Scalar Mesons and the Fragmented Glueball University of Bonn

01

Π

1111

ITP Hadron Physics Seminar

Eberhard Klempt

Π .

.;

m

1

Beijing, 2021, April 19th

I

T

I

Scalar mesons and the fragmented glueball

- 1. The Standard Model
- 2. How to seacrh for glueballs
- 3. Coupled channel analysis
- 4. Results and interpretation
- 5. Summary

ITP Hadron Physics Seminar

Beijing, 2021, April 19th

- 1. The Standard Model
- 1.1 Particles ...
 - 1. Fermions: Six quarks (in three colours) and six leptons
 - 2. Bosons: Eight gluons, three vector bosons, one photon
 - 3. The Higgs boson provides the mass

1.2. and interactions

◆ロシ ◆御シ ◆注シ ◆注シ 二注

1.3 Glueballs

Analogous to photon exchange of OED

3-gluon vertex

The self-interaction between gluons leads to the prediction of glueballs¹

0++	$1710{\pm}50{\pm}$ 80 MeV
2 ⁺⁺	2390 \pm 30 \pm 120 MeV
0-+	2560 \pm 35 \pm 120 MeV

Y. Chen et al. "Glueball spectrum and matrix elements on anisotropic lattices," Phys. Rev. D 73, 014516 (2006).

0 ++	1980 MeV
2 ⁺⁺	2420 MeV
0 -+	2220 MeV

² A. P. Szczepaniak and E. S. Swanson, "The Low lying glueball spectrum," Phys. Lett. B 577, 61-66 (2003).

³ M. Q. Huber, C. S. Fischer and H. Sanchis-Alepuz, "Spectrum of scalar and pseudoscalar glueballs from functional methods," Eur. Phys. J. C 80, no.11, 1077 (2020).

The scalar glueball is expected in the 1700 to 2000 MeV mass range

2. How to search for glueballs

2.1 Radiative J/ψ decays (MARKIII, DM2)

(日) (四) (王) (王) (王) (王)

2.2 *NN* annihilation (Crystal Barrel at LEAR)

Three new scalar mesons: *f*₀(1370), *f*₀(1500), *a*₀(1475) !

2.3 Central production (WA102 experiment at SPS)

Three scalar isoscalar mesons: $f_0(1370), f_0(1500), f_0(1710)$!

2.4 A global view of scalar mesons

Wide "background amplitude" could be the glueball¹.

¹ P. Minkowski and W. Ochs, "Identification of the glueballs and the scalar meson nonet of lowest mass," Eur. Phys. J. C 9, 283-312 (1999).

Or it could be the superposition of a series of SU(3) singlet scalar mesons superimposed by "narrow" SU(3) octet states².

² E. Klempt and A. Zaitsev, "Glueballs, Hybrids, Multiquarks. Experimental facts versus QCD inspired concepts," Phys. Rept. 454, 1-202 (2007). 2.5 Supernumerosity

{ $a_0(1475), K_0^*(1430), f_0(1710), f_0(1370)$ } $f_0(1500)$ similar: { $a_2(1320), K_2^*(1430), f_2'(1525), f_2(1270)$ }

> Two scalar isoscalar states expected, three found! Two $q\bar{q}$ and one glueball with mixing.

 $\begin{array}{c} \hline \text{Mixing matrix}^{1}:\\ \begin{pmatrix} |f_{0}(1710)\rangle\\ |f_{0}(1500)\rangle\\ |f_{0}(1370)\rangle \end{pmatrix} = U \begin{pmatrix} |s\bar{s}\rangle\\ |G\rangle\\ |n\bar{n}\rangle \end{pmatrix} = \begin{pmatrix} x_{1} & y_{1} & z_{1}\\ x_{2} & y_{2} & z_{2}\\ x_{3} & y_{3} & z_{3} \end{pmatrix} \begin{pmatrix} |s\bar{s}\rangle\\ |G\rangle\\ |n\bar{n}\rangle \end{pmatrix}.$

1 C. Amsler and F. E. Close, "Evidence for a scalar glueball," Phys. Lett. B 353, 385 (1995). C. Amsler and F. E. Close, "Is f_0 (1500) a scalar glueball?," Phys. Rev. D 53, 295 (1996).

