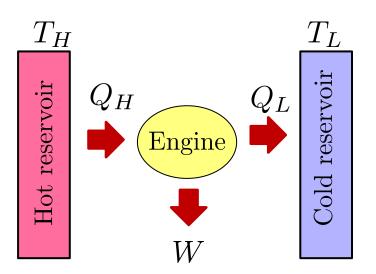


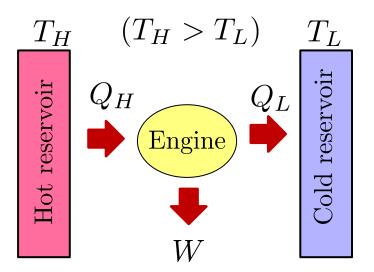
Exactly solvable two-terminal heat engine with asymmetric Onsager coefficients: Origin of the power-efficiency bound

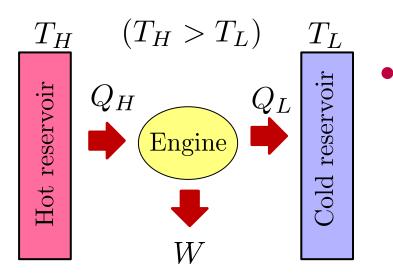
Hyunggyu Park (KIAS)

with Jae Sung Lee and Jong-Min Park

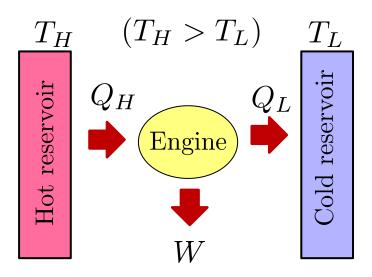
Talk at EAJSSP2019, ITP-CAS, Beijing, China (October 22, 2019)



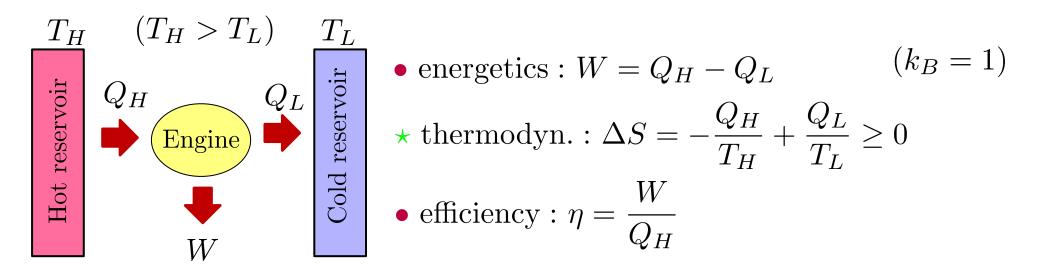


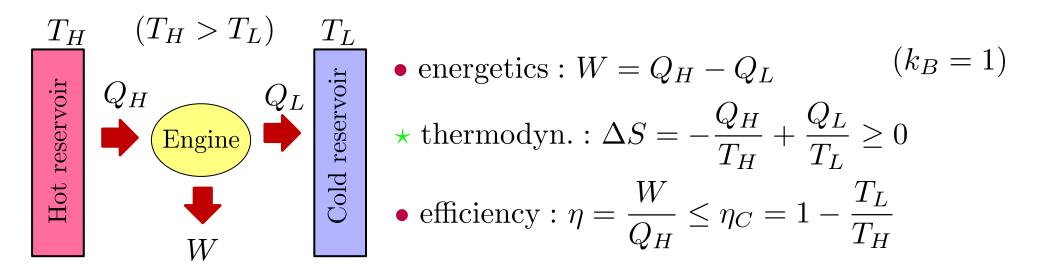


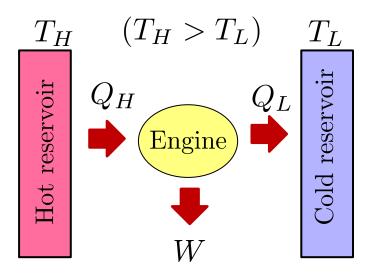
energetics :
$$W = Q_H - Q_L$$



• energetics :
$$W = Q_H - Q_L$$
 $(k_B = 1)$
* thermodyn. : $\Delta S = -\frac{Q_H}{T_H} + \frac{Q_L}{T_L} \ge 0$

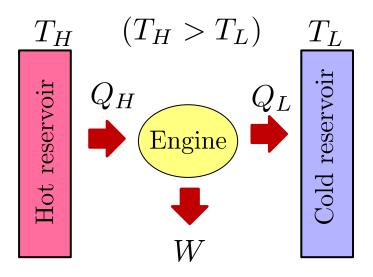




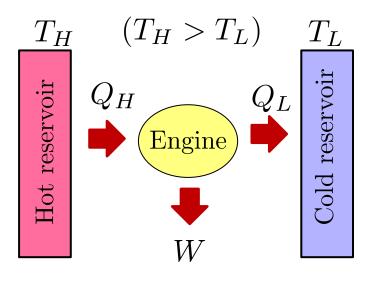


• energetics :
$$W = Q_H - Q_L$$
 $(k_B = 1)$
* thermodyn. : $\Delta S = -\frac{Q_H}{T_H} + \frac{Q_L}{T_L} \ge 0$
• efficiency : $\eta = \frac{W}{Q_H} \le \eta_C = 1 - \frac{T_L}{T_H}$
 $\eta_C = \frac{T_L \Delta S}{1 - \frac{T_L}{T_H}}$

$$\frac{\eta_C}{\eta} - 1 = \frac{T_L \Delta S}{W}$$

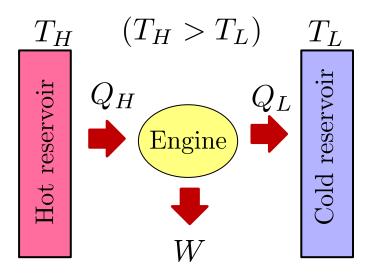


• energetics :
$$W = Q_H - Q_L$$
 $(k_B = 1)$
* thermodyn. : $\Delta S = -\frac{Q_H}{T_H} + \frac{Q_L}{T_L} \ge 0$
• efficiency : $\eta = \frac{W}{Q_H} \le \eta_C = 1 - \frac{T_L}{T_H}$
 $\frac{\eta_C}{\eta} - 1 = \frac{T_L \Delta S}{W} = \frac{T_L \dot{S}}{\dot{W}}$



• energetics :
$$W = Q_H - Q_L$$
 $(k_B = 1)$
* thermodyn. : $\Delta S = -\frac{Q_H}{T_H} + \frac{Q_L}{T_L} \ge 0$
• efficiency : $\eta = \frac{W}{Q_H} \le \eta_C = 1 - \frac{T_L}{T_H}$
 $\frac{\eta_C}{\eta} - 1 = \frac{T_L \Delta S}{W} = \frac{T_L \dot{S}}{\dot{W}}$

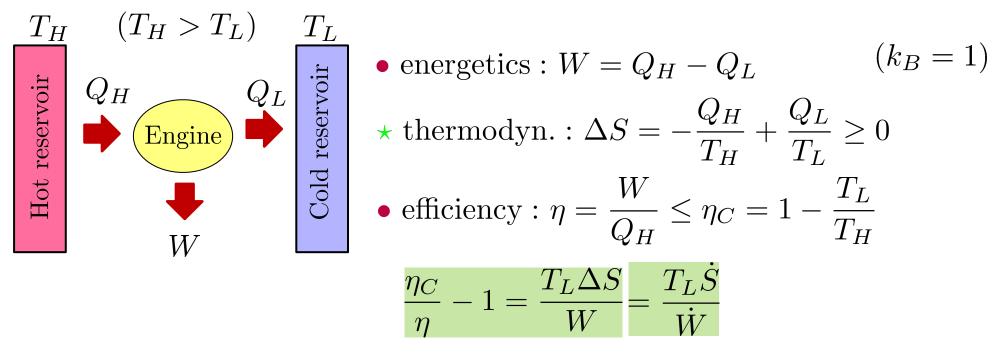
t reaching η_C ?



