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Outline

1. What are topology and geometry of band structures?
2. How can we measure it?
. Quantum geometric tensor and topology

II. Localization, many-body quantum metric, and fluctuation-dissipation theorem
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Bloch’s theorem and physics on a banad

A particle (e.g. electrons) in a periodic potential
2

H=_—+V(r) Vir+a;) = V(r)

Eigenstates are labeled by band index n and crystal momentum k
Hpp i (r) = En (k) x(r)

Here  n 1 (1) = ™ up, 1 (1) unk(r +a;) = up i (r)

E, (k) : Energy band structure 1 (r) = (r|u, k) : Bloch state

A wavepacket constructed on a band has a group velocity:
o 0F, (k)
hok
In the presence of external fields:
hk = —eE(r) — er x B

— semiclassical equations of motion —

[Ashcroft & Mermin (1976), page 218] R 3/21



Geometric structure of bands

Geometric structure of band characterizes how much the Bloch state |uy, k) changes
within the Brillouin zone

Physically meaningful quantity should be invariant under the gauge transformation:
0 (k
[t 1) — €70 g 1)

Ok, |unx) is Not gauge invariant, so it is not a good quantity to characterize the change
of the Bloch state

Instead, we need to consider the covariant derivative:
Dy, |un k) = (O, + 1A} (k))|unx)
A (k) = i{un,k|Ok, |Un,x) : Berry connection

Then, Dkuyun,g — ew(k)Dku\un,Q

Its inner product is gauge invariant, and thus physically meaningful

XZI/(k) = (Dku <un,k

) (Dg,, |tn x)) |Quantum geometric tensor
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Quantum geometric tensor & Topology

Quantum geometric tensor:

n (k) _ 8un,k 8un,k B 8un,k ” ” 8un,k
XA =\ "ok, | ok, ok, | ™%/ \""*| ok,
< 5’un k > <’LL ({Mn,k >
— n’,k
e Ok,
= 9 (k) — Z'QZV(k)/ 2
QZV(k) . gquantum metric tensor, Fubini-Study metric

0, (k) = (Vi x A"(k)),,,, : Berry curvature
In 2D,
x"h) = (g;?y(k) + a2y, (k) /2 Gy (K) )
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Semiclassical equation of motion, geometry, & topology

Taking the geometry into account, the correct semiclassical equations of motion is:

. é)lf}z(li) ) n
P= =k x Q" (k)

ik = —¢cE —er x B \

" Looks like a Lorentz force
where O" = (QZZ, Qr sz) (ordinary) Lorentz force

Geometric property is locally defined in each point in k-space
Topology is a global property of k-space
Topological invariant is an integer which characterizes the entire system

1
C" = dkdk, Q7 (k)
Chern number (topological) Berry curvature (geometrical)

Bulk-edge correspondence:

Number of edge states within a gap = Sum of Chern number of bands under the gap
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2. How can we measure it?
. Quantum geometric tensor and topology

II. Localization, many-body quantum metric, and fluctuation-dissipation theorem
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Measuring geometry of bands through spectroscopy

We propose to measure the geometry through excitation rate upon periodic modulation

ﬁ(t) — Hipttice + 2F cos(wt)x
7

We are interested in the geometry of this Hamiltonian

To probe the geometry, we add this perturbation

Steps:
1. Prepare the system in a Bloch state (or a superposition of Bloch states)
2. Add the perturbation
3. Measure the excitation rate >,
4., Integrate over the perturbation frequency w %
5. Then we get the quantum metric gﬁ,, I LIC.I
Ozawa & Goldman, PRB 97, 201117(R) (2018) cimomentum
Quasim 8/21




Fermi’'s golden rule

1. Prepare the system in a Bloch state (or a superposition of Bloch states)

1k-r

Att =0, we start from a state e"“" |uy, k)

2. Add a perturbation
2F cos(wt)d = Eze™* + H.c.

3. Measure the excitation rate
Probability of finding the system in a state different from the original state is (Fermi’s golden rule):

27t y .
Mex(w,t) =SB 30 [(wgele”™ 8™ i) P60 (B () — By (k) — )

[Upr s )| Un k)

where 6)(e) = (2h/mt) sin(et/2h)/e* — S(¢) atlarget 2

O
The matrix element is (Karplus & Luttinger, 1954): LIC.I
(s 1| €7 T ™ T 1y, 1) = 100 e (Ut 1| Ok, U i)




Excitation rate

4. Integrate over the perturbation frequency w

Excitation rate is
Nex(w,t) 21 2

['w) = ; -

D {ttne 1l 1) 260 (B () = B (k) — o)
n’#n
Integrating over the frequency, we obtain the quantum metric!!

