan E0ð Þ:
1

N E0, DE

X

a
jE0 { Eajv DE

Aaa ð3Þ

where E0 is the mean energy of the initial state, DE is the half-width
of an appropriately chosen energy window centred at E0 (see
Supplementary Discussion), and the normalization N E0, DE is the
number of energy eigenstates with energies in the window
[E0 2DE, E0 1DE]. Thermodynamical universality is evident in this
equality: although the left-hand side depends on the details of the
initial conditions through the set of coefficients Ca, the right-hand
side depends only on the total energy, which is the same for many
different initial conditions. The following three scenarios suggest
themselves as possible explanations of this universality (assuming
that the initial state is sufficiently narrow in energy, as is normally
the case—see Supplementary Discussion).

First, even for eigenstates close in energy, there are large eigenstate-
to-eigenstate fluctuations of both the eigenstate expectation values
(EEVs) Aaa and the eigenstate occupation numbers (EONs) jCaj2.
However, for physically interesting initial conditions, the fluctua-
tions in the two quantities are uncorrelated. A given initial state then
performs an unbiased sampling of the distribution of the EEVs Aaa,
resulting in equation (3).

Second, for physically interesting initial conditions, the EONs
jCaj2 almost do not fluctuate at all between eigenstates that are close
in energy. Again, equation (3) immediately follows.

Third, the EEVs Aaa almost do not fluctuate at all between eigen-
states that are close in energy. In this case equation (3) holds without
exception for all initial states that are narrow in energy (unlike in the
first two scenarios, for which there may be special states that violate
equation (3) despite being narrow in energy).

Deutsch and Srednicki independently proposed the third scenario,
which, following Srednicki, we call the ‘eigenstate thermalization hypo-

thesis (ETH)’12,13: the expectation value Ya Â
## ##Ya

! "
of a few-body

observable Â in an energy-Ea eigenstate Yaj i of the hamiltonian of a
large, interacting many-body system equals the thermal (microcano-
nical in our case) average ÆAæmicrocan(Ea) of Â at the mean energy Ea

Ya Â
## ##Ya

! "
~hAimicrocan Eað Þ

The ETH suggests that classical and quantum thermal states have
very different natures, as depicted in Fig. 2. Although at present there
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Figure 1 | Relaxation dynamics. a, Two-dimensional lattice on which five
hard-core bosons propagate in time. The bosons are initially prepared in the
ground state of the sub-lattice in the lower-right corner and released through
the link indicated by the drawing of a door. b, The corresponding relaxation
dynamics of the central component n(kx 5 0) of the marginal momentum
distribution, compared with the predictions of the three ensembles, plotted
against ‘dimensionless time’ (in our conventions J, the hopping parameter,
has units of inverse time; see Supplementary Information). In the
microcanonical case, we averaged over all eigenstates whose energies lie
within a narrow window (see Supplementary Discussion) [E0 2DE, E0 1DE],
where E0: y(0) Ĥ

## ##y(0)
! "

~{5:06J andDE 5 0.1J. The canonical ensemble
temperature is kBT 5 1.87J, where kB is the Boltzmann constant, meaning
that the ensemble prediction for the energy is E0. c, Full momentum
distribution function in the initial state, after relaxation, and in the different
ensembles. Here d is the lattice constant and Lx 5 5 is the lattice width.

NATURE | Vol 452 | 17 April 2008 LETTERS

855

© Macmillan Publishers Limited. All rights reserved©20008

SUPPLEMENTARY DISCUSSION for:
Thermalization and its mechanism for generic isolated
quantum systems

Marcos Rigol1,2, Vanja Dunjko1,2, & Maxim Olshanii2

1Department of Physics & Astronomy, University of Southern California, Los Angeles, CA 90089,

USA

2Department of Physics, University of Massachusetts Boston, Boston, MA 02125, USA

1. The Hamiltonian and the numerical calculations. In a system of units where ! = 1 the

Hamiltonian reads

Ĥ = −J
∑

〈i,j〉

(
b̂†i b̂j + h.c.

)
+ U

∑

〈i,j〉

n̂in̂j (1)

where 〈i, j〉 indicates that the sums run over all nearest-neighbor pairs of sites, J is the hopping pa-

rameter, and U the nearest-neighbor repulsion parameter that we always set to 0.1J . The hard-core

boson creation (b̂†i ) and annihilation (b̂j) operators commute on different sites, [̂bi, b̂
†
j] = [̂bi, b̂j ] =

[̂b†i , b̂
†
j ] = 0 for all i and j $= i, while the hard-core condition imposes the canonical anticommuta-

tion relations on the same site, {b̂i, b̂†i} = 1, and (b̂i)
2 = (b̂†i )

2 = 0 for all i. Here n̂i = b̂†i b̂i is the

density operator.

An exact study of the nonequilibrium dynamics for all time scales requires a full diago-

nalization of the many-body Hamiltonian (1). We are able to fully diagonalize—essentially to

machine precision, i.e. 16 significant figures, according to benchmark runs—matrices of dimen-

nnn%eXkli\%Zfd&eXkli\ (

hard-core bosons
=

spin-1/2 Pauli spins

D = 20,349 (5 bosons on 21 sites)

in the eigenstate basis of the final hamiltonian Ĥ as
y(0)j i~

P
aCa Yaj i, where Ca~ Ya j y(0)h i and the index a ranges

over all the basis eigenstates yaj i, the many-body wavefunction
evolves as y(t)j i~e{iĤ t y(0)j i~

P
aCae{iEat Yaj i, where the Ea

are the eigenstate energies. Thus, obtaining results that are numeric-
ally exact for all times requires the full diagonalization of the 20,349-
dimensional hamiltonian. The quantum-mechanical mean of any
observable Â evolves as

Â(t)
! "

: y(t) Â
## ##y(t)

! "
~
X

a,b

C!a Cbei Ea{Ebð Þt Aab ð1Þ

where Aab~ Ya Â
## ##Yb

! "
and the asterisk denotes complex conjuga-

tion. The long-time average of Â tð Þ
! "

is then

Â
! "

~
X

a

Caj j2Aaa ð2Þ

We note that if the system relaxes at all, it must be to this value. We
find it convenient to think of equation (2) as stating the prediction of

a ‘diagonal ensemble’, jCaj2 corresponding to the weight that Yaj i
has in the ensemble. In fact, this ensemble is precisely the generalized
Gibbs ensemble introduced in ref. 3 if as integrals of motion we
take all the projection operators P̂a~ Yaj i Yah j. Using these as con-
straints on relaxation dynamics, the theory gives the generalized
Gibbs density matrix (or constrained density matrix)
r̂c~ exp {

PD
a~1 laP̂a

$ %
, where la 5 2ln(jCaj2) and D is the

dimension of the Hilbert space. (We note, however, that for the
integrable system treated in ref. 3, the generalized Gibbs ensemble
was defined using a different, minimal set of independent integrals of
motion, the number of which was equal to the number of lattice sites
N, which is much less than D.)

If the quantum-mechanical mean of an observable behaves ther-
mally it should settle to the prediction of an appropriate statistical-
mechanical ensemble. For our numerical experiments we chose to
monitor the marginal momentum distribution along the horizontal
axis n(kx) and its central component n(kx 5 0) (see Supplementary
Information). In Fig. 1b, c we demonstrate that both relax to their
microcanonical predictions. The diagonal-ensemble predictions are
the same as these, but the canonical ones, although quite close, are
not. This is an indication of the relevance of finite-size effects, which
may be the origin of some of the apparent deviations from ther-
modynamics seen in the recent numerical studies of refs 4 and 5.

The statement that the diagonal and microcanonical ensembles
give the same predictions for the relaxed value of Â reads

X

a

Caj j2Aaa~ Ah imicrocan E0ð Þ:
1

N E0, DE

X

a
jE0 { Eajv DE

Aaa ð3Þ

where E0 is the mean energy of the initial state, DE is the half-width
of an appropriately chosen energy window centred at E0 (see
Supplementary Discussion), and the normalization N E0, DE is the
number of energy eigenstates with energies in the window
[E0 2DE, E0 1DE]. Thermodynamical universality is evident in this
equality: although the left-hand side depends on the details of the
initial conditions through the set of coefficients Ca, the right-hand
side depends only on the total energy, which is the same for many
different initial conditions. The following three scenarios suggest
themselves as possible explanations of this universality (assuming
that the initial state is sufficiently narrow in energy, as is normally
the case—see Supplementary Discussion).

First, even for eigenstates close in energy, there are large eigenstate-
to-eigenstate fluctuations of both the eigenstate expectation values
(EEVs) Aaa and the eigenstate occupation numbers (EONs) jCaj2.
However, for physically interesting initial conditions, the fluctua-
tions in the two quantities are uncorrelated. A given initial state then
performs an unbiased sampling of the distribution of the EEVs Aaa,
resulting in equation (3).

Second, for physically interesting initial conditions, the EONs
jCaj2 almost do not fluctuate at all between eigenstates that are close
in energy. Again, equation (3) immediately follows.

