Typical growth behavior of the Out-of-Time-Ordered Commutator in Many-Body Localized systems

Dong-Hee Kim

Department of Physics and Photon Science Gwangju Institute of Science and Technology

Outline

- Many-Body Localization (MBL)
 - Thermal. vs. Anderson Localization vs. MBL in disordered systems
 - How can we distinguish them?
 - One of the candidates: growth of **OTOC**
- Out-of-Time-Ordered <u>Commutator</u> / Correlator
 - A typical characteristic behavior of OTOC in MBL systems
 - Q. effective model vs. realistic quantum spin chain
 - It does exists but cannot survive in disorder averages.

REF: J. Lee, D. Kim, and D.-H. Kim, PRB 99, 184202 (2019).

"Usual" ingredients for MBL

Phase diagram of the disordered XXZ chain

η

Thermal η_c MBL

• **Disorders**

- onsite energy, hopping strength, quasi-periodicity
- cf. MBL without disorder may need an effective disorder.

Interactions

- A naive version of MBL = Anderson localization + Interactions
- What's essential: "dephasing" -> Information spreading/scrambling

Mader Bordy d cedelizatio (n (with tetactorig) ns)

Phenomenological Comparisons

R. Nandkishore and D. A. Huse, Annu. Rev. Condens. Matter Phys. 6, 15 (2015).

Thermal phase	Anderson Localization	Many-Body Localization
Thermal phase	Single-particle localized	Many-body localized
Memory of initial conditions hidden in global operators at long times	Some memory of local initial conditions preserved in local observables at long times	Some memory of local initial conditions preserved in local observables at long times
Eigenstate thermalization hypothesis (ETH) true	ETH false	ETH false
May have nonzero DC conductivity	Zero DC conductivity	Zero DC conductivity
Continuous local spectrum	Discrete local spectrum	Discrete local spectrum
Eigenstates with volume-law entanglement	Eigenstates with area-law entanglement	Eigenstates with area-law entanglement
Power-law spreading of entanglement from nonentangled initial condition	No spreading of entanglement	Logarithmic spreading of entanglement from nonentangled initial condition
Dephasing and dissipation	No dephasing, no dissipation	Dephasing but no dissipation

Only EE growth distinguishes MBL from AL in this table.

Q. Can OTOC do the same thing?

Entanglement Entropy Growth: Thermal vs. MBL

Experiment to measure EE (a sort of)

[Aubry-Andre, boson (87Rb)]

Lukin et. al., Science 364, 256 (2019).

Out-of-Time-Ordered Commutator / Correlator

A measure of quantum chaos

Quantum Chaos: $C(t) \propto \exp[\lambda_L t]$

A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 55, 2262 (1968) .

A. Kitaev, a talk in Fundamental Physics Prize Symposium (2014).

An alternative measure of MBL

MBL: slow growth/spreading

B. Swingle and D. Chowdhury, Phys. Rev. B 95, 060201(R) (2017).

R. Fan, P. Zhang, H. Shen, and H. Zhai, Sci. Bull. 62, 707 (2017).

X. Chen, T. Zhou, D. A. Huse, and E. Fradkin, Ann. Phys. (Berlin) 529, 1600332 (2017).

R.-Q. He and Z.-Y. Lu, Phys. Rev. B 95, 054201 (2017).

Y. Chen, arXiv:1608.02765.

Y. Huang, Y.-L. Zhang, and X. Chen, Ann. Phys. (Berlin) 529, 1600318 (2017).

K. Slagle, Z. Bi, Y.-Z. You, and C. Xu, Phys. Rev. B 95, 165136 (2017).

P. Bordia, F. Alet, and P. Hosur, Phys. Rev. A 97, 030103(R) (2018).

and many other OTOC studies for quantum chaos and non-MBL systems.

Out-of-Time-Ordered Commutator: the definition

unitary "local" operators

Experiments : NMR, trapped ions, ultracold gases

Li et al., PRX 7, 031011 (2017). Gärttner et al., Nat. Phys. 13, 781 (2017). Meier et al., PRA 100, 013623 (2019).