• energetics :
$$W = Q_H - Q_L$$
 $(k_B = 1)$
* thermodyn. : $\Delta S = -\frac{Q_H}{T_H} + \frac{Q_L}{T_L} \ge 0$
• efficiency : $\eta = \frac{W}{Q_H} \le \eta_C = 1 - \frac{T_L}{T_H}$
 $\frac{\eta_C}{\eta} - 1 = \frac{T_L \Delta S}{W} = \frac{T_L \dot{S}}{\dot{W}}$

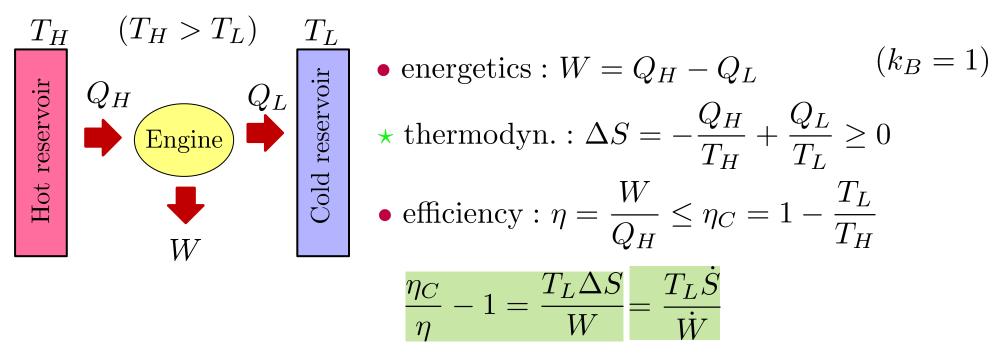
t reaching η_C ?

 $\diamond \dot{S} = 0$



reaching η_C ?

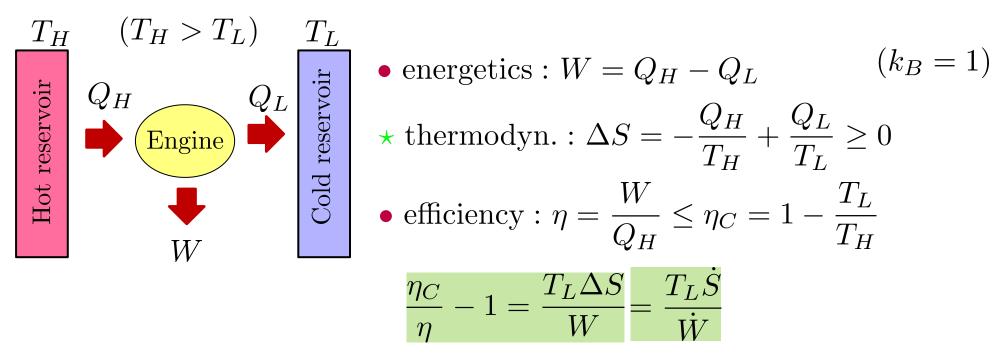
 $\diamond \dot{S} = 0$ \dot{W} can be positive finite !



reaching η_C ?

 $\diamond \dot{S} = 0 \quad \dot{W}$ can be positive finite !

- thermodynamic 2nd law does not prohibit a finite-power engine.

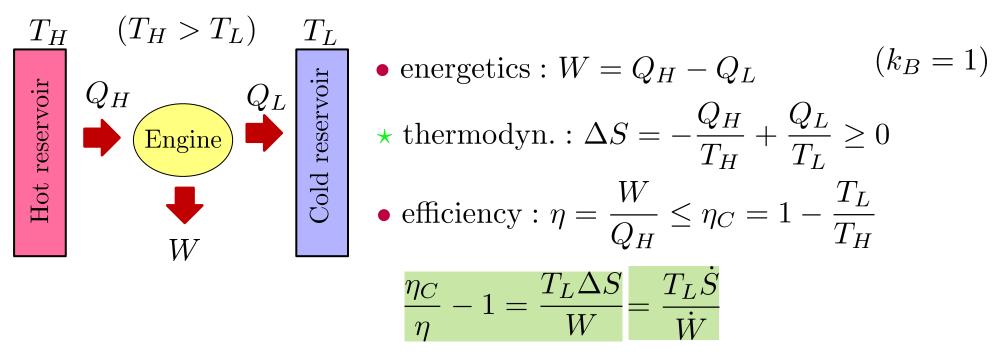


reaching η_C ?

 $\diamond \dot{S} = 0$ \dot{W} can be positive finite !

- thermodynamic 2nd law does not prohibit a finite-power engine.

t dream engine with Carnot efficiency and a finite power ??



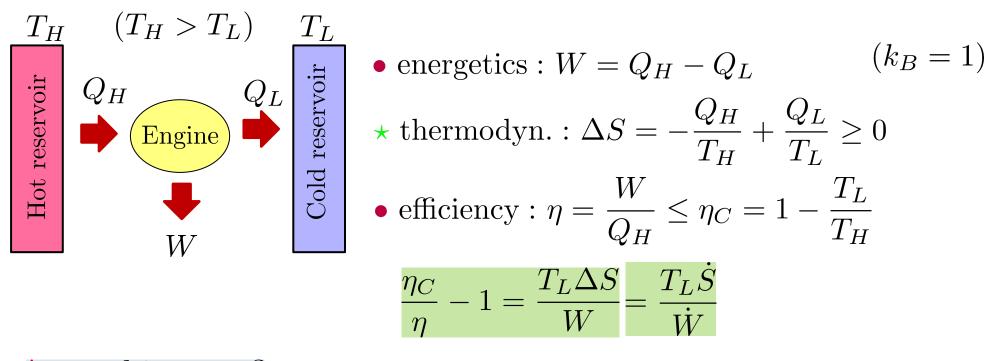
reaching η_C ?

[Polettini, Esposito, EPL(2017)]

 $\diamond \dot{S} = 0$ \dot{W} can be positive finite !

- thermodynamic 2nd law does not prohibit a finite-power engine.

[†] dream engine with Carnot efficiency and a finite power ??



reaching η_C ?

 $\diamond \dot{S} = 0$ \dot{W} can be positive finite !

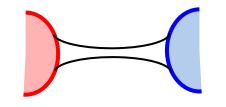
[Polettini,Esposito, EPL(2017)] [Lee,Park, SciRep(2017)]

- thermodynamic 2nd law does not prohibit a finite-power engine.

[†] dream engine with Carnot efficiency and a finite power ??

- Benenti, Saito, Casati, PRL (2011)
 - linear irreversible thermodynamics

- Benenti, Saito, Casati, PRL (2011)
 - linear irreversible thermodynamics particle flux : $J_1 = L_{11}X_1 + L_{12}X_2$ heat flux : $J_2 = L_{21}X_1 + L_{22}X_2$



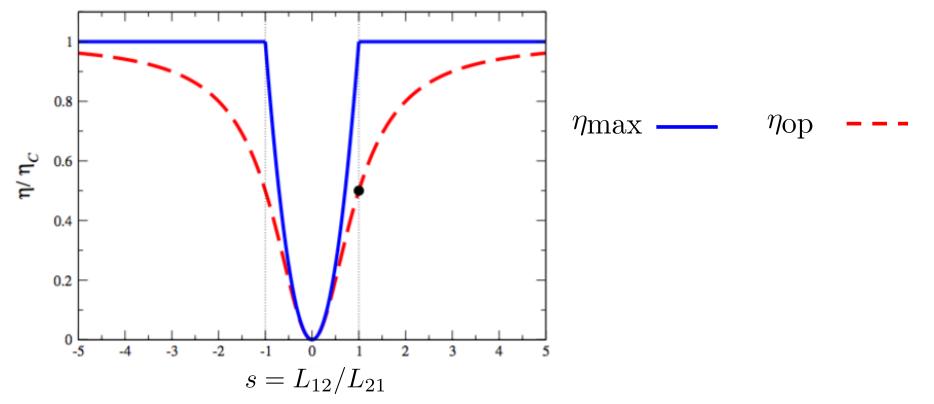
(potential grad.: $X_1 \sim \Delta \mu$) (temperature grad.: $X_2 \sim \Delta T$)