Third, the EEVs Aaa almost do not fluctuate at all between eigen-
states that are close in energy. In this case equation (3) holds without
exception for all initial states that are narrow in energy (unlike in the
first two scenarios, for which there may be special states that violate
equation (3) despite being narrow in energy).

Deutsch and Srednicki independently proposed the third scenario,
which, following Srednicki, we call the ‘eigenstate thermalization hypo-

thesis (ETH)’12,13: the expectation value Ya Â
## ##Ya

! "
of a few-body

observable Â in an energy-Ea eigenstate Yaj i of the hamiltonian of a
large, interacting many-body system equals the thermal (microcano-
nical in our case) average ÆAæmicrocan(Ea) of Â at the mean energy Ea

Ya Â
## ##Ya

! "
~hAimicrocan Eað Þ

The ETH suggests that classical and quantum thermal states have
very different natures, as depicted in Fig. 2. Although at present there
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Figure 1 | Relaxation dynamics. a, Two-dimensional lattice on which five
hard-core bosons propagate in time. The bosons are initially prepared in the
ground state of the sub-lattice in the lower-right corner and released through
the link indicated by the drawing of a door. b, The corresponding relaxation
dynamics of the central component n(kx 5 0) of the marginal momentum
distribution, compared with the predictions of the three ensembles, plotted
against ‘dimensionless time’ (in our conventions J, the hopping parameter,
has units of inverse time; see Supplementary Information). In the
microcanonical case, we averaged over all eigenstates whose energies lie
within a narrow window (see Supplementary Discussion) [E0 2DE, E0 1DE],
where E0: y(0) Ĥ

## ##y(0)
! "

~{5:06J andDE 5 0.1J. The canonical ensemble
temperature is kBT 5 1.87J, where kB is the Boltzmann constant, meaning
that the ensemble prediction for the energy is E0. c, Full momentum
distribution function in the initial state, after relaxation, and in the different
ensembles. Here d is the lattice constant and Lx 5 5 is the lattice width.
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thermalization

EEV Aaa plotted against energy (here n(kx 5 0) plotted against
energy) does not change much; see Supplementary Discussion. As
shown in Fig. 3b, this holds for the microcanonical and diagonal
ensembles but not for the canonical ensemble, explaining the failure
of the canonical ensemble to describe the relaxation in Fig. 1. We note
that the fluctuations of the EONs jCaj2 in Fig. 3b are artificially
lowered by the averaging involved in the computation of the density
of states (compare with Fig. 3c).

To strengthen the case for the ETH, we tested another observable.
We chose it with the following consideration in mind: in our system
interactions are local in space, and momentum distribution is a
global, approximately spatially additive property. Thus, for the
momentum distribution the ETH might arise through some simple
spatial averaging mechanism. However, the ETH in fact does not
depend on spatial averaging: for our final test of the ETH we chose
an observable that is manifestly local in space, namely the expectation
value of the occupation number of the central site of the lattice. We
again found that the ETH holds (to within 3% relative standard
deviation of eigenstate-to-eigenstate fluctuations).

On the other hand, Fig. 3d–f shows how the ETH fails for an isolated
one-dimensional integrable system. The system consists of five hard-
core bosons initially prepared in their ground state in an eight-site
chain. We then link one of the ends of this chain to one of the ends of
an adjoining (empty) 13-site chain to trigger relaxation dynamics. As
Fig. 3e shows, n(kx) as a function of energy is a broad cloud of points,
meaning that the ETH is not valid; Fig. 3f shows that the second
scenario mentioned above does not occur in this system either.

Nevertheless, it might be possible for the first scenario to occur in
this case, if the averages over the diagonal and the microcanonical
energy distributions shown in Fig. 3e were to agree. Figure 3d shows
that this does not happen. This is because, as shown in Fig. 3f, the
values of n(kx 5 0) for the most-occupied states in the diagonal
ensemble (the largest values of the EONs jCaj2) are always smaller
than the microcanonical prediction, and those for the least-occupied
states are always larger. Hence, the usual thermal predictions fail
because the correlations between the values of n(kx 5 0) and jCaj2
preclude unbiased sampling of the former by the latter. These corre-
lations have their origin in the non-trivial integrals of motion that
make the system integrable and that enter the generalized Gibbs
ensemble, which was introduced in ref. 3 as being appropriate for
formulating the statistical mechanics of isolated integrable systems.
In the non-integrable case shown in Fig. 3c, n(kx 5 0) is so narrowly
distributed that it does not matter whether or not it is correlated with
jCaj2 (we have in fact seen no correlations in the non-integrable case).
Again, we note that the fluctuations of the EONs jCaj2 in Fig. 3e are
artificially lowered, relative to those shown in Fig. 3f, by the averaging
involved in the computation of the density of states.

The thermalization mechanism outlined thus far explains why
long-time averages converge to their thermal predictions. A striking

aspect of Fig. 1b, however, is that the time fluctuations are so small
that after relaxation the thermal prediction works well at every
instant of time. From equation (1), this might be suspected because
the contribution of the off-diagonal terms is attenuated by temporal
dephasing, which results from the generic incommensurability of
the frequencies of the oscillating exponentials. However, this attenu-
ation scales only as the square root of the number of dephasing terms,
and is exactly compensated for by their larger number: if the number
of eigenstates that have a significant overlap with the initial state is
Nstates, then the scaling of a typical Ca with Nstates is Caj j*1

! ffiffiffiffiffiffiffiffiffiffiffiffi
Nstates

p
,

and the sum over off-diagonal terms in equation (1) finally does not
scale down with Nstates

X

a, b
a=b

ei Ea{Ebð Þt

Nstates
Aab*

ffiffiffiffiffiffiffiffiffiffiffiffi
N 2

states

p

Nstates
A

typical
ab, a=b*A

typical
ab, a=b

where A
typical
ab, a=b is the magnitude of a typical off-diagonal matrix

element of the operator Â between energy eigenstates that have sig-
nificant overlaps with the initial state. Hence, if the magnitudes of the
diagonal and off-diagonal terms were comparable, their contribu-
tions would also be comparable, and time fluctuations of the average
would be of the order of the average. However, this is not the case,
and thus

A
typical
ab, a=b=Atypical

aa

where Atypical
aa is the magnitude of a typical diagonal matrix element of

the operator Â for an energy eigenstate that has a significant overlap
with the initial state.

Figure 4a confirms this inequality for the matrix elements of
the momentum distribution in our system. There is an a priori
argument—admittedly dependent in part on certain hypotheses
about chaos in quantum billiards—in support of this inequality in
the case when the mean value of Â in an energy eigenstate is com-
parable to the quantum fluctuation of Â in that state28.

On the other hand, the thermalization we see appears to be
working a little too well: in a system as small as ours, we would expect
measurement-to-measurement fluctuations to be much larger than is
indicated in Fig. 1b. Indeed, as we show in Fig. 4b, the fluctuations
that would actually be measured would be dominated by the
quantum fluctuations of the time-dependent state. The rather large
size of the quantum fluctuations relative to the thermal mean value is
of course characteristic of small systems; however, the dominance of
the quantum fluctuations over the temporal fluctuations of quantum
expectation values is not, and is actually expected for generic systems
in the thermodynamic limit29.

We have demonstrated that, in contrast to the integrable case, the
non-equilibrium dynamics of a generic isolated quantum system
does lead to standard thermalization. We verified that this happens
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Figure 4 | Temporal versus quantum fluctuations. a, Matrix elements of
the observable of interest n(kx 5 0) as a function of state indices; the
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overlap with the initial state. The dominance of the diagonal matrix elements

is apparent. b, The same time evolution as in Fig. 1b, with the error bars
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temporal fluctuations of n(kx 5 0).
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As the principal observables of interest we chose the marginal momentum distribution along

the horizontal axis n(kx) =
∑

ky
n(kx, ky) and in particular its central component n(kx = 0),

quantities readily measurable in actual experiments with ultracold quantum gases19. Here the

full two-dimensional momentum distribution is n(kx, ky) = 1/L2
∑

i,j e−i2πk(ri−rj)/L〈b̂†i b̂j〉, where

L = Lx = Ly = 5 are the linear sizes of the lattice. The position ri = (ix d , iy d) involves the

lattice constant d.