*Proposals for measurements

Swingle, et. al., PRA (2016); Yao et. al., arXiv:1607.01801, Zhu et. al. PRA (2016), Yunger Halpern, PRA (2017); ...

Our system: Heisenberg XXZ chain

State choice: 1. Maximally mixed state (β =0) $\hat{\rho} = 1/d$

 $\langle \cdots \rangle \equiv \operatorname{Tr}[\hat{\rho} \cdots]$ **2. Random product state** $|\Psi_v\rangle = \bigotimes_{i=1}^{L} \left(\cos \frac{\theta_i}{2} |\uparrow\rangle + e^{i\phi_i} \sin \frac{\theta_i}{2} |\downarrow\rangle \right)$

Heisenberg XXZ chain in a thermal phase

 $L = 7, \ W = \sigma_2^x, \ V = \sigma_4^x, \ J_z = 1, \ \eta = 1$

Heisenberg XXZ chain in the Anderson-localized phase

Anderson Localized

 $L = 7, W = \sigma_2^x, V = \sigma_4^x, J_z = 0, \eta = 10$

Heisenberg XXZ chain in the MBL phase

Many-Body Localized

 $L = 7, W = \sigma_2^x, V = \sigma_4^x, J_z = 1, \eta = 10$

OTO Correlator \leftrightarrow Rényi Entropy

AL vs. MBL: The OTO correlator would work like EE.

R. Fan, P. Zhang, H. Shen, H. Zhai, Sci. Bull. 62, 707 (2017).

Chaotic vs. MBL vs. AL in OTOC

	Growth	Particle transport	Models	Note
Chaotic (Thermal)	$C(t) \propto \exp[\lambda_{L}t]$ (early time)	Yes	Semiclassical, Large-N limit, SYK, black hole.	$\lambda_L \le 2\pi T$
Many-Body Localization (MBL)	$C(t) \propto t^2$ (early time)	No	Effective I-bit model	Can we see it in realistic systems?

But, No t² growth in the XXZ?

The t² behavior is derived in the I-bit model:

Swingle and Chowdhury, PRB (2017)

Fan et al., Sci. Bull. (2017)

t² growth has not been shown with disorder averaging in any quantum spin models.

MBL studies with **OTOC**:

Chen et al., Ann. Phys. (2017)

He and Lu, PRB (2017)

Huang et al., Ann. Phys. (2017)

and more.

OTOC growth: the effective l-bit model of MBL

Swingle and Chowdhury, PRB 95, 060201(R) (2017) R. Fan, P. Zhang, H. She, H. Zhai, Sci. Bull. 62, 707 (2017).

Fully MBL

$$\mathcal{H} = \sum_{i} h_i \hat{\tau}_i^z + \sum_{\{i,j\}} J_{ij} \hat{\tau}_i^z \hat{\tau}_j^z + \sum_{\{i,j,k\}} K_{ijk} \hat{\tau}_i^z \hat{\tau}_j^z \hat{\tau}_k^z + \cdots$$

OTO correlator $F(t) = \langle \hat{W}^{\dagger}(t) \hat{V}^{\dagger} \hat{W}(t) \hat{V} \rangle$ for $\hat{W} = \hat{\tau}_{a}^{x} \quad \hat{V} = \hat{\tau}_{b}^{x}$

 $2 \times 2 \hat{J}_{ab}^{\text{eff}} \hat{\tau}_{a}^{z} \hat{\tau}_{b}^{z}$

Energy difference:

just a Ising spin flip

$$F(t) = \left\langle \exp\left(it \cdot 4\hat{J}_{ab}^{\text{eff}} \hat{\tau}_{a}^{z} \hat{\tau}_{b}^{z}\right) \right\rangle$$

Effective interaction:

$$\hat{J}_{ab}^{\text{eff}} = J_{ab} + \sum_{k}' K_{abk} \hat{\tau}_{k}^{z} + \sum_{\{k,l\}}' Q_{abkl} \hat{\tau}_{k}^{z} \hat{\tau}_{l}^{z} + \cdots$$

Quadratic Growth form of OTOC in the l-bit model

The t² behavior occurs at any disorder and any state preparation.