- Benenti, Saito, Casati, PRL (2011)
 - linear irreversible thermodynamics particle flux : $J_1 = L_{11}X_1 + L_{12}X_2$ (potential grad.: $X_1 \sim \Delta \mu$) heat flux : $J_2 = L_{21}X_1 + L_{22}X_2$ (temperature grad.: $X_2 \sim \Delta T$) Onsager symmetry: $L_{12} = L_{21} \Leftrightarrow$ microscopic TR symmetry [Onsager, PR(1931)]

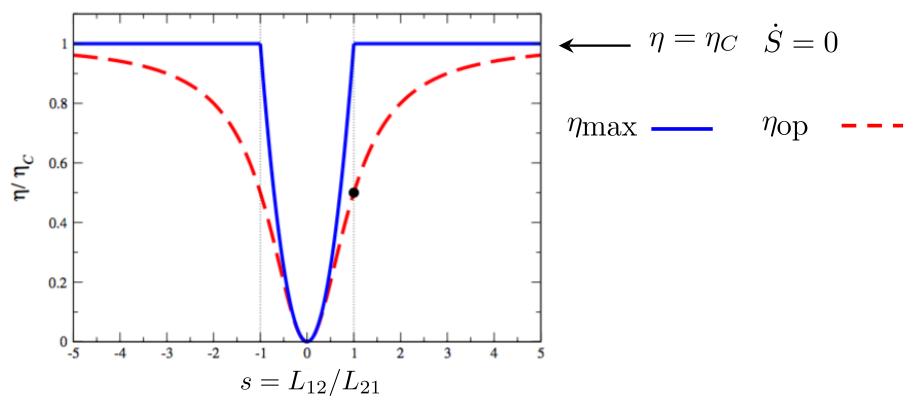
- Benenti, Saito, Casati, PRL (2011)
 - linear irreversible thermodynamics particle flux : $J_1 = L_{11}X_1 + L_{12}X_2$ (potential grad.: $X_1 \sim \Delta \mu$) heat flux : $J_2 = L_{21}X_1 + L_{22}X_2$ (temperature grad.: $X_2 \sim \Delta T$) Onsager symmetry: $L_{12} = L_{21} \iff$ microscopic TR symmetry Onsager-Casimir: $L_{12}(B) = L_{21}(-B)$ (B: magnetic field)^[Onsager, PR(1931)]

- Benenti, Saito, Casati, PRL (2011)
 - linear irreversible thermodynamics particle flux : $J_1 = L_{11}X_1 + L_{12}X_2$ (potential grad.: $X_1 \sim \Delta \mu$) heat flux : $J_2 = L_{21}X_1 + L_{22}X_2$ (temperature grad.: $X_2 \sim \Delta T$) Onsager symmetry: $L_{12} = L_{21} \iff$ microscopic TR symmetry Onsager-Casimir: $L_{12}(B) = L_{21}(-B)$ (B: magnetic field) [Onsager, PR(1931)] $L_{12}(B) \neq L_{21}(B)$

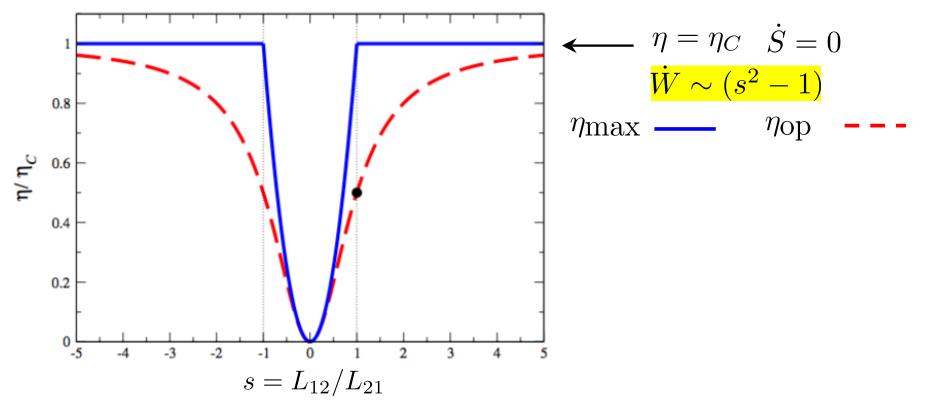
- Benenti, Saito, Casati, PRL (2011)
 - linear irreversible thermodynamics particle flux : $J_1 = L_{11}X_1 + L_{12}X_2$ (potential grad.: $X_1 \sim \Delta \mu$) heat flux : $J_2 = L_{21}X_1 + L_{22}X_2$ (temperature grad.: $X_2 \sim \Delta T$) Onsager symmetry: $L_{12} = L_{21} \iff$ microscopic TR symmetry Onsager-Casimir: $L_{12}(B) = L_{21}(-B)$ (B: magnetic field) [Onsager, PR(1931)] $L_{12}(B) \neq L_{21}(B)$



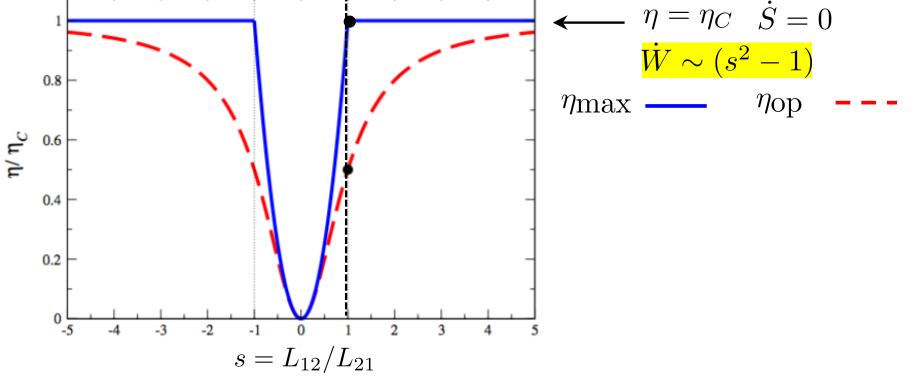
- Benenti, Saito, Casati, PRL (2011)
 - linear irreversible thermodynamics particle flux : $J_1 = L_{11}X_1 + L_{12}X_2$ (potential grad.: $X_1 \sim \Delta \mu$) heat flux : $J_2 = L_{21}X_1 + L_{22}X_2$ (temperature grad.: $X_2 \sim \Delta T$) Onsager symmetry: $L_{12} = L_{21} \iff$ microscopic TR symmetry Onsager-Casimir: $L_{12}(B) = L_{21}(-B)$ (B: magnetic field) [Onsager, PR(1931)] $L_{12}(B) \neq L_{21}(B)$



- Benenti, Saito, Casati, PRL (2011)
 - linear irreversible thermodynamics particle flux : $J_1 = L_{11}X_1 + L_{12}X_2$ (potential grad.: $X_1 \sim \Delta \mu$) heat flux : $J_2 = L_{21}X_1 + L_{22}X_2$ (temperature grad.: $X_2 \sim \Delta T$) Onsager symmetry: $L_{12} = L_{21} \iff$ microscopic TR symmetry Onsager-Casimir: $L_{12}(B) = L_{21}(-B)$ (B: magnetic field) [Onsager, PR(1931)] $L_{12}(B) \neq L_{21}(B)$



- Benenti, Saito, Casati, PRL (2011)
 - linear irreversible thermodynamics particle flux : $J_1 = L_{11}X_1 + L_{12}X_2$ (potential grad.: $X_1 \sim \Delta \mu$) heat flux : $J_2 = L_{21}X_1 + L_{22}X_2$ (temperature grad.: $X_2 \sim \Delta T$) Onsager symmetry: $L_{12} = L_{21} \iff$ microscopic TR symmetry Onsager-Casimir: $L_{12}(B) = L_{21}(-B)$ (B: magnetic field) [Onsager, PR(1931)] $L_{12}(B) \neq L_{21}(B)$ $\eta = \eta_C \quad \dot{S} = 0$