2. The microcanonical ensemble in a small system. To compute the microcanonical ensemble

predictions, we have averaged over all eigenstates whose energies lie within a narrow window

[E0 −∆E, E0 + ∆E], with E0 ≡ 〈ψ(0)|Ĥ|ψ(0)〉 = 〈ψ(t)|Ĥ|ψ(t)〉 = −5.06J . Since our systems

are small there is generally no meaning to the limit ∆E → 0, because small enough windows

may fail to contain even a single eigenstate. Instead, one should show that the microcanonical pre-

dictions are robust with respect to the choice of the width of the energy window. In Fig. SD2 we

demonstrate this robustness in a neighborhood of∆E = 0.1J , a value that seems to be an appropri-

ate choice given the data presented in the inset of the same figure. There we show the dependence

on ∆E of the predictions for n(kx = 0) given by the “left-averaged” and the “right-averaged”

microcanonical ensembles, by which we mean that the microcanonical windows are chosen as

[E0 −∆E, E0] and [E0, E0 +∆E], respectively. We see that for∆E ! 0.1J , the two microcanon-

ical predictions are almost independent of the value of ∆E. The main panel in Fig. SD2 shows

that the microcanonical values of n(kx) for∆E = 0.05J and for∆E = 0.1J are indistinguishable.
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We find that for both consumption and assets,
models trained in-country uniformly outperform
models trained out-of-country (Fig. 5), as would
be expected. But we also find that models appear
to “travelwell” across borders,with out-of-country
predictions often approaching the accuracy of
in-country predictions. Pooled models trained
on all four consumption surveys or all five asset
surveys very nearly approach the predictive power
of in-country models in almost all countries for
both outcomes. These results indicate that, at least
for our sample of countries, common determi-
nants of livelihoods are revealed in imagery,
and these commonalities can be leveraged to
estimate consumption and asset outcomes with
reasonable accuracy in countries where survey
outcomes are unobserved.

Discussion

Our approach demonstrates that existing high-
resolution daytime satellite imagery can be used
to make fairly accurate predictions about the
spatial distribution of economic well-being across
five African countries. Our model performs well
despite inexact data on both the timing of the
daytime imagery and the location of clusters in
the training data, andmore precise data in either
of these dimensions are likely to further improve
model performance.
Notably, we show that our model’s predictive

powerdeclines onlymodestlywhenamodel trained
in one of our sample countries is used to estimate
consumption or assets in another country. Despite
differences in economic and political institutions
across countries, model-derived features appear
to identify fundamental commonalities in the de-
terminants of livelihoods across settings, suggest-
ing that our approach could be used to fill in the
large data gaps resulting from poor survey cover-
age inmanyAfrican countries. In contrast to other
recent approaches that rely on proprietary com-
mercial data sets, our method uses only publicly
available data and so is straightforward and nearly
costless to scale across countries.
Although ourmodel outperforms other sources

of passively collected data (e.g., cellphone data,
nightlights) in estimating economic well-being at
the cluster level, we are currently unable to assess
its ability to discern differences within clusters, as
public-domain survey data assign identical coordi-
nates to all households in a given cluster to preserve
respondent privacy. In principle, our model can
make predictions at any resolution for which day-
time satellite imagery is available, though predic-
tions on finer scales would likely be noisier. New
sources of ground truth data, whether from more
disaggregated surveys or novel crowdsourced chan-
nels, could enable evaluation of our model at the
household level. Combining our extracted features
with other passively collected data, in locations
where such data are available, could also increase
both household- and cluster-level predictive power.
Given the limited availability of high-resolution

time series of daytime imagery, we also have not
yet been able to evaluate the ability of our transfer
learning approach to predict changes in economic
well-being over time at particular locations. Such

predictionswouldbeveryhelpful tobothresearchers
and policy-makers and should be enabled in the
near futureas increasingamountsof high-resolution
satellite imagery become available (22).
Our transfer learning strategy of using a plen-

tiful but noisy proxy shows howpowerfulmachine
learning tools, which typically thrive in data-rich
settings, can be productively employed even when
data on key outcomes of interest are scarce. Our
approach could have broad application across
many scientific domains andmay be immediately
useful for inexpensively producing granular data
on other socioeconomic outcomes of interest to
the international community, such as the large
set of indicators proposed for the United Nations
Sustainable Development Goals (5).
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Quantum thermalization through
entanglement in an isolated
many-body system
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Statistical mechanics relies on the maximization of entropy in a system at thermal
equilibrium. However, an isolated quantum many-body system initialized in a pure state
remains pure during Schrödinger evolution, and in this sense it has static, zero entropy. We
experimentally studied the emergence of statistical mechanics in a quantum state and
observed the fundamental role of quantum entanglement in facilitating this emergence.
Microscopy of an evolving quantum system indicates that the full quantum state remains
pure, whereas thermalization occurs on a local scale. We directly measured entanglement
entropy, which assumes the role of the thermal entropy in thermalization. The entanglement
creates local entropy that validates the use of statistical physics for local observables. Our
measurements are consistent with the eigenstate thermalization hypothesis.

W
hen an isolated quantum system is
perturbed—for instance, owing to a sud-
den change in the Hamiltonian (a so-
called quench)—the ensuing dynamics
are determined by an eigenstate distri-

bution that is induced by the quench (1). At any
given time, the evolving quantum state will have

amplitudes that depend on the eigenstates popu-
lated by the quench and the energy eigenvalues
of the Hamiltonian. In many cases, however,
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We find that for both consumption and assets,
models trained in-country uniformly outperform
models trained out-of-country (Fig. 5), as would
be expected. But we also find that models appear
to “travelwell” across borders,with out-of-country
predictions often approaching the accuracy of
in-country predictions. Pooled models trained
on all four consumption surveys or all five asset
surveys very nearly approach the predictive power
of in-country models in almost all countries for
both outcomes. These results indicate that, at least
for our sample of countries, common determi-
nants of livelihoods are revealed in imagery,
and these commonalities can be leveraged to
estimate consumption and asset outcomes with
reasonable accuracy in countries where survey
outcomes are unobserved.

Discussion

Our approach demonstrates that existing high-
resolution daytime satellite imagery can be used
to make fairly accurate predictions about the
spatial distribution of economic well-being across
five African countries. Our model performs well
despite inexact data on both the timing of the
daytime imagery and the location of clusters in
the training data, andmore precise data in either
of these dimensions are likely to further improve
model performance.
Notably, we show that our model’s predictive

powerdeclines onlymodestlywhenamodel trained
in one of our sample countries is used to estimate
consumption or assets in another country. Despite
differences in economic and political institutions
across countries, model-derived features appear
to identify fundamental commonalities in the de-
terminants of livelihoods across settings, suggest-
ing that our approach could be used to fill in the
large data gaps resulting from poor survey cover-
age inmanyAfrican countries. In contrast to other
recent approaches that rely on proprietary com-
mercial data sets, our method uses only publicly
available data and so is straightforward and nearly
costless to scale across countries.
Although ourmodel outperforms other sources

of passively collected data (e.g., cellphone data,
nightlights) in estimating economic well-being at
the cluster level, we are currently unable to assess
its ability to discern differences within clusters, as
public-domain survey data assign identical coordi-
nates to all households in a given cluster to preserve
respondent privacy. In principle, our model can
make predictions at any resolution for which day-
time satellite imagery is available, though predic-
tions on finer scales would likely be noisier. New
sources of ground truth data, whether from more
disaggregated surveys or novel crowdsourced chan-
nels, could enable evaluation of our model at the
household level. Combining our extracted features
with other passively collected data, in locations
where such data are available, could also increase
both household- and cluster-level predictive power.
Given the limited availability of high-resolution

time series of daytime imagery, we also have not
yet been able to evaluate the ability of our transfer
learning approach to predict changes in economic
well-being over time at particular locations. Such

predictionswouldbeveryhelpful tobothresearchers
and policy-makers and should be enabled in the
near futureas increasingamountsof high-resolution
satellite imagery become available (22).
Our transfer learning strategy of using a plen-

tiful but noisy proxy shows howpowerfulmachine
learning tools, which typically thrive in data-rich
settings, can be productively employed even when
data on key outcomes of interest are scarce. Our
approach could have broad application across
many scientific domains andmay be immediately
useful for inexpensively producing granular data
on other socioeconomic outcomes of interest to
the international community, such as the large
set of indicators proposed for the United Nations
Sustainable Development Goals (5).
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Statistical mechanics relies on the maximization of entropy in a system at thermal
equilibrium. However, an isolated quantum many-body system initialized in a pure state
remains pure during Schrödinger evolution, and in this sense it has static, zero entropy. We
experimentally studied the emergence of statistical mechanics in a quantum state and
observed the fundamental role of quantum entanglement in facilitating this emergence.
Microscopy of an evolving quantum system indicates that the full quantum state remains
pure, whereas thermalization occurs on a local scale. We directly measured entanglement
entropy, which assumes the role of the thermal entropy in thermalization. The entanglement
creates local entropy that validates the use of statistical physics for local observables. Our
measurements are consistent with the eigenstate thermalization hypothesis.

W
hen an isolated quantum system is
perturbed—for instance, owing to a sud-
den change in the Hamiltonian (a so-
called quench)—the ensuing dynamics
are determined by an eigenstate distri-

bution that is induced by the quench (1). At any
given time, the evolving quantum state will have

amplitudes that depend on the eigenstates popu-
lated by the quench and the energy eigenvalues
of the Hamiltonian. In many cases, however,
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We find that for both consumption and assets,
models trained in-country uniformly outperform
models trained out-of-country (Fig. 5), as would
be expected. But we also find that models appear
to “travelwell” across borders,with out-of-country
predictions often approaching the accuracy of
in-country predictions. Pooled models trained
on all four consumption surveys or all five asset
surveys very nearly approach the predictive power
of in-country models in almost all countries for
both outcomes. These results indicate that, at least
for our sample of countries, common determi-
nants of livelihoods are revealed in imagery,
and these commonalities can be leveraged to
estimate consumption and asset outcomes with
reasonable accuracy in countries where survey
outcomes are unobserved.