- > 21 B2 21 E? o
" b= /O F(w)dw == 72 Z ’<un’,k‘akfgun,k>‘2 — ;2 ga:a:(k)

n’#n

If the initial state is fermions (partially) filing the band with density p(k)

2 E?

M === p(K)gr, (k)

Ozawa & Goldman, PRB 97, 201117(R) (2018)
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How to measure the Berry curvature

In fact, the proposal to measure the Berry curvature existed earlier:
Tran, Dauphin, Grushin, Zoller, & Goldman, Science Advances 3, e1701207 (2017)

Here, one adds circular shakings and take a difference

H(t) = Hittico + 2F (& cos(wt) £ § sin(wt))

When the initial state is a Bloch state ¥ T

e (0,00 + g, (k) F 0, (K)

S0, the difference between the clockwise and anticlockwise shaking is

A E?
-

lun k), the integrated excitation rate is

int
', =

Arint — Pint o Fint L
=17 =

If the initial state covers a whole band, the difference
of the integrated excitation rate gives the topological
Chern number
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Experiment (ultracold atoms @ Hamburg)

Asteria, Tran, 1O, et al., Nature Physics 15, 449-454 (2019)

We experimentally implemented the protocol using ultracold K (potassium) atoms 23. r

We prepare the Haldane model
And then shake linearly / circularly and detect excitation

We change the system parameter and observed topological phase transitions

and also the first ever estimate of quantum metric \
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More quantitative measurement in progress in collaboration with Y. Takahashi group in Kyoto
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Experiment (diamond NV Center @ \Wuhan)

Suppose Hamiltonian H () and its eigenstates 1)(\) depends on parameters: XA = (A1, g, - - )

Quantum geometric tensor can also be defined in this general parameters space:

Xpv (A) = (Or, V(A) [0, V(A)) — (O, V(A)|[PY(A) (P(A)]ON, P (A))

To measure it, we now modulate parameters in time A1 (t) = \] + 2(E/hw) cos(wt)

Starting from an eigenstate Wini> of the Hamiltonian A ( )\0) , the integrated excitation rate is then

I E?
A2

Fint _ Gri (AO)

A ' —i
With qubits in diamond NV centers, the Hamiltonian H (6, ¢) = Hy ( cos — sinfe )

sinfe'®  — cosé
Is realized and the quantum geometric tensor is quantitatively measured for the first time

©
39

£ 0 ¢ ° . 2 05| d
io.z | S 04;
E S 03¢
Ozawa & Goldman, PRB 97, 201117(R) (2018) ‘g 0.1 7027
= M 0.1t
Yu, et al., arXiv:1811.12840 Z 0 . . . i, . . .
0 /4 /2 37/4 T 0 /4 /2 3n/4 7
90 90

cf. superconducting qubit: Tan, et al. (Nanjing), Phys. Rev. Lett. 122, 210401 (2019) 13/21
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II. Localization, many-body quantum metric, and fluctuation-dissipation theorem
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Reconsider the argument

What we had was a time periodic modulation of the following form:
H(t) = Hy + 2F cos(wt)x

We started from a Bloch state and looked at the excitation rate.

Now, assume that the Hamiltonian is the many-body Hamiltonian, and we start from an

arbitrary eigenstate ]Oé)

The probability of the system being excited is:

27TE2
Nex (W, > 1(Bl2|c)?6® (e

p#a

And thus the integrated excitation rate is:

pint _ /OO Nex (W, 1) Ty — oI E2
0

t h?

D BRI =) (2|8 (BlE]a) = (o #%]ar) —

B B

Ozawa & Goldman, arXiv:1904.11764

— €q — hw)

> [(Blz]e) |

p#a

(a]Z|a)? = Var(z)

Variance of position!