- Benenti, Saito, Casati, PRL (2011)
 - linear irreversible thermodynamics (potential grad.: $X_1 \sim \Delta \mu$) particle flux : $J_1 = L_{11}X_1 + L_{12}X_2$ (temperature grad.: $X_2 \sim \Delta T$) heat flux : $J_2 = L_{21}X_1 + L_{22}X_2$ Onsager symmetry: $L_{12} = L_{21} \iff \text{microscopic TR symmetry}$ Onsager-Casimir: $L_{12}(B) = L_{21}(-B)$ (B: magnetic field) [Onsager, PR(1931)] $L_{12}(B) \neq L_{21}(B)$ $\eta = \eta_C \quad \dot{S} = 0$ $\dot{W} \sim (s^2 - 1)$ 0.8 $\eta_{\rm max}$ — $\eta_{\rm op}$ η/η_{C} 0.6 • explicit model ? 0.4 0.2 0 -2 -3 3 -5 $s = L_{12}/L_{21}$

- Benenti, Saito, Casati, PRL (2011)
 - linear irreversible thermodynamics (potential grad.: $X_1 \sim \Delta \mu$) particle flux : $J_1 = L_{11}X_1 + L_{12}X_2$ (temperature grad.: $X_2 \sim \Delta T$) heat flux : $J_2 = L_{21}X_1 + L_{22}X_2$ Onsager symmetry: $L_{12} = L_{21} \iff \text{microscopic TR symmetry}$ Onsager-Casimir: $L_{12}(B) = L_{21}(-B)$ (B: magnetic field) [Onsager, PR(1931)] $L_{12}(B) \neq L_{21}(B)$ $\longleftarrow \eta = \eta_C \quad \dot{S} = 0$ $\dot{W} \sim (s^2 - 1)$ 0.8 η_{max} — η_{op} η/η_{C} 0.6 • explicit model ? - two-terminal transport 0.4 0.2 T_L, μ_L $T_{\rm R}, \mu_{\rm R}$ В 0 -2 -3 3 -5 $s = L_{12}/L_{21}$

- Benenti, Saito, Casati, PRL (2011)
 - linear irreversible thermodynamics (potential grad.: $X_1 \sim \Delta \mu$) particle flux : $J_1 = L_{11}X_1 + L_{12}X_2$ (temperature grad.: $X_2 \sim \Delta T$) heat flux : $J_2 = L_{21}X_1 + L_{22}X_2$ Onsager symmetry: $L_{12} = L_{21} \iff \text{microscopic TR symmetry}$ Onsager-Casimir: $L_{12}(B) = L_{21}(-B)$ (B: magnetic field) [Onsager, PR(1931)] $L_{12}(B) \neq L_{21}(B)$ $\longleftarrow \eta = \eta_C \quad \dot{S} = 0$ $\dot{W} \sim (s^2 - 1)$ 0.8 η_{max} — η_{op} η/η_c 0.6 • explicit model ? - two-terminal transport 0.4 symmetric 0.2 T_L, μ_L $T_{\rm R}, \mu_{\rm R}$ В $L_{12}(B) = L_{21}(B)$ 0 -2 -3 3 -5 $s = L_{12}/L_{21}$

- Benenti, Saito, Casati, PRL (2011)
 - linear irreversible thermodynamics (potential grad.: $X_1 \sim \Delta \mu$) particle flux : $J_1 = L_{11}X_1 + L_{12}X_2$ (temperature grad.: $X_2 \sim \Delta T$) heat flux : $J_2 = L_{21}X_1 + L_{22}X_2$ Onsager symmetry: $L_{12} = L_{21} \iff \text{microscopic TR symmetry}$ Onsager-Casimir: $L_{12}(B) = L_{21}(-B)$ (B: magnetic field) [Onsager, PR(1931)] $L_{12}(B) \neq L_{21}(B)$ $\eta = \eta_C \quad \dot{S} = 0$ $\dot{W} \sim (s^2 - 1)$ 0.8 η_{max} — η_{op} η/η_c 0.6 • explicit model ? - two-terminal transport 0.4 symmetric 0.2 T_L, μ_L $T_{\rm R}, \mu_{\rm R}$ В $L_{12}(B) = L_{21}(B)$ 0 "three"-terminal transport -2 -3 3 -5 $s = L_{12}/L_{21}$ $\mathbf{L}(B) \neq \mathbf{L}^{\mathrm{T}}(B)$

- Benenti, Saito, Casati, PRL (2011)
 - linear irreversible thermodynamics (potential grad.: $X_1 \sim \Delta \mu$) particle flux : $J_1 = L_{11}X_1 + L_{12}X_2$ (temperature grad.: $X_2 \sim \Delta T$) heat flux : $J_2 = L_{21}X_1 + L_{22}X_2$ Onsager symmetry: $L_{12} = L_{21} \iff \text{microscopic TR symmetry}$ Onsager-Casimir: $L_{12}(B) = L_{21}(-B)$ (B: magnetic field) [Onsager, PR(1931)] $L_{12}(B) \neq L_{21}(B)$ $\eta = \eta_C \quad \dot{S} = 0$ $\dot{W} \sim (s^2 - 1)$ 0.8 η_{max} — η_{op} η/η_c 0.6 • explicit model ? - two-terminal transport 0.4 symmetric 0.2 T_L, μ_L $T_{\rm R}, \mu_{\rm R}$ В $L_{12}(B) = L_{21}(B)$ 0 "three"-terminal transport -2 -3 3 -5 $s = L_{12}/L_{21}$ $\mathbf{L}(B) \neq \mathbf{L}^{\mathrm{T}}(B) \quad S > 0$

- Benenti, Saito, Casati, PRL (2011)
 - linear irreversible thermodynamics (potential grad.: $X_1 \sim \Delta \mu$) particle flux : $J_1 = L_{11}X_1 + L_{12}X_2$ (temperature grad.: $X_2 \sim \Delta T$) heat flux : $J_2 = L_{21}X_1 + L_{22}X_2$ Onsager symmetry: $L_{12} = L_{21} \iff \text{microscopic TR symmetry}$ Onsager-Casimir: $L_{12}(B) = L_{21}(-B)$ (B: magnetic field) [Onsager, PR(1931)] $L_{12}(B) \neq L_{21}(B)$ $\eta = \eta_C \quad \dot{S} = 0$ $\dot{W} \sim (s^2 - 1)$ 0.8 η_{max} — η_{op} η/η_c 0.6 • explicit model ? - two-terminal transport 0.4 symmetric 0.2 T_L, μ_L $T_{\rm R}, \mu_{\rm R}$ В $L_{12}(B) = L_{21}(B)$ 0 "three"-terminal transport -2 -3 3 -5 $s = L_{12}/L_{21}$ $\mathbf{L}(B) \neq \mathbf{L}^{\mathrm{T}}(B)$ $\dot{S} > 0$ no dream engine

•
$$\dot{W} \leq \frac{\bar{\Theta}\eta}{T_L}(\eta_C - \eta)$$
 with $\bar{\Theta} = \frac{2\bar{\gamma}\bar{K}}{\bar{T}\bar{m}}$ [Shiraisi,Saito,Tasaki, PRL(2016)]

•
$$\dot{W} \leq \frac{\Theta \eta}{T_L} (\eta_C - \eta)$$
 with $\bar{\Theta} = \frac{2\bar{\gamma}\bar{K}}{\bar{T}\bar{m}}$ [Shiraisi,Saito,Tasaki, PRL(2016)]
† No dream engine

•
$$\dot{W} \leq \frac{\Theta \eta}{T_L} (\eta_C - \eta)$$
 with $\bar{\Theta} = \frac{2\bar{\gamma}\bar{K}}{\bar{T}\bar{m}}$ [Shiraisi,Saito,Tasaki, PRL(2016)]
† No dream engine Hamiltonian system

•
$$\dot{W} \leq \frac{\bar{\Theta}\eta}{T_L}(\eta_C - \eta)$$
 with $\bar{\Theta} = \frac{2\bar{\gamma}\bar{K}}{\bar{T}\bar{m}}$ [Shiraisi,Saito,Tasaki, PRL(2016)]
† No dream engine Hamiltonian system