Discussion

Our approach demonstrates that existing high-
resolution daytime satellite imagery can be used
to make fairly accurate predictions about the
spatial distribution of economic well-being across
five African countries. Our model performs well
despite inexact data on both the timing of the
daytime imagery and the location of clusters in
the training data, andmore precise data in either
of these dimensions are likely to further improve
model performance.
Notably, we show that our model’s predictive

powerdeclines onlymodestlywhenamodel trained
in one of our sample countries is used to estimate
consumption or assets in another country. Despite
differences in economic and political institutions
across countries, model-derived features appear
to identify fundamental commonalities in the de-
terminants of livelihoods across settings, suggest-
ing that our approach could be used to fill in the
large data gaps resulting from poor survey cover-
age inmanyAfrican countries. In contrast to other
recent approaches that rely on proprietary com-
mercial data sets, our method uses only publicly
available data and so is straightforward and nearly
costless to scale across countries.
Although ourmodel outperforms other sources

of passively collected data (e.g., cellphone data,
nightlights) in estimating economic well-being at
the cluster level, we are currently unable to assess
its ability to discern differences within clusters, as
public-domain survey data assign identical coordi-
nates to all households in a given cluster to preserve
respondent privacy. In principle, our model can
make predictions at any resolution for which day-
time satellite imagery is available, though predic-
tions on finer scales would likely be noisier. New
sources of ground truth data, whether from more
disaggregated surveys or novel crowdsourced chan-
nels, could enable evaluation of our model at the
household level. Combining our extracted features
with other passively collected data, in locations
where such data are available, could also increase
both household- and cluster-level predictive power.
Given the limited availability of high-resolution

time series of daytime imagery, we also have not
yet been able to evaluate the ability of our transfer
learning approach to predict changes in economic
well-being over time at particular locations. Such

predictionswouldbeveryhelpful tobothresearchers
and policy-makers and should be enabled in the
near futureas increasingamountsof high-resolution
satellite imagery become available (22).
Our transfer learning strategy of using a plen-

tiful but noisy proxy shows howpowerfulmachine
learning tools, which typically thrive in data-rich
settings, can be productively employed even when
data on key outcomes of interest are scarce. Our
approach could have broad application across
many scientific domains andmay be immediately
useful for inexpensively producing granular data
on other socioeconomic outcomes of interest to
the international community, such as the large
set of indicators proposed for the United Nations
Sustainable Development Goals (5).
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Statistical mechanics relies on the maximization of entropy in a system at thermal
equilibrium. However, an isolated quantum many-body system initialized in a pure state
remains pure during Schrödinger evolution, and in this sense it has static, zero entropy. We
experimentally studied the emergence of statistical mechanics in a quantum state and
observed the fundamental role of quantum entanglement in facilitating this emergence.
Microscopy of an evolving quantum system indicates that the full quantum state remains
pure, whereas thermalization occurs on a local scale. We directly measured entanglement
entropy, which assumes the role of the thermal entropy in thermalization. The entanglement
creates local entropy that validates the use of statistical physics for local observables. Our
measurements are consistent with the eigenstate thermalization hypothesis.
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hen an isolated quantum system is
perturbed—for instance, owing to a sud-
den change in the Hamiltonian (a so-
called quench)—the ensuing dynamics
are determined by an eigenstate distri-

bution that is induced by the quench (1). At any
given time, the evolving quantum state will have

amplitudes that depend on the eigenstates popu-
lated by the quench and the energy eigenvalues
of the Hamiltonian. In many cases, however,
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global purity, which is particularly challenging
in the full 462-dimensional Hilbert space defined
by the itinerant particles in our system. Further-
more, whereas in spin systems global rotations
can be used for tomography (26), there is no
known analogous scheme for extracting the full
density matrix of a many-body state of itinerant
particles. The many-body interference described
here, however, allows us to extract quantities
that are quadratic in the density matrix, such as
the purity (25). After performing the beam split-
ter operation, we were able to obtain the quan-
tum purity of the full system and any subsystem
simply by counting the number of atoms on
each site of one of the six-site chains (Fig. 2C).

Each run of the experiment yielded the parity
PðkÞ ¼ Pip

ðkÞ
i , where i is iterated over a set of

sites of interest in copy k. The single-site par-
ity operator pðkÞ

i returns 1 (–1) when the atom
number on site i is even (odd). It has been
shown that the beam splitter operation yields
hPð1Þi ¼ hPð2Þi ¼ Trðr1r2Þ, where ri is the den-
sity matrix on the set of sites considered for
each copy (4, 25, 27). Because the preparation and
quench dynamics for each copy are identical,
yielding r1 = r2 ≡ r, the average parity reduces
to the purity: hPðkÞi ¼ Trðr2Þ. When the set of
sites considered constitutes the full six-site chain,
the expectation value of this quantity returns
the global many-body purity, whereas for smaller

sets it provides the local purity of the respective
subsystem.
Comparing measurements taken with and

without the beam splitter, our data immediately
illustrate the contrast between the global and
local behaviors and how thermalization is man-
ifest (Fig. 2B). Our observations show that the
global many-body state retains its quantum
purity over time, affirming the unitarity of its
evolution after the quench. This global mea-
surement also clearly distinguishes the quan-
tum state that we produced from a canonical
thermal ensemble with a purity that is orders
of magnitude smaller. Yet the number statis-
tics locally converge to a distribution of thermal
character, which can be faithfully modeled by
that same thermal ensemble. We next exper-
imentally explored the question suggested by
this observation: How does a pure state that
appears globally distinct from a thermal en-
semble possess local properties that mirror this
thermal state?
The growth of entanglement after a quench

is key to understanding how entropy forms with-
in the subsystems of a pure quantum state,
thereby facilitating thermalization (2, 4, 5, 28).
When two parts of a system are entangled, the
full quantum state r cannot be written in a
separable fashion with respect to the Hilbert
spaces of the subsystems (29, 30). As has been
shown theoretically (4, 27) and recently observed
experimentally (25), this causes the subsystems
rA and rB to be in an entropic mixed state even
though the full many-body quantum state is
pure (30). The mixedness of the subsystem can
be quantified by the second-order Rényi entropy
SA ¼ −log½Trðr2AÞ%, which is the natural logarithm
of the purity of the subsystem density matrix.
Although the von Neumann entropy is typically
used in the context of statistical mechanics, both
quantities grow as a subsystem density matrix
becomes mixed and increasingly entropic. In
the Rényi case, the purity in the logarithm quan-
tifies the number of states contributing to the sta-
tistical mixture described by the density matrix.

Entanglement entropy dynamics
and saturation

We first studied the dynamics of the entanglement
entropy immediately after the quench for vary-
ing subsystem sizes (Fig. 3). Initially, we observed
an approximately linear rise in the entropy with
time, with a similar slope among the subsystems
considered (Fig. 3, inset) (2). After an amount of
time that depended on the subsystem size, the
entanglement entropy saturated to a steady-state
value, about which there were small residual tem-
poral fluctuations. The presence of residual fluc-
tuations is attributable in part to the finite size of
our system. An exact numerical calculation of the
dynamics with no free parameters shows excel-
lent agreement with our experimental measure-
ments. Crucially, the data indicate that whereas
the subsystems acquire entropy with time (Fig. 3,
A to C), the entropy of the full system remains
constant and is small throughout the dynam-
ics (Fig. 3D) (24). The high purity of the full
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Fig. 2. Experimental sequence. (A) Using tailored optical potentials superimposed on an optical
lattice, we deterministically prepared two copies of a six-site Bose-Hubbard system, where each
lattice site is initialized with a single atom.We reduced the lattice depth along x (specified in units of
the lattice recoil energy Er) to enable tunneling and obtained either the ground state (adiabatic melt)
or a highly excited state (sudden quench) in each six-site copy. After a variable evolution time, we
froze the evolution and characterized the final quantum state by either acquiring number statistics or
the local and global purity. Even and odd refer to the atom number parity. (B) Site-resolved number
statistics of the initial distribution (left panel, showing a strong peak at one atom with vanishing
fluctuations) and the distribution at later times (middle panel), compared with the predictions of a
canonical thermal ensemble (red bars) of the same average energy as the quenched quantum state
[J/(2p) = 66 Hz; U/(2p) = 103 Hz]. Error bars are SEM. Measurements of the global many-body
purity show that it is static and high (right panel). This is in contrast to the vanishing global purity of
the canonical thermal ensemble, yet this same ensemble accurately describes the local number
distribution that we observed. (C) To measure the atom number locally, we allowed the atoms to
expand in half-tubes along the y direction while pinning the atoms along x. In separate experiments,
we applied a many-body beam splitter by allowing the atoms in each column to tunnel in a projected
double-well potential. The resulting atom number parity (even or odd) on each site encodes the
global and local purity.
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Energy vs Temperature
energy eigenstates HXXZ |Q, n⟩ = EQ,n |Q, n⟩ n = 0,1,⋯, (N