OTO correlator
$$F(t) = \left\langle \exp\left(it \cdot 4\hat{J}_{ab}^{\text{eff}}\hat{\tau}_{a}^{z}\hat{\tau}_{b}^{z}\right) \right\rangle$$

For a given disorder realization,

Swingle and Chowdhury, PRB (2017) Fan et al., Sci. Bull. (2017)

OTO "commutator"

$$C(t) = 1 - \operatorname{Re}\left[\left\langle \exp\left(it \cdot 4\hat{J}_{ab}^{\operatorname{eff}}\hat{\tau}_{a}^{z}\hat{\tau}_{b}^{z}\right)\right\rangle\right]$$
$$\simeq 1 - \cos\left(4t\langle\hat{J}_{ab}^{\operatorname{eff}}\rangle\right)\exp\left[-8t^{2}\left(\langle[\hat{J}_{ab}^{\operatorname{eff}}]^{2}\rangle - \langle\hat{J}_{ab}^{\operatorname{eff}}\rangle^{2}\right)\right]$$

Measured with an eigenstate, $C(t) \simeq 1 - \cos\left(4t \langle \hat{J}_{ab}^{\text{eff}} \rangle\right)$

At very early times,

$$C(t) = 8 \langle [\hat{J}_{ab}^{\text{eff}}]^2 \rangle t^2 + O(t^4)$$

Disorder average?

The distribution of C(t) looks like this:

Time-evolving distribution of OTOC: Thermal vs. MBL

Unimodal distribution

Bimodal distribution

c.f. I-bit model: It's Gaussian (CLT).

Time-evolving distribution of OTOC: Thermal vs. MBL

The average is meaningless in the MBL phase.

A double-peak distribution appears in the MBL phase.

Q. How can we understand the discrepancy?

Q. How can we use this?

L = 14

Is the t² growth gone, really?

Let's look an individual disorder realization.

Observation at an individual disorder realization

Large deviations in time scales between different disorder realizations

At a given time, one is at stage 1 while the other is stage 2.

$$\begin{array}{l} & \displaystyle \mbox{Early-time growth} \\ & \hat{\sigma}_{r+1}^{x}(t) = \hat{\sigma}_{r+1}^{x} + it[\mathcal{H}, \hat{\sigma}_{r+1}^{x}] + \frac{(it)^{2}}{2!}[\mathcal{H}, [\mathcal{H}, \hat{\sigma}_{r+1}^{x}]] + \cdots \\ & \displaystyle \mbox{The lowest-order term with} \quad \hat{\sigma}_{1}^{x} \quad \mbox{appears at} \quad \hline t^{r} \\ & \displaystyle \mbox{Squared-commutator (OTOC)} \\ & \displaystyle \mbox{i} \\ & \displaystyle \mbox{i$$

S T

G

Intermediate-time behavior

Some disorder realizations give a power-law behavior very close to t².

4

Another system: Mixed-Field Ising chain

$$\mathcal{H} = -\sum_{i=1}^{L-1} \hat{\sigma}_i^z \hat{\sigma}_{i+1}^z - \sum_{i=1}^{L} h_i \hat{\sigma}_i^x - h_z \sum_{i=1}^{L} \hat{\sigma}_i^z \qquad \hat{W} = \hat{\sigma}_3^z \qquad \hat{V} = \hat{\sigma}_0^z$$

Doubly peaked distribution

t² growth!

- Out-of-time-ordered commutator is examined as a measure of MBL.
- Beyond the effective I-bit model
 - characteristic quadratic growth in the MBL phase
 - : Go for an *individual* disorder realization!
 - Do not try disorder-averaging.
 - unimodal-to-flat-to-bimodal distribution
 - : a possible indicator of the ergodic-MBL transition.
- Spectral characteristics of OTOC (on-going)
 - A single dominant frequency mode exists. Perturbation calculations may explain larger deviations.
- Future works: finite-size effects, more systematic analysis of the OTOC spectrum, different settings of disorders, a more experiment-friendly OTOC, ...