•
$$\dot{W} \leq \frac{\Delta_W}{2T_L\eta} (\eta_C - \eta)$$
 with $\Delta_{\dot{W}} = \lim_{t \to \infty} [\langle W^2 \rangle - \langle W \rangle^2]/t$
(thermodynamic uncertainty relation) [Pietzonka, Seifert, PRL(2018)]

•
$$\dot{W} \leq \frac{\Theta \eta}{T_L} (\eta_C - \eta)$$
 with $\bar{\Theta} = \frac{2\bar{\gamma}\bar{K}}{\bar{T}\bar{m}}$ [Shiraisi,Saito,Tasaki, PRL(2016)]
† No dream engine Hamiltonian system
• $\dot{W} \leq \frac{\Delta_{\dot{W}}}{2T_L\eta} (\eta_C - \eta)$ with $\Delta_{\dot{W}} = \lim_{t \to \infty} [\langle W^2 \rangle - \langle W \rangle^2]/t$
(thermodynamic uncertainty relation) [Pietzonka,Seifert, PRL(2018)]

overdamped dynamics

•
$$\dot{W} \leq \frac{\Theta \eta}{T_L} (\eta_C - \eta)$$
 with $\bar{\Theta} = \frac{2\bar{\gamma}\bar{K}}{\bar{T}\bar{m}}$ [Shiraisi,Saito,Tasaki, PRL(2016)]
† No dream engine Hamiltonian system
• $\dot{W} \leq \frac{\Delta_{\dot{W}}}{2T_L\eta} (\eta_C - \eta)$ with $\Delta_{\dot{W}} = \lim_{t \to \infty} [\langle W^2 \rangle - \langle W \rangle^2]/t$
(thermodynamic uncertainty relation) [Pietzonka,Seifert, PRL(2018)]
overdamped dynamics
• $\dot{W} \leq \frac{\chi\eta}{T_L} (\eta_C - \eta)$ with $\chi = 2T_H\gamma_H K_H$ [Dechant,Sasa, PRE(2018)]

(entropic bound on currents)

•
$$\dot{W} \leq \frac{\Theta \eta}{T_L} (\eta_C - \eta)$$
 with $\bar{\Theta} = \frac{2\bar{\gamma}\bar{K}}{\bar{T}\bar{m}}$ [Shiraisi,Saito,Tasaki, PRL(2016)]
+ No dream engine Hamiltonian system
• $\dot{W} \leq \frac{\Delta_{\dot{W}}}{2T_L\eta} (\eta_C - \eta)$ with $\Delta_{\dot{W}} = \lim_{t \to \infty} [\langle W^2 \rangle - \langle W \rangle^2]/t$
(thermodynamic uncertainty relation) [Pietzonka,Seifert, PRL(2018)]
overdamped dynamics
• $\dot{W} \leq \frac{\chi\eta}{T_L} (\eta_C - \eta)$ with $\chi = 2T_H\gamma_H K_H$ [Dechant,Sasa, PRE(2018)]

(entropic bound on currents)

underdamped Langevin dynamics with B field

•
$$\dot{W} \leq \frac{\bar{\Theta}\eta}{T_L}(\eta_C - \eta)$$
 with $\bar{\Theta} = \frac{2\bar{\gamma}\bar{K}}{\bar{T}\bar{m}}$ [Shiraisi,Saito,Tasaki, PRL(2016)]
 † No dream engine Hamiltonian system
• $\dot{W} \leq \frac{\Delta_{\dot{W}}}{2T_L\eta}(\eta_C - \eta)$ with $\Delta_{\dot{W}} = \lim_{t \to \infty} [\langle W^2 \rangle - \langle W \rangle^2]/t$
(thermodynamic uncertainty relation) [Pietzonka,Seifert, PRL(2018)]
 overdamped dynamics
• $\dot{W} \leq \frac{\chi\eta}{T_L}(\eta_C - \eta)$ with $\chi = 2T_H\gamma_H K_H$ [Dechant,Sasa, PRE(2018)]
(entropic bound on currents) underdamped Langevin dynamics with B field

★ two-terminal engine with broken Onsager symmetry (1) impossible ?

•
$$\dot{W} \leq \frac{\bar{\Theta}\eta}{T_L}(\eta_C - \eta)$$
 with $\bar{\Theta} = \frac{2\bar{\gamma}\bar{K}}{\bar{T}\bar{m}}$ [Shiraisi,Saito,Tasaki, PRL(2016)]
† No dream engine Hamiltonian system
• $\dot{W} \leq \frac{\Delta_{\dot{W}}}{2T_L\eta}(\eta_C - \eta)$ with $\Delta_{\dot{W}} = \lim_{t \to \infty} [\langle W^2 \rangle - \langle W \rangle^2]/t$
(thermodynamic uncertainty relation) [Pietzonka,Seifert, PRL(2018)]
overdamped dynamics
• $\dot{W} \leq \frac{\chi\eta}{T_L}(\eta_C - \eta)$ with $\chi = 2T_H\gamma_H K_H$ [Dechant,Sasa, PRE(2018)]
(entropic bound on currents) underdamped Langevin dynamics with B field

★ two-terminal engine with broken Onsager symmetry
 (1) impossible ?
 (2) possible and YES dream engine?

•
$$\dot{W} \leq \frac{\bar{\Theta}\eta}{T_L}(\eta_C - \eta)$$
 with $\bar{\Theta} = \frac{2\bar{\gamma}\bar{K}}{\bar{T}\bar{m}}$ [Shiraisi,Saito,Tasaki, PRL(2016)]
+ No dream engine Hamiltonian system
• $\dot{W} \leq \frac{\Delta_{\dot{W}}}{2T_L\eta}(\eta_C - \eta)$ with $\Delta_{\dot{W}} = \lim_{t \to \infty} [\langle W^2 \rangle - \langle W \rangle^2]/t$
(thermodynamic uncertainty relation) [Pietzonka,Seifert, PRL(2018)]
overdamped dynamics
• $\dot{W} \leq \frac{\chi\eta}{T_L}(\eta_C - \eta)$ with $\chi = 2T_H\gamma_H K_H$ [Dechant,Sasa, PRE(2018)]
(entropic bound on currents) underdamped Langevin dynamics with B field

* two-terminal engine with broken Onsager symmetry
(1) impossible ?
(2) possible and YES dream engine?
(3) possible and still NO dream engine due to other reasons ?

•
$$\dot{W} \leq \frac{\bar{\Theta}\eta}{T_L}(\eta_C - \eta)$$
 with $\bar{\Theta} = \frac{2\bar{\gamma}\bar{K}}{\bar{T}\bar{m}}$ [Shiraisi,Saito,Tasaki, PRL(2016)]
+ No dream engine Hamiltonian system
• $\dot{W} \leq \frac{\Delta_{\dot{W}}}{2T_L\eta}(\eta_C - \eta)$ with $\Delta_{\dot{W}} = \lim_{t \to \infty} [\langle W^2 \rangle - \langle W \rangle^2]/t$
(thermodynamic uncertainty relation) [Pietzonka,Seifert, PRL(2018)]
overdamped dynamics
• $\dot{W} \leq \frac{\chi\eta}{T_L}(\eta_C - \eta)$ with $\chi = 2T_H\gamma_H K_H$ [Dechant,Sasa, PRE(2018)]
(entropic bound on currents) underdamped Langevin dynamics with B field

★ two-terminal engine with broken Onsager symmetry
 (1) impossible ?
 (2) possible and YES dream engine?

(3) possible and still NO dream engine due to other reasons?