Q) − 1

temperature TQ,n ↔ |Q, n⟩ EQ,n =
1

ZQ ∑
l

EQ,le−EQ,l/TQ,n

N = 16
λ = 1, Δ = 1/2

Q = 01
8

2

classical gases which heats up when the initial temper-
ature is above an inversion temperature, which suggests
that the inversion temperature results from a many-body
correlation effect in the quantum case. The Joule ex-
pansion can be realized experimentally using ultracold
gases [27]. We anticipate that our result will be relevant
for controlling temperature in such experimental setups.
Model — For concreteness, we present our work in the

context of a spin chain system. We consider the two iden-
tical spin-1/2 XXZ chains of length N , referred to as L
and R, with nearest and next nearest neighbor interac-
tions (see Fig. 1). The Hamiltonian of each chain α = L,
R reads

Ĥα =
1

1 + λ

(

N−1
∑

i=1

h(σ̂α,i, σ̂α,i+1) + λ
N−2
∑

i=1

h(σ̂α,i, σ̂α,i+2)

)

(1)
with the two-body interaction Hamiltonian

h(σ̂i, σ̂j) = −
J

2

(

σ̂x
i σ̂

x
j + σ̂y

i σ̂
y
j +∆σ̂z

i σ̂
z
j

)

. (2)

Here, σ̂α,i denotes the Pauli matrix for a spin at site
i (= 1, · · · , N) in the chain α. The model includes a
few parameters: J > 0 sets the scale of energy, ∆ is
the anisotropy parameter, and λ represents the relative
strength of the next nearest neighbor interactions. With
nonzero λ, the system is known to satisfy the ETH [5, 6].
We will set J to unity. As a thermal contact, we adopt
an interaction Hamiltonian

Ĥint =
1

1 + λ
[h(σ̂L,N , σ̂R,N )+

λh(σ̂L,N−1, σ̂R,N ) + λh(σ̂L,N , σ̂R,N−1)].
(3)

With this choice, the total Hamiltonian Ĥtot = ĤL +
ĤR + Ĥint becomes that of the XXZ chain of 2N spins.
The conclusion is not altered with a choice of different
coupling constants in Ĥint. In the numerical study, the
parameter values are ∆ = 1/2 and λ = 1 unless stated
otherwise.
The spin-1/2 chain system is equivalent to a hardcore

boson system [28] by identifying a site where the z com-
ponent of spin is up as an occupied site by a bosonic
particle. Each site can be occupied by at most a single
particle. In the context of the boson system, the cou-
pling in the x and y directions corresponds to the kinetic
energy term and the coupling in the z direction corre-
sponds to the attractive (∆ > 0) or repulsive (∆ < 0)
interaction between particles.
Before addressing the thermalization of the total sys-

tem, we summarize the thermal property of the sub-
system. The Hamiltonian (1) commutes with Q̂α =
∑N

i=1
(1+σ̂z

α,i)

2 that counts the number of up spins or par-
ticles in the subsystem α. Thus, one may consider the
subspace of the Hilbert space in which Q (= 0, 1, · · · , N),
the eigenvalue of Q̂α, is fixed, separately. It is called the

Q sector. Due to the particle-hole symmetry, the Q sec-
tor is equivalent to the (N −Q) sector. Let |Q,n〉 with
n = 1, · · · ,

(N
Q

)

be the eigenstate with the nth lowest en-
ergy eigenvalue EQ,n in the Q sector. With λ #= 0, the
system is thermal so that an energy eigenstate |Q,n〉 can
be assigned to a temperature TQ,n = 1/βQ,n from the
relation [29]

EQ,n =

(NQ)
∑

m=1

EQ,me−βQ,nEQ,m/ZQ (4)

with the partition function ZQ =
∑

m e−βQ,nEQ,m . The
Boltzmann constant is set to be unity. Figure 2(a)
presents the energy-temperature relation in each Q sec-
tor. Also shown in Fig. 2(b) are the isothermal curves.
The isotherms have a positive or negative curvature de-
pending on the temperature. The curvature change leads
to an intriguing phenomenon, which will be discussed
later.
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FIG. 2. (a) Energy density-temperature relation at each
Q (= 0, · · · , 8) sector. (b) Isothermal curves at the specified
temperatures. These are obtained by diagonalizing numeri-
cally the Hamiltonian (1) with N = 16, ∆ = 1/2, and λ = 1.

Thermalization — Suppose that the total system is
prepared to be in a product state

|Ψ(0)〉 = |Q0
L, n

0
L〉 ⊗ |Q0

R, n
0
R〉, (5)

where |Q0
L, n

0
L〉 and |Q0

R, n
0
R〉 are the eigenstates of ĤL

and ĤR, respectively. The interaction Hamiltonian does
not commute with Ĥα and Q̂α. Thus, Ĥint acts as a
thermal contact allowing the flows of the energy and the
particle. We investigate how the system evolves into the
global equilibrium state via the unitary time evolution
|Ψ(t)〉 = e−itĤtot |Ψ(0)〉 with ! = 1. The time evolution
is simulated numerically [30] [31].
We performed the numerical analysis with the initial

state where the subsystem L is empty (Q0
L = 0) and the

subsystem R is fully occupied (Q0
R = N). The expecta-

tion values of the energy Eα(t) = 〈Ψ(t)|Ĥα|Ψ(t)〉 and the

(N = 16, Δ = 1/2, λ = 1)

concave

convex

before expansion

after expansion

Ti Ti
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numerical
exact 

diagonalization
(Dmax = 12,870)



Coupled XXZ chains

Hamiltonian H = HL + HR + Hint.

unitary time evolution
after quenching

|Ψ(t)⟩ = e−iHt |Ψ(0)⟩ full diaginalization of H or
Lie-Suzuki-Trotter decomposition

initial state |Ψ(0)⟩ = |QL, nL⟩ ⊗ |QR, nR⟩ pure state

reduced density matrix ρL = TrR |Ψ(t)⟩⟨Ψ(t) | singular value decomposition
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Heating and Cooling of Quantum Gas by Eigenstate Joule Expansion

Jae Dong Noh,1 Eiki Iyoda,2 and Takahiro Sagawa2

1Department of Physics, University of Seoul, Seoul 02504, Korea
2Department of Applied Physics, The University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
(Dated: November 27, 2018)

We investigate the Joule expansion of an interacting quantum gas in an energy eigenstate. The
Joule expansion occurs when two subsystems of different particle density are allowed to exchange
particles. We demonstrate numerically that the subsystems in their energy eigenstates evolves uni-
tarily into the global equilibrium state in accordance with the eigenstate thermalization hypothesis.
We find that the quantum gas changes its temperature after the Joule expansion with a charac-
teristic inversion temperature TI. The gas cools down (heats up) when the initial temperature is
higher (lower) than TI, implying that TI is a stable fixed point, which is contrasted to the behavior
of classical gases. Our work exemplifies that transport phenomena can be studied at the level of
energy eigenstates.

Introduction — Statistical mechanics postulates that
an isolated quantum system in thermal equilibrium is
represented by the completely mixed state in the micro-
canonical energy shell. It has been a puzzling question
whether statistical mechanics is compatible with unitary
dynamics of quantum mechanics which does not allow a
transition of a pure state to a mixed state. Recent stud-
ies have revealed that this puzzle can be settled in view
of quantum ergodicity [1]. A quantum mechanical sys-
tem in a pure state can be thermal by itself. That is, the
system, if quantum chaotic, plays a role of an equilibrium
heat bath for its subsystem as if it were in the equilib-
rium mixed state. In fact, the eigenstate thermalization
hypothesis (ETH) asserts that all the energy eigenstates
are thermal for a broad class of non-integrable quantum
systems [2–8].

The ETH has been tested numerically in various dis-
crete lattice systems. Those studies confirm that the ex-
pectation value of local observables in the energy eigen-
state is consistent with the statistical mechanics predic-
tion [4, 5, 9, 10]. They also confirm that quantum systems
thermalize after a quench, a sudden change in the Hamil-
tonian, following the ETH prediction [6]. The thermal-
ization of isolated quantum systems has also been studied
experimentally using ultracold atoms [11–16] and super-
conducting qubits [17]. The ETH is now recognized as a
paradigm of statistical mechanics for pure quantum sys-
tems with a few notable exceptions such as the integrable
systems [18], the many-body localization systems [19],
systems with many-body quantum scars [20, 21].

Besides a single isolated system, it is also interesting to
ask how two quantum systems thermalize in the presence
of a thermal contact. Ponomarev et al. demonstrated
numerically the thermalization of two systems which ex-
change the energy [22]. A thermal contact may also allow
the exchange of a globally conserved entity such as the
particle number. Yet, the quantum thermalization under
such a contact has been studied rarely.