15/21



Fluctuation-dissipation theorem

We can derive the same formula from the fluctuation-dissipation theorem

Upon adding a modulation 2.F Cos(wt)i , the fluctuation-dissipation theorem tells that

h hw

(22 = ;/0 o (w) coth ﬁdw

/ Landau-Lifshitz “Statistical Physics” eq. (124.10)
Imaginary part of the generalized susceptibility

On the other hand, the rate of energy absorption by the system is P(w) = 2wE?a” (w)
Landau-Lifshitz “Statistical Physics” eq. (123.11)
The rate of exciting the system is then F(w) — P(w) / hw and thus

h? > hw
B7) = T h —
(T°) S /0 (w) cot 2wa

In the limit of T = O, we re-obtain

: > o2 B2 27 B2
Fmt:/O INw)dw = 7%2 (2°) = 7;2 Var(z)
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Many-body quantum geometric tensor

We can connect the variance of the position and geometry by introducing the concept of
many-body quantum geometric tensor

Historically, Berry curvature was extended to many-body cases by Niu-Thouless-Wu (1985)
by defining the Berry curvature in the parameter space of twisted boundary condition

Here, we consider a many-body wave function W({r,}) with

U({re + Ly Yo, -+ }) = ei%\p({xa’ Yar* " })

O

Many-body quantum geometric tensor is defined in this twist space as

w® = (55 %)~ o [7@) (V0[50
= gﬂ,,(e)u— 19,,,(0)/2 M
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Meaning of the many-body quantum geometry

Niu-Thouless-Wu (1985): Many-body Berry curvature is related to the many-body Chern number

1
Crip = o / d0,d0, Qg (05, 0,)

This integer enters the Hall conductance

If there is a degeneracy of states, it can signal fractional quantum Hall effect

Souza-Wilkens-Martin (2000): Many-body quantum metric is related to the localization

Matrix element of the (properly defined) position operator satisfies («|z|8) = —iL,; (0, c|B)

Jre = (09, |0y, ) — (Op, |x)(c|Op, )

= (05, B)(B|0g, ) = > (a]&]B)(BlE|cx) /L2

p#a

= ({al@®]o) — (al|a)?) /Ly = Var(2)/L;

And thus

B#o

o2 E?
;2

Fint _

Var(z) =

o2 E?
72

L2Gps
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Example |: Anderson model

We theoretically apply our method to the one-dimensional Anderson model

® oo

o "56$’6d

One dimensional lattice with uniform hopping
and random onsite energy

Eigenstates are localized (Anderson localization)

We try to detect the variance of the localized
eigenstates through excitation rate simulation

5000

4000 ¢

o ©®

Strength of the

random onsite energy

The measurement of the many-body quantum metric can be used to detect the localization

without directly looking at real-space wave function

Ozawa & Goldman, arXiv:1904.11764
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Example Il: two particles in a harmonic trap

We consider two interacting particles in a harmonic trap

1¢t

In the presence of repulsive interactions, the wavefunction 0.8
becomes a bit spread =06

We try to detect this spread through simulating periodic
modulation and looking at the excitation rate

As a function of the repulsive interaction U,
we can estimate the spread via excitation rate simulation

Ozawa & Goldman, arXiv:1904.11764
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Summary

¢ Quantum geometric tensor characterizes the gauge invariant structure of a quantum state
on a parameter space, and it is made of two parts: Quantum metric and Berry curvature

e Quantum geometric tensor can be extracted through excitation rate upon periodic modulation

* |n many-body or disordered situation, fluctuation-dissipation theorem relates excitation
rate and the fluctuation of position, which in turn is related to quantum metric in twist-
boundary condition space

e Theory collaboration: Nathan Goldman (Université Libre de Bruxelles)
e Experiment collaboration (cold atom): Klaus Sengstock & Christof Weitenberg (Hamburg)
e Experiment collaboration (NV center): Jianming Cai (Huazhong University)

e Ongoing experimental collaboration (cold atom): Yoshiro Takahashi (Kyoto)

Ozawa & Goldman, PRB 97, 201117(R) (2018)
Asteria, et al., Nature Physics 15, 449-454 (2019)
Yu, et al., arXiv:1811.12840

Ozawa & Goldman, arXiv:1904.11764
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