¶ underdamped Brownian dynamics

 $m\dot{\mathbf{v}} = -\mathsf{K}\mathbf{x} + \mathsf{F}_{nc}\mathbf{x} + \mathsf{B}\mathbf{v} - \mathsf{\Gamma}\mathbf{v} + \boldsymbol{\xi}$

¶ underdamped Brownian dynamics

 $m\dot{\mathbf{v}} = -\mathbf{K}\mathbf{x} + \mathbf{F}_{nc}\mathbf{x} + \mathbf{B}\mathbf{v} - \mathbf{\Gamma}\mathbf{v} + \boldsymbol{\xi} \qquad \langle \xi_i(t)\xi_j(t')\rangle = 2\gamma T_i\delta(t-t')$

¶ underdamped Brownian dynamics

 $m\dot{\mathbf{v}} = -\mathsf{K}\mathbf{x} + \mathsf{F}_{nc}\mathbf{x} + \mathsf{B}\mathbf{v} - \mathsf{\Gamma}\mathbf{v} + \boldsymbol{\xi} \qquad \langle \xi_i(t)\xi_j(t')\rangle = 2\gamma T_i\delta(t-t')$

¶ 2D (2-particle) system

$$T_1$$
 T_2

underdamped Brownian dynamics

 $m\dot{\mathbf{v}} = -\mathbf{K}\mathbf{x} + \mathbf{F}_{nc}\mathbf{x} + \mathbf{B}\mathbf{v} - \mathbf{\Gamma}\mathbf{v} + \boldsymbol{\xi} \qquad \langle \xi_i(t)\xi_i(t')\rangle = 2\gamma T_i\delta(t-t')$

 \P 2D (2-particle) system

$$\mathsf{K} = \left(\begin{array}{cc} k & 0\\ 0 & k \end{array}\right)$$
harmonic

underdamped Brownian dynamics

 $m\dot{\mathbf{v}} = -\mathbf{K}\mathbf{x} + \mathbf{F}_{nc}\mathbf{x} + \mathbf{B}\mathbf{v} - \mathbf{\Gamma}\mathbf{v} + \boldsymbol{\xi} \qquad \langle \xi_i(t)\xi_i(t')\rangle = 2\gamma T_i\delta(t-t')$

 \P 2D (2-particle) system $\mathsf{F}_{nc} = \left(\begin{array}{cc} 0 & \epsilon \\ \delta & 0 \end{array}\right)$ $\mathsf{K} = \left(\begin{array}{cc} k & 0\\ 0 & k \end{array}\right)$

 $T_1 \quad \bigcirc \quad T_2 \quad T_2$

$$\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \quad \mathsf{F}_{nc} = \begin{pmatrix} 0 & \epsilon \\ \delta & 0 \end{pmatrix}$$
 harmonic torque

¶ underdamped Brownian dynamics

 $m\dot{\mathbf{v}} = -\mathsf{K}\mathbf{x} + \mathsf{F}_{nc}\mathbf{x} + \mathsf{B}\mathbf{v} - \mathsf{\Gamma}\mathbf{v} + \boldsymbol{\xi}$

¶ 2D (2-particle) system

$$\langle \xi_i(t)\xi_j(t')\rangle = 2\gamma T_i\delta(t-t')$$

$$T_1 o o T_2$$

$$\mathsf{K} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \quad \mathsf{F}_{nc} = \begin{pmatrix} 0 & \epsilon \\ \delta & 0 \end{pmatrix} \quad \mathsf{B} = \begin{pmatrix} 0 & B \\ -B & 0 \end{pmatrix}$$

harmonic torque Lorentz

¶ underdamped Brownian dynamics

¶ underdamped Brownian dynamics

• exactly solvable

¶ underdamped Brownian dynamics

• exactly solvable

• $L_{12}(B) = L_{21}(-B)$

I underdamped Brownian dynamics
$$m\dot{\mathbf{v}} = -\mathbf{K}\mathbf{x} + \mathbf{F}_{nc}\mathbf{x} + \mathbf{B}\mathbf{v} - \mathbf{\Gamma}\mathbf{v} + \boldsymbol{\xi} \qquad \langle \xi_i(t)\xi_j(t')\rangle = 2\gamma T_i\delta(t - t)$$

$$\mathbb{I}_1 \quad \mathbf{O}_1 - \cdots \quad \mathbf{O}_1 \quad \mathbf{I}_2$$

$$\mathbb{I}_1 \quad \mathbf{O}_1 - \cdots \quad \mathbf{O}_1 \quad \mathbf{I}_2$$

$$\mathbb{I}_1 \quad \mathbf{O}_1 - \cdots \quad \mathbf{O}_1 \quad \mathbf{I}_2$$

$$\mathbb{I}_1 \quad \mathbf{O}_1 - \cdots \quad \mathbf{O}_1 \quad \mathbf{I}_2$$

$$\mathbb{I}_1 \quad \mathbf{O}_1 - \cdots \quad \mathbf{O}_1 \quad \mathbf{I}_2$$

$$\mathbb{I}_1 \quad \mathbf{O}_1 - \cdots \quad \mathbf{O}_1 \quad \mathbf{I}_2$$

$$\mathbb{I}_1 \quad \mathbf{O}_1 - \cdots \quad \mathbf{O}_1 \quad \mathbf{I}_2$$

$$\mathbb{I}_1 \quad \mathbf{O}_1 - \cdots \quad \mathbf{O}_1 \quad \mathbf{I}_2$$

$$\mathbb{I}_1 \quad \mathbf{O}_1 - \cdots \quad \mathbf{O}_1 \quad \mathbf{I}_2$$

$$\mathbb{I}_1 \quad \mathbf{O}_1 - \cdots \quad \mathbf{O}_1 \quad \mathbf{I}_2$$

$$\mathbb{I}_1 \quad \mathbf{O}_1 - \cdots \quad \mathbf{O}_1 \quad \mathbf{I}_2$$

$$\mathbb{I}_1 \quad \mathbf{O}_1 - \cdots \quad \mathbf{O}_1 \quad \mathbf{I}_2$$

$$\mathbb{I}_1 \quad \mathbf{O}_1 - \cdots \quad \mathbf{O}_1 \quad \mathbf{I}_2$$

$$\mathbb{I}_1 \quad \mathbf{O}_1 - \cdots \quad \mathbf{O}_1 \quad \mathbf{I}_2$$

$$\mathbb{I}_1 \quad \mathbf{O}_1 = (\mathbf{O}_1 \quad \mathbf{O}_1 \quad$$

• exactly solvable

• $L_{12}(B) = L_{21}(-B) = L_{21}(B) \Rightarrow$ Onsager symmetry again!

¶ underdamped Brownian dynamics
$$m\dot{\mathbf{v}} = -\mathbf{K}\mathbf{x} + \mathbf{F}_{nc}\mathbf{x} + \mathbf{B}\mathbf{v} - \Gamma\mathbf{v} + \boldsymbol{\xi} \qquad \langle \xi_i(t)\xi_j(t')\rangle = 2\gamma T_i\delta(t - t)$$
¶ 2D (2-particle) system
$$\mathbb{T}_1 \bigcirc -\cdots \bigcirc \mathbb{T}_2$$

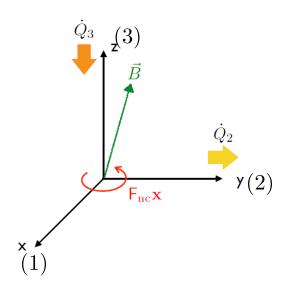
$$\mathbb{K} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \quad \mathbb{F}_{nc} = \begin{pmatrix} 0 & \epsilon \\ \delta & 0 \end{pmatrix} \quad \mathbb{B} = \begin{pmatrix} 0 & B \\ -B & 0 \end{pmatrix} \quad \Gamma = \begin{pmatrix} \gamma & 0 \\ 0 & \gamma \end{pmatrix}$$
harmonic
torque
Lorentz