The Joule expansion is a representative irreversible

L R

1 2 N−1 N N N−1 2 1

FIG. 1. Joule expansion of a quantum gas. Filled (empty) cir-
cles represent the occupied (empty) lattice sites. Also drawn
is the lattice structure with site indices for the Hamiltonian.

process taking place under the general contact [23, 24].
Suppose that a gas is confined in a compartment of an
isolated container (see Fig. 1). When the dividing wall is
removed or a contact opens, the gas expands irreversibly
and reaches the homogeneous equilibrium state. The
Joule expansion in the classical regime is well understood.
For instance, the Van der Waals gases cool down upon
expansion because gas particles loose the kinetic energy
gaining the attractive interaction potential energy [24].
A mean field study with the Lennard-Jones potential
showed that the classical gases can heat up if the ini-
tial temperature is high above a threshold TI, called the
inversion temperature [25]. The short range repulsion
between particles is responsible for the inversion temper-
ature.

In this Letter, we investigate the thermalization of two
quantum systems coupled by an interaction Hamiltonian
which allows the exchange of particles as well as the en-
ergy. Both subsystems are in their respective energy
eigenstates, and evolve unitarily into a steady state af-
ter the interaction turns on. With this setup, we can
study the Joule expansion of an interacting quantum gas
in an energy eigenstate [26]. We demonstrate that there
exists an inversion temperature TI: The quantum gas
cools down (heats up) when the initial temperature is
above (below) TI, which makes the inversion temperature
stable. This is in sharp contrast to the behavior of the



Joule expansion into vacuum
Initial condition : Subsystem L is empty, while subsystem R is fully occupied.
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Joule expansion into vacuum
probability distribution PL(Q, n) = ⟨Q, n |ρL |Q, n⟩ 4
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FIG. 4. (a) Plots of PL(Q,n) with Q = 0, · · · , 6 (sym-
bols) and Q = 7, · · · , 12 (lines). The particle-hole symmetry,
PL(Q,n) = PL(N − Q,n), is evident. (b) Rescaled probabil-
ities for Q = 0, · · · , 6. The dashed line is the fitting curve.
The vertical dotted lines in (a) and (b) mark the average en-
ergy EL. The inset in (a) plots the probability of the energy
level whose energy eigenvalue is closest to the average energy.
Parameter values are the same as in Fig. 3.

Fig. 4(b). They collapse onto a single curve, which is well

fitted to the function ∼ e−(δE)/T−a11(δE)2 with T " 1.40
and a11 " 0.105. The data collapse confirms the equi-
librium distribution function in (10). One can notice a
slight deviation at large values of (δE) and (δQ), where
even higher order corrections are necessary.
Joule expansion — During the thermalization, the

quantum gas undergoes the Joule expansion or the free
expansion into a vacuum. We discuss the thermodynamic
consequence of the Joule expansion.
Suppose that the system is prepared in the initial state

(5) with Q0
L = 0 and Q0

R = qN . The subsystem R can be
in any state with n0

R = 1, · · · ,
(

N
qN

)

. For an initial state

with given n0
R, the gas has a definite initial temperature

Ti determined from (4). The final temperature Tf after
thermalization can be measured by fitting the probability
distribution PL(Q,n), defined in (7), to the form of (9).

We have performed the numerical analysis with the
subsystems of size N = 9 and 12 and q = 2/3. In
fitting, we used the data of the most probable sector
Q = QL = (Q0

L + Q0
R)/2 where the probability takes

the simple form PL ∝ exp[−(δE)/T − a11(δE)2] with
δQ = 0. The resulting temperature Tf is plotted as a
function of Ti in Fig. 5(a). Interestingly, the quantum
gas may either heat up or cool down depending on the
initial temperature. The two regions are separated by
a inversion temperature TI. We also studied the Joule
expansion from a dense region to a dilute (nonempty)
region and obtained the similar result [31].

Taking it for granted that the system thermalizes, the
heating or cooling can be understood easily. Let eα and
qα be the initial energy density and particle density of
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0.8
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2.4

T f
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N = 12
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Δ
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cooling
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FIG. 5. (a) Comparison of the temperature before and after
the Joule expansion at ∆ = 1/2 and λ = 1. The filled symbols
represent the temperatures obtained from the fitting of PL,
while the open symbols from the isotherm curves. The dotted
line represents the line where Tf = Ti. (b) Inversion curve at
λ = 1. The inversion temperature at ∆ = 1/2 is marked with
the symbol !.

the subsystem α. After the interaction turns on, the to-
tal system has the energy density ef = (eL + eR)/2 +

〈Ĥint〉0/(2N) and the particle density qf = (qL + qR)/2.
The O(1/N) correction to the energy density is negligible
in the large N limit. One may represent the thermody-
namic state of the subsystems and the total system in
the energy density-particle density plane along with the
isotherms (see Fig. 2(b)). In this plane, the total sys-
tem after expansion is represented by the midpoint of
(qL, eL) and (qR, eR). The final temperature Tf can be
read from the isotherm passing through (qf , ef ). We il-
lustrate this construction in Fig. 2(b), where the initial
states are marked as A and B while the final state as F .
It clearly shows that the gas heats up (cools down) if the
isothermal curves are convex (concave). We compare the
final temperatures from the isotherms and the probabil-
ity distributions in Fig. 5(a). A little discrepancy is due
to the O(1/N) correction to the energy density.
At the inversion temperature TI, the isotherms change

the convexity and the T -e curves in all Q sectors cross
each other (see Fig. 2(a)). We can locate the inver-
sion temperature under reasonable assumptions: (i) T -e
curves in Q = 0 and Q = 1 sectors cross at TI. (ii) The
periodic boundary condition yields the same result in the
N → ∞ limit. Under these assumptions, the inversion
temperature is determined by

− 2∆ =

∫ π
−π dk ε(k)e

−ε(k)/TI

∫ π
−π dk e−ε(k)/TI

(11)

with ε(k) = − 2
(1+λ) (cos k + λ cos 2k) [31]. We evaluate

the inversion temperature TI as a function of ∆. The
inversion curve TI = TI(∆) thus-obtained at λ = 1 is
presented in Fig. 5(b). It vanishes as TI ∼ (∆c−∆) near



Probability distribution
quantum thermalization 

PL(Q, n) ∝ exp [SR(Etot − EQ,n, Qtot − Q)]

let δE = EQ,n − ĒL and δQ = QL − Q̄L

PL(Q, n) ∝ exp [−(δE − μδQ)/T − a11(δE)2 − 2a12(δE)(δQ) − a22(δQ)2 + ⋯]

(weak coupling limit)

grand canonical ensemble (like) distribution
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FIG. 4. (a) Plots of PL(Q,n) with Q = 0, · · · , 6 (sym-
bols) and Q = 7, · · · , 12 (lines). The particle-hole symmetry,
PL(Q,n) = PL(N − Q,n), is evident. (b) Rescaled probabil-
ities for Q = 0, · · · , 6. The dashed line is the fitting curve.
The vertical dotted lines in (a) and (b) mark the average en-
ergy EL. The inset in (a) plots the probability of the energy
level whose energy eigenvalue is closest to the average energy.
Parameter values are the same as in Fig. 3.

Fig. 4(b). They collapse onto a single curve, which is well

fitted to the function ∼ e−(δE)/T−a11(δE)2 with T " 1.40
and a11 " 0.105. The data collapse confirms the equi-
librium distribution function in (10). One can notice a
slight deviation at large values of (δE) and (δQ), where
even higher order corrections are necessary.
Joule expansion — During the thermalization, the

quantum gas undergoes the Joule expansion or the free
expansion into a vacuum. We discuss the thermodynamic
consequence of the Joule expansion.
Suppose that the system is prepared in the initial state

(5) with Q0
L = 0 and Q0

R = qN . The subsystem R can be
in any state with n0

R = 1, · · · ,
(

N
qN

)

. For an initial state

with given n0
R, the gas has a definite initial temperature

Ti determined from (4). The final temperature Tf after
thermalization can be measured by fitting the probability
distribution PL(Q,n), defined in (7), to the form of (9).

We have performed the numerical analysis with the
subsystems of size N = 9 and 12 and q = 2/3. In
fitting, we used the data of the most probable sector
Q = QL = (Q0

L + Q0
R)/2 where the probability takes

the simple form PL ∝ exp[−(δE)/T − a11(δE)2] with
δQ = 0. The resulting temperature Tf is plotted as a
function of Ti in Fig. 5(a). Interestingly, the quantum
gas may either heat up or cool down depending on the
initial temperature. The two regions are separated by
a inversion temperature TI. We also studied the Joule
expansion from a dense region to a dilute (nonempty)
region and obtained the similar result [31].

Taking it for granted that the system thermalizes, the
heating or cooling can be understood easily. Let eα and
qα be the initial energy density and particle density of
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represent the temperatures obtained from the fitting of PL,
while the open symbols from the isotherm curves. The dotted
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the subsystem α. After the interaction turns on, the to-
tal system has the energy density ef = (eL + eR)/2 +

〈Ĥint〉0/(2N) and the particle density qf = (qL + qR)/2.
The O(1/N) correction to the energy density is negligible
in the large N limit. One may represent the thermody-
namic state of the subsystems and the total system in
the energy density-particle density plane along with the
isotherms (see Fig. 2(b)). In this plane, the total sys-
tem after expansion is represented by the midpoint of
(qL, eL) and (qR, eR). The final temperature Tf can be
read from the isotherm passing through (qf , ef ). We il-
lustrate this construction in Fig. 2(b), where the initial
states are marked as A and B while the final state as F .
It clearly shows that the gas heats up (cools down) if the
isothermal curves are convex (concave). We compare the
final temperatures from the isotherms and the probabil-
ity distributions in Fig. 5(a). A little discrepancy is due
to the O(1/N) correction to the energy density.
At the inversion temperature TI, the isotherms change

the convexity and the T -e curves in all Q sectors cross
each other (see Fig. 2(a)). We can locate the inver-
sion temperature under reasonable assumptions: (i) T -e
curves in Q = 0 and Q = 1 sectors cross at TI. (ii) The
periodic boundary condition yields the same result in the
N → ∞ limit. Under these assumptions, the inversion
temperature is determined by

− 2∆ =

∫ π
−π dk ε(k)e

−ε(k)/TI

∫ π
−π dk e−ε(k)/TI

(11)

with ε(k) = − 2
(1+λ) (cos k + λ cos 2k) [31]. We evaluate

the inversion temperature TI as a function of ∆. The
inversion curve TI = TI(∆) thus-obtained at λ = 1 is
presented in Fig. 5(b). It vanishes as TI ∼ (∆c−∆) near

particle-hole symmetry (μ = a12 = 0)

PL(Q, n) ∝ exp [−(δE − μδQ)/T − a11(δE)2 − 2a12(δE)(δQ) − a22(δQ)2 + ⋯]
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Parameter values are the same as in Fig. 3.

Fig. 4(b). They collapse onto a single curve, which is well

fitted to the function ∼ e−(δE)/T−a11(δE)2 with T " 1.40
and a11 " 0.105. The data collapse confirms the equi-
librium distribution function in (10). One can notice a
slight deviation at large values of (δE) and (δQ), where
even higher order corrections are necessary.
Joule expansion — During the thermalization, the

quantum gas undergoes the Joule expansion or the free
expansion into a vacuum. We discuss the thermodynamic
consequence of the Joule expansion.
Suppose that the system is prepared in the initial state

(5) with Q0
L = 0 and Q0

R = qN . The subsystem R can be
in any state with n0

R = 1, · · · ,
(

N
qN

)

. For an initial state

with given n0
R, the gas has a definite initial temperature

Ti determined from (4). The final temperature Tf after
thermalization can be measured by fitting the probability
distribution PL(Q,n), defined in (7), to the form of (9).

We have performed the numerical analysis with the
subsystems of size N = 9 and 12 and q = 2/3. In
fitting, we used the data of the most probable sector
Q = QL = (Q0

L + Q0
R)/2 where the probability takes

the simple form PL ∝ exp[−(δE)/T − a11(δE)2] with
δQ = 0. The resulting temperature Tf is plotted as a
function of Ti in Fig. 5(a). Interestingly, the quantum
gas may either heat up or cool down depending on the
initial temperature. The two regions are separated by
a inversion temperature TI. We also studied the Joule
expansion from a dense region to a dilute (nonempty)
region and obtained the similar result [31].

Taking it for granted that the system thermalizes, the
heating or cooling can be understood easily. Let eα and
qα be the initial energy density and particle density of
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the subsystem α. After the interaction turns on, the to-
tal system has the energy density ef = (eL + eR)/2 +

〈Ĥint〉0/(2N) and the particle density qf = (qL + qR)/2.
The O(1/N) correction to the energy density is negligible
in the large N limit. One may represent the thermody-
namic state of the subsystems and the total system in
the energy density-particle density plane along with the
isotherms (see Fig. 2(b)). In this plane, the total sys-
tem after expansion is represented by the midpoint of
(qL, eL) and (qR, eR). The final temperature Tf can be
read from the isotherm passing through (qf , ef ). We il-
lustrate this construction in Fig. 2(b), where the initial
states are marked as A and B while the final state as F .
It clearly shows that the gas heats up (cools down) if the
isothermal curves are convex (concave). We compare the
final temperatures from the isotherms and the probabil-
ity distributions in Fig. 5(a). A little discrepancy is due
to the O(1/N) correction to the energy density.
At the inversion temperature TI, the isotherms change

the convexity and the T -e curves in all Q sectors cross
each other (see Fig. 2(a)). We can locate the inver-
sion temperature under reasonable assumptions: (i) T -e
curves in Q = 0 and Q = 1 sectors cross at TI. (ii) The
periodic boundary condition yields the same result in the
N → ∞ limit. Under these assumptions, the inversion
temperature is determined by

− 2∆ =

∫ π
−π dk ε(k)e

−ε(k)/TI

∫ π
−π dk e−ε(k)/TI

(11)

with ε(k) = − 2
(1+λ) (cos k + λ cos 2k) [31]. We evaluate

the inversion temperature TI as a function of ∆. The
inversion curve TI = TI(∆) thus-obtained at λ = 1 is
presented in Fig. 5(b). It vanishes as TI ∼ (∆c−∆) near
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bols) and Q = 7, · · · , 12 (lines). The particle-hole symmetry,
PL(Q,n) = PL(N − Q,n), is evident. (b) Rescaled probabil-
ities for Q = 0, · · · , 6. The dashed line is the fitting curve.
The vertical dotted lines in (a) and (b) mark the average en-
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level whose energy eigenvalue is closest to the average energy.
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Fig. 4(b). They collapse onto a single curve, which is well

fitted to the function ∼ e−(δE)/T−a11(δE)2 with T " 1.40
and a11 " 0.105. The data collapse confirms the equi-
librium distribution function in (10). One can notice a
slight deviation at large values of (δE) and (δQ), where
even higher order corrections are necessary.
Joule expansion — During the thermalization, the

quantum gas undergoes the Joule expansion or the free
expansion into a vacuum. We discuss the thermodynamic
consequence of the Joule expansion.
Suppose that the system is prepared in the initial state

(5) with Q0
L = 0 and Q0

R = qN . The subsystem R can be
in any state with n0

R = 1, · · · ,
(

N
qN

)

. For an initial state

with given n0
R, the gas has a definite initial temperature

Ti determined from (4). The final temperature Tf after
thermalization can be measured by fitting the probability
distribution PL(Q,n), defined in (7), to the form of (9).

We have performed the numerical analysis with the
subsystems of size N = 9 and 12 and q = 2/3. In
fitting, we used the data of the most probable sector
Q = QL = (Q0

L + Q0
R)/2 where the probability takes

the simple form PL ∝ exp[−(δE)/T − a11(δE)2] with
δQ = 0. The resulting temperature Tf is plotted as a
function of Ti in Fig. 5(a). Interestingly, the quantum
gas may either heat up or cool down depending on the
initial temperature. The two regions are separated by
a inversion temperature TI. We also studied the Joule
expansion from a dense region to a dilute (nonempty)
region and obtained the similar result [31].

Taking it for granted that the system thermalizes, the
heating or cooling can be understood easily. Let eα and
qα be the initial energy density and particle density of
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the subsystem α. After the interaction turns on, the to-
tal system has the energy density ef = (eL + eR)/2 +

〈Ĥint〉0/(2N) and the particle density qf = (qL + qR)/2.
The O(1/N) correction to the energy density is negligible
in the large N limit. One may represent the thermody-
namic state of the subsystems and the total system in
the energy density-particle density plane along with the
isotherms (see Fig. 2(b)). In this plane, the total sys-
tem after expansion is represented by the midpoint of
(qL, eL) and (qR, eR). The final temperature Tf can be
read from the isotherm passing through (qf , ef ). We il-
lustrate this construction in Fig. 2(b), where the initial
states are marked as A and B while the final state as F .
It clearly shows that the gas heats up (cools down) if the
isothermal curves are convex (concave). We compare the
final temperatures from the isotherms and the probabil-
ity distributions in Fig. 5(a). A little discrepancy is due
to the O(1/N) correction to the energy density.
At the inversion temperature TI, the isotherms change

the convexity and the T -e curves in all Q sectors cross
each other (see Fig. 2(a)). We can locate the inver-
sion temperature under reasonable assumptions: (i) T -e
curves in Q = 0 and Q = 1 sectors cross at TI. (ii) The
periodic boundary condition yields the same result in the
N → ∞ limit. Under these assumptions, the inversion
temperature is determined by

− 2∆ =

∫ π
−π dk ε(k)e

−ε(k)/TI

∫ π
−π dk e−ε(k)/TI

(11)

with ε(k) = − 2
(1+λ) (cos k + λ cos 2k) [31]. We evaluate

the inversion temperature TI as a function of ∆. The
inversion curve TI = TI(∆) thus-obtained at λ = 1 is
presented in Fig. 5(b). It vanishes as TI ∼ (∆c−∆) near

line of stable fixed points

temperature control
of ultracold atoms



ARTICLES
PUBLISHED ONLINE: 15 JANUARY 2012 | DOI: 10.1038/NPHYS2205

Fermionic transport and out-of-equilibrium
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Transport properties are among the defining characteristics of many important phases in condensed-matter physics. In the

presence of strong correlations they are difficult to predict, even for model systems such as the Hubbard model. In real

materials, additional complications arise owing to impurities, lattice defects or multi-band effects. Ultracold atoms in contrast

offer the possibility to study transport and out-of-equilibrium phenomena in a clean and well-controlled environment and can

therefore act as a quantum simulator for condensed-matter systems. Here we studied the expansion of an initially confined

fermionic quantum gas in the lowest band of a homogeneous optical lattice. For non-interacting atoms, we observe ballistic

transport, but even small interactions render the expansion almost bimodal, with a dramatically reduced expansion velocity.