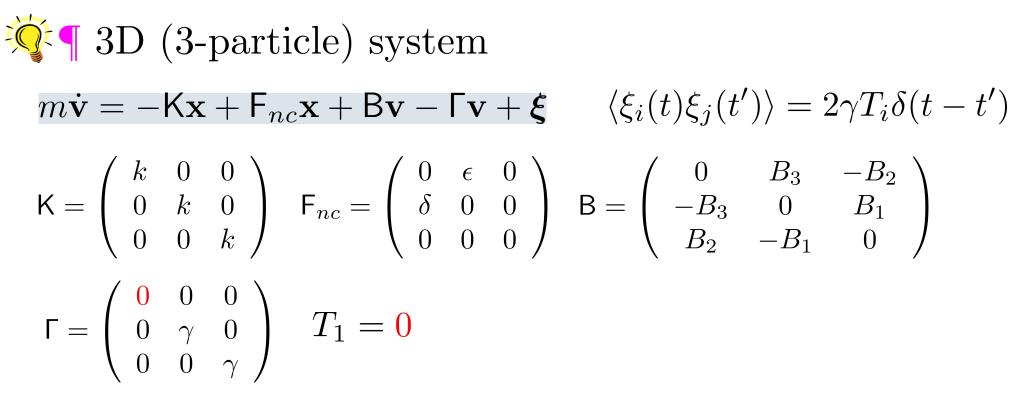
• exactly solvable

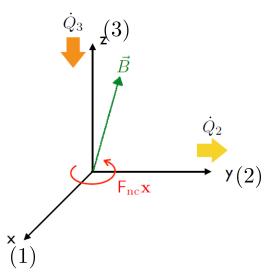
• $L_{12}(B) = L_{21}(-B) = L_{21}(B) \Rightarrow$ Onsager symmetry again! - No dream engine [Chun,Um,HP(2018)]

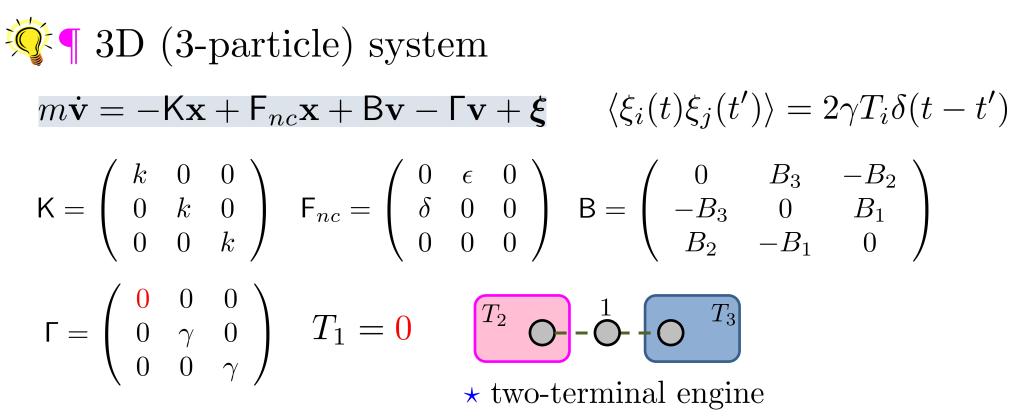
$$\mathbf{\hat{v}} \leq \mathbf{3D} \text{ (3-particle) system}$$
$$m\mathbf{\dot{v}} = -\mathbf{K}\mathbf{x} + \mathbf{F}_{nc}\mathbf{x} + \mathbf{B}\mathbf{v} - \mathbf{\Gamma}\mathbf{v} + \boldsymbol{\xi} \qquad \langle \xi_i(t)\xi_j(t')\rangle = 2\gamma T_i\delta(t-t')$$

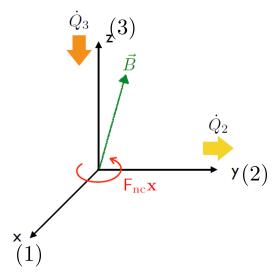
$$\mathbf{\hat{V}} = \mathbf{\hat{S}} = \mathbf{\hat{$$

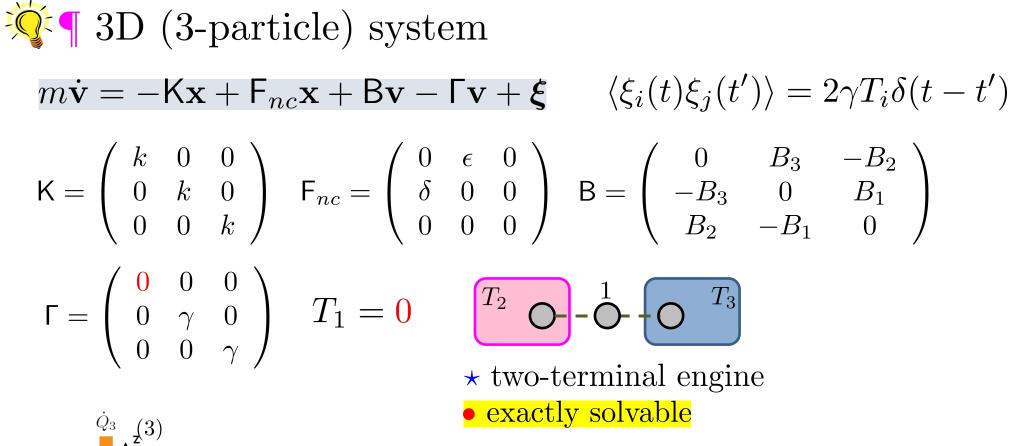


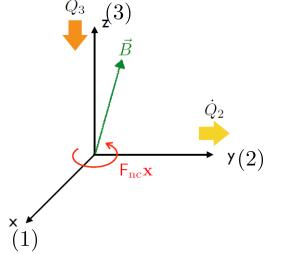


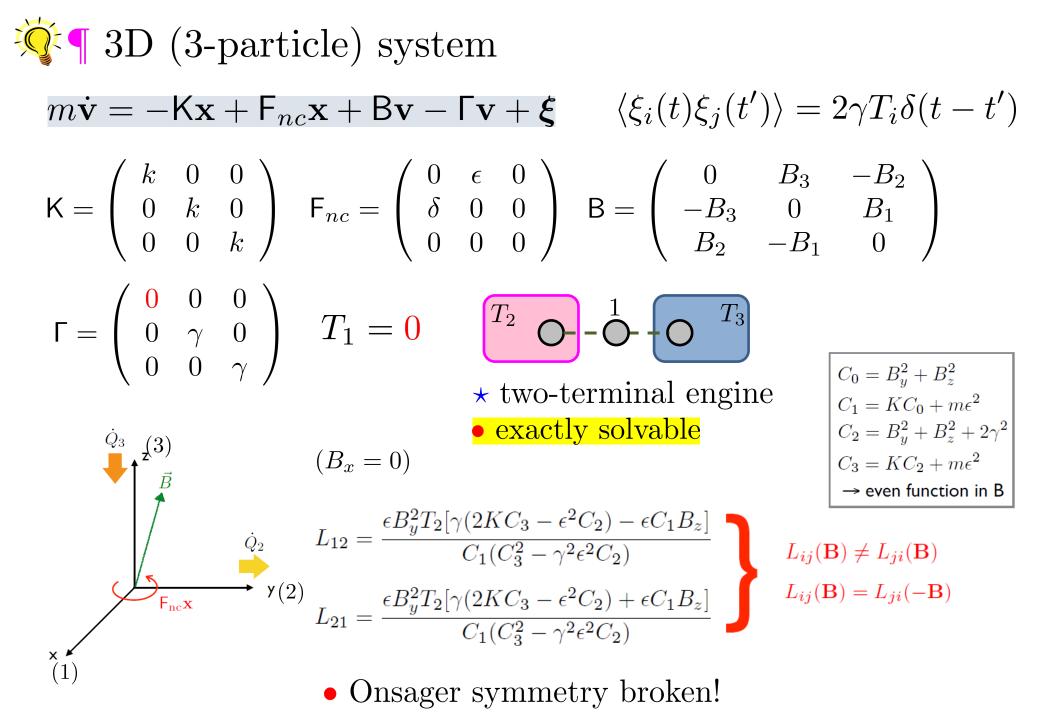












• Onsager symmetry broken!

– dream engine comes true ??

- Onsager symmetry broken!
 - dream engine comes true ??