The dynamics is independent of the sign of the interaction, revealing a novel, dynamic symmetry of the Hubbard model.

In solid-state physics, transport properties are among the key
observables, the most prominent example being the electri-
cal conductivity, which, for example, allows one to distin-

guish normal conductors from insulators or superconductors.
Furthermore, many of today’s most intriguing solid-state phe-
nomena manifest themselves in transport properties, examples
including high-temperature superconductivity, giantmagnetoresis-
tance, quantum-Hall physics, topological insulators and disorder
phenomena. Especially in strongly correlated systems, where the
interactions between the conductance electrons are important,
transport properties are difficult to calculate. In general, predicting
out-of-equilibrium fermionic dynamics represents an even harder
problem than the prediction of static properties such as the nature
of the ground state. In real solids further complications arise
owing to the effects, for example, of impurities, lattice defects and
phonons. These complications render an experimental investiga-
tion in a clean and well-controlled ultracold-atom system highly
desirable. Although recent years have seen dramatic progress in
the control of quantum gases in optical lattices1–3, a thorough
understanding of the dynamics in these systems is still lacking.
Genuine dynamical experiments can not only uncover newdynamic
phenomena but are also essential to gain insight into the timescales
needed to achieve equilibrium in the lattice4,5 or to adiabatically
load into the lattice6,7.

Using both bosonic and fermionic8–10 atoms, it has become
possible to simulate models of strongly interacting quantum
particles, for which the Hubbard model11 is probably the most
important example. A major advantage of these systems compared
with real solids is the possibility to change all relevant parameters in
realtime by, for example, varying laser intensities ormagnetic fields.
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Although first studies of dynamical properties of both bosonic
and fermionic12–14 quantum gases have already been performed,
a remaining key challenge, however, has been the presence of
additional potentials on top of the periodic lattice potential: these
will lead to confining forces or, in the absence of interactions, to
Bloch oscillations15–19 that dominate transport.

In this work, it was possible to study out-of-equilibrium
dynamics and transport in a homogeneous Hubbard model
by allowing an initially confined atomic cloud with variable
interactions to expand freely within a homogeneous optical
lattice (Fig. 1) without further potentials. Monitoring the in situ
density distribution during the expansion led to several surprising
observations: already small interactions cause a drastic reduction
of mass transport within the expanding atomic cloud and change
its shape; for strong interactions the core of the atomic cloud
does not expand, but shrinks; and, surprisingly, we find that
only the magnitude but not the sign of the interaction matters:
the observed dynamics is identical for repulsive and attractive
interactions despite a large difference in total energy.

The experiment starts with the preparation of a band-insulating
state of fermionic potassium in a combination of a blue-detuned
three-dimensional optical lattice and a red-detuned dipole trap
(Methods). The applied lattice-loading procedure includes a hold
time in a deep lattice with strongly reduced tunnelling, during
which the interaction between the two used hyperfine states can
be controlled using a Feshbach resonance. Combined with a strong
harmonic confinement, this hold time causes a dephasing between
different lattice sites and leads to a localization of the atoms to single
lattice sites. This loading procedure results in a cloud of localized
atoms with a constant density distribution, which is independent of
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Initial state

Free expansion in lattice

Figure 1 | Expansion of fermionic atoms after a quench of the trapping potential. First a dephased band-insulator is created in the combination of an
optical lattice and a strong harmonic trap. Subsequently the harmonic confinement is switched off and the cloud expands in a homogeneous Hubbard
model. The observed in situ density distributions demonstrate the strong effects of interactions on the evolution.

the chosen interaction (see Supplementary Information for details).
Subsequently, the expansion is initiated by suddenly eliminating
all confining potentials in the horizontal direction (Fig. 1). The
resultingmass transport is not driven by an external potential but by
density gradients. The applied preparation scheme guarantees that
all interaction effects arise only during the expansion because the
initial state is independent of the chosen interaction.

Non-interacting case
For non-interacting atoms, we observe that the symmetry of the
cloud changes during the expansion from the rotational symmetry
of the initial density distribution to a square symmetry that is
governed by the symmetry of the lattice (Fig. 2).

In the absence of collisions and additional potentials the
Hubbard Hamiltonian consists only of the hopping term HJ =
�J

P
hi,ji ĉ

†
i ĉj , which describes the tunnelling of a particle from

one lattice site to a neighbouring site with a rate J/h̄ (ĉ †
i

(ĉi) denotes the fermionic creation (destruction) operator). This
Hamiltonian gives rise to a ballistic expansion where each initially
localized particle expands independently with a constant quasi-
momentum distribution. As a localized single-particle state (a
Wannier function) is an equal superposition of all Bloch waves
within the first Brillouin zone, the velocity distribution inherits the
square symmetry of the Brillouin zone. This leads to the observed
change in symmetry, as the density distribution after an evolution
time t is given by the convolution of the initial density distribution
(spherical) with the velocity distribution (square) of the individual
atoms (classically: r(t ) = r(0) + vt ; v: possible velocity of an
individual atom, r: corresponding position). In the experiment,
the width of a single-particle wavefunction (Fig. 2, dark blue dots),
which is extracted from the images by deconvolving the observed
cloud size with the initial cloud size, grows linearly with expansion
time, thereby confirming the ballistic expansion. The extracted
mean expansion velocity vexp = phv2i agrees very well with the
quantum-mechanical prediction (solid line) vexp =

p
2d (J/h̄)alat

(d : dimension, alat: lattice constant), that is the averaged group
velocity of the Bloch waves (see Supplementary Information). This
expansion can be seen as a continuous quantum walk20–24. For
comparison, classical (thermal) hopping of a particle (for example
of a thermalized atom on the surface of a crystal) would result in a
random walk, where the width of the resulting density distribution
would scale as the square root of the expansion time (dashed
lines). For very long expansion times, residual corrugations in the
potential become relevant and can distort the square symmetry (see
Supplementary Information).

Interacting case
The ballistic expansion observed for non-interacting atoms is in
stark contrast to the interacting case, where a qualitatively different
dynamics is observed: Fig. 3 shows in situ absorption images taken
after 25ms of expansion in an 8Er deep lattice.

The observed dynamics gradually changes from a purely ballistic
expansion in the non-interacting case into an almost bimodal
expansion for interacting atoms: on increasing |U |, larger and larger
parts of the cloud remain spherical (clearly seen in Fig. 1) and
only a small fraction of atoms in the tails of the cloud exhibits
a square distribution. Here U denotes the strength of the on-site
interaction between different spin components (HI =U

P
i n̂i,#n̂i,").

The spherical shape is a consequence of frequent collisions between
the atoms in the centre of the cloud, which, for the range of
interactions considered here, drive the system to be close to local
thermal equilibrium25,26: within the rather large clouds used in the
experiment, gradients are small and the dynamics in the centre can
be described by coupled nonlinear diffusion equations27 for density
n(r,t ) and local energy e(r,t )

@tn= rD(n)rn (1)

where n = (n, e) and D(n) is a 2 ⇥ 2 matrix of diffusion
constants. Note that in the optical lattice frequent Umklapp
scattering prohibits convective terms in the hydrodynamic equation
(equation (1)). Because the diffusion equation is rotationally
invariant, a diffusive dynamics can directly account for the observed
spherical shape of the high-density core.

For a theoretical description it is essential to realize that the
diffusion equation (equation (1)) is highly singular. As the diffusion
constant is proportional to the scattering time, it diverges as 1/n
for small densities, D(n)⇠ 1/n, as the probability to scatter from
other atoms is linear in n for small densities. Such highly singular
‘superfast’ diffusion equations have been extensively studied in the
mathematical literature28. Remarkably, they predict a completely
unphysical behaviour in large dimensions (d � 2): the particle
number is not conserved, as particles vanish at infinity with
a constant rate (for d = 2). Owing to this breakdown of the
hydrodynamic approach, the expansion is not governed by the
diffusion equation but instead by the physics in the tails of the
cloud where no local equilibrium can be reached. In this regime, the
densities are low and atoms scatter so rarely that their motion again
becomes ballistic. Therefore the tails of the cloud show the square
symmetry characteristic for freely expanding particles (Fig. 3).
This initial fraction of ballistically expanding atoms decreases for
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