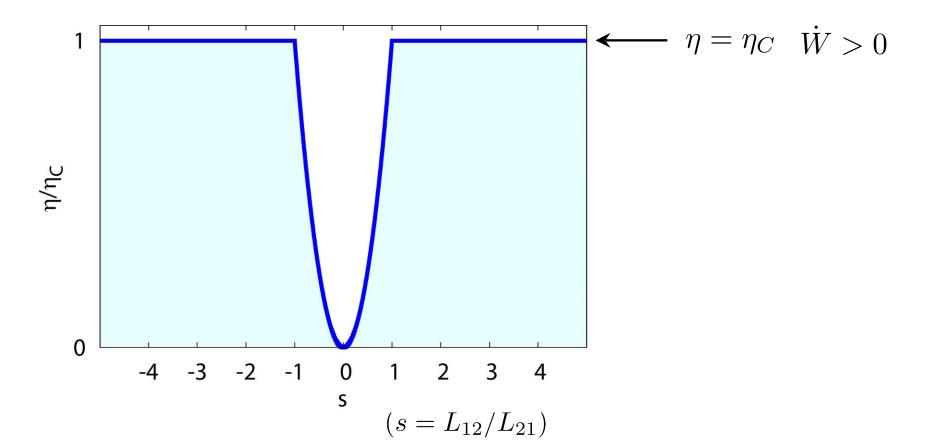
• stability of the steady state ?

 $m\dot{\mathbf{v}} = -\mathsf{K}\mathbf{x} + \mathsf{F}_{nc}\mathbf{x} + \mathsf{B}\mathbf{v} - \mathsf{\Gamma}\mathbf{v} + \boldsymbol{\xi}$

- Onsager symmetry broken!
 - dream engine comes true ??

• stability of the steady state ?

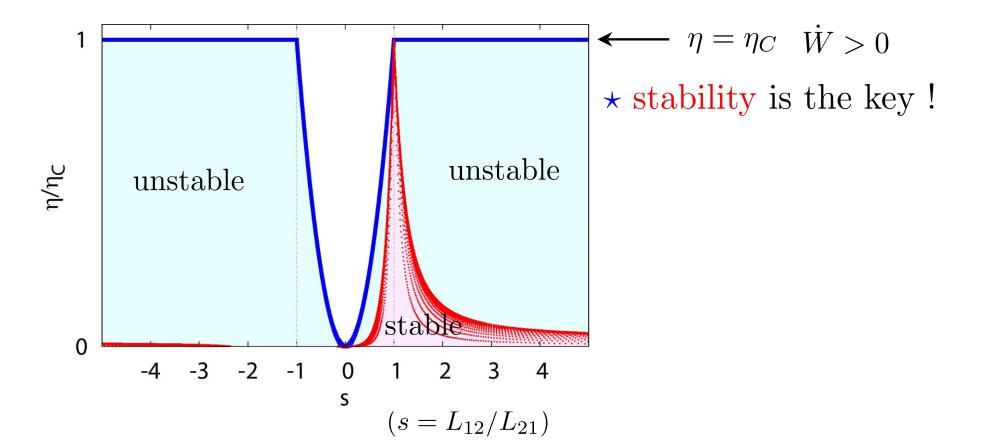
 $m\dot{\mathbf{v}} = -\mathsf{K}\mathbf{x} + \mathsf{F}_{nc}\mathbf{x} + \mathsf{B}\mathbf{v} - \mathsf{\Gamma}\mathbf{v} + \boldsymbol{\xi}$



- Onsager symmetry broken!
 - dream engine comes true ??

• stability of the steady state ?

 $m\dot{\mathbf{v}} = -\mathsf{K}\mathbf{x} + \mathsf{F}_{nc}\mathbf{x} + \mathsf{B}\mathbf{v} - \mathsf{\Gamma}\mathbf{v} + \boldsymbol{\xi}$

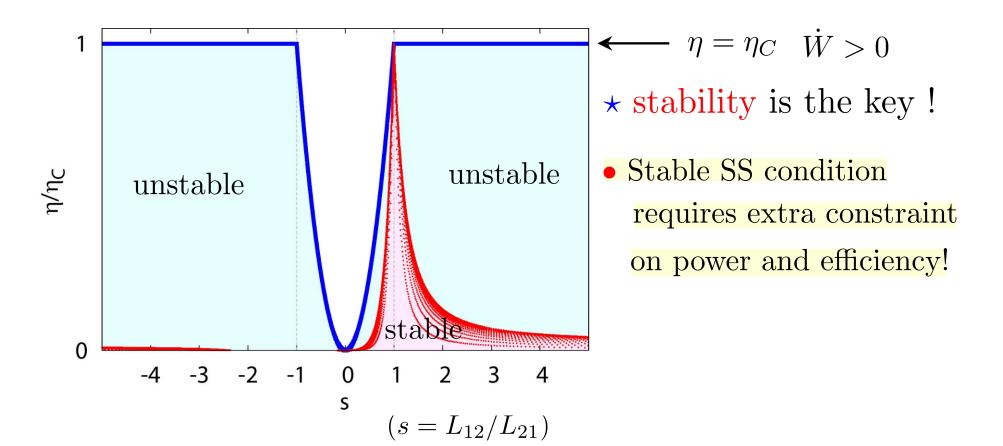


• Onsager symmetry broken!

– dream engine comes true ??

• stability of the steady state ?

 $m\dot{\mathbf{v}} = -\mathsf{K}\mathbf{x} + \mathsf{F}_{nc}\mathbf{x} + \mathsf{B}\mathbf{v} - \mathsf{\Gamma}\mathbf{v} + \boldsymbol{\xi}$

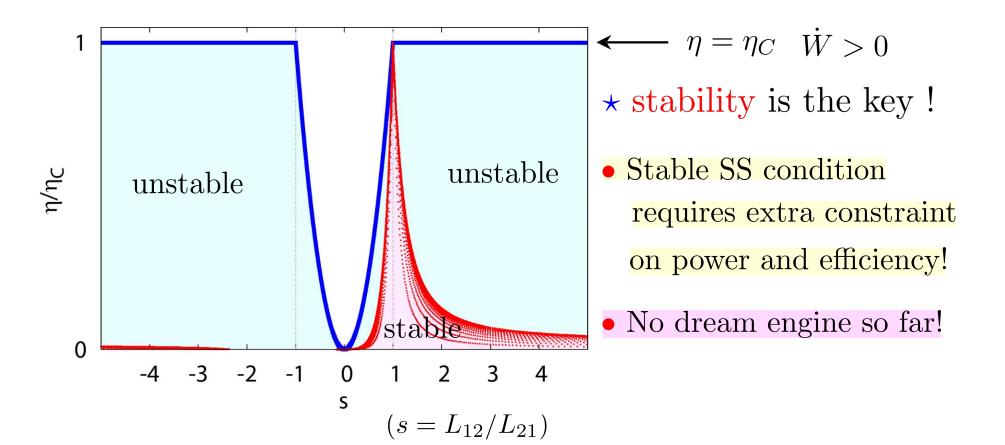


• Onsager symmetry broken!

– dream engine comes true ??

• stability of the steady state ?

 $m\dot{\mathbf{v}} = -\mathsf{K}\mathbf{x} + \mathsf{F}_{nc}\mathbf{x} + \mathsf{B}\mathbf{v} - \mathsf{\Gamma}\mathbf{v} + \boldsymbol{\xi}$



 \star a two-terminal engine with broken Onsager symmetry

 \star stability requirement makes it impossible.

- \star a two-terminal engine with broken Onsager symmetry
- \star stability requirement makes it impossible.
- ★ trade-off relations between power and efficiency works even in the presence of magnetic field (broken TRS)

Impossible !!

- \star a two-terminal engine with broken Onsager symmetry
- \star stability requirement makes it impossible.
- ★ trade-off relations between power and efficiency works even in the presence of magnetic field (broken TRS)

Impossible !!

 \star velocity-dependent force (broken TRS) ?

- \star a two-terminal engine with broken Onsager symmetry
- \star stability requirement makes it impossible.
- ★ trade-off relations between power and efficiency works even in the presence of magnetic field (broken TRS)

Impossible !!

★ velocity-dependent force (broken TRS) ? [active reservoir engine, Sysphus cooling, cold damping, ...]

- \star a two-terminal engine with broken Onsager symmetry
- \star stability requirement makes it impossible.
- ★ trade-off relations between power and efficiency works even in the presence of magnetic field (broken TRS)

Impossible !!

* velocity-dependent force (broken TRS) ?
 [active reservoir engine, Sysphus cooling, cold damping, ...]
 Jae Sung Lee [Thursday 11:00]