Large number of follow-up papers

2.6 Decays of scalar mesons

$$\begin{aligned} \frac{\Gamma(f_0(1370) \to \eta\eta)}{\Gamma(f_0(1370) \to \pi\pi)} &= 0.02 \pm 0.02 \\ \frac{\Gamma(f_0(1370) \to K\bar{K})}{\Gamma(f_0(1370) \to \pi\pi)} &= 0.00 - 1.00 \\ \frac{\Gamma(f_0(1500) \to \eta\eta')}{\Gamma(f_0(1500) \to \eta\eta)} &= 0.84 \pm 0.23 \\ \frac{\Gamma(f_0(1500) \to \eta\eta)}{\Gamma(f_0(1500) \to \pi^0\pi^0)} &= 0.23 \pm 0.04 \\ \frac{\Gamma(f_0(1500) \to K\bar{K})}{\Gamma(f_0(1500) \to \pi\pi)} &= 0.19 \pm 0.07. \\ \frac{\Gamma(f_0(1710) \to K\bar{K})}{\Gamma(f_0(1710) \to \pi\pi)} &= 2.56 \pm 0.92 \end{aligned}$$

▲口→ ▲御→ ▲注→ ▲注→ 三注

A. H. Fariborz, Phys. Rev. D 74, 054030 (2006).

D. V. Bugg, [arXiv:hep-ph/0603018 [hep-ph]].

Scalar mesons could have a large tetraquark component!

3. Coupled channel analysis

A. V. Sarantsev, I. Denisenko, U. Thoma and E. Klempt,

"Scalar isoscalar mesons and the scalar glueball from radiative J/ψ decays,"

Phys. Lett. B 816, 136227 (2021).

J/ψ	\rightarrow	$\gamma \pi^0 \pi^0$	K _S K _S	$\gamma\eta\eta^\prime$	$\gamma\omega\phi$	BESIII
$\chi^2/\textit{N};\textit{N}$		1.28; 167	1.21, 121	0.8; 21	0.2; 17	
pр	\rightarrow	$3\pi^0$	$\pi^0\pi^+\pi^-$	$2\pi^0\eta$	$\pi^0\eta\eta$	CB (liq. H ₂)
$\chi^2/N, N$		1.40; 7110	1.24, 1334	1.24, 1334 1.23; 3475 1.28; 3595		
pр	\rightarrow	$3\pi^0$		$2\pi^0\eta$	$\pi^0\eta\eta$	CB (gas. H ₂)
$\chi^2/N, N$		1.38; 4891		1.24; 3631	1.32; 1182	
pр	\rightarrow $K_L K_L \pi^0$ k		$K^+K^-\pi^0$	$K_{S}K^{\pm}\pi^{\mp}$	$K_L K^{\pm} \pi^{\mp}$	CB (liq. H ₂)
$\chi^2/N, N$		1.08; 394	0.97; 521	2.13; 771	0.76; 737	
рn	\rightarrow	$\pi^+\pi^-\pi^-$	$\pi^0\pi^0\pi^-$	$K_SK^-\pi^0$	$K_sK_S\pi^-$	CB (liq. D ₂)
$\chi^2/N, N$		1.39; 823	1.57; 825	1.33; 378	1.62; 396	
$\pi^+\pi^-$	$\pi^+\pi^- \rightarrow \pi^+\pi^-$		$\pi^0\pi^0$	$\eta\eta$	$\eta\eta'$	K ⁺ K ⁻
$\chi^2/N, N$		1.32; 845	0.89; 110	0.67; 15	0.23; 9	1.06; 35
		CERN-Munich		GAMS		BNL

3.1 Data from BESIII

M. Ablikim et al. [BESIII],"Design and Construction of the BESIII Detector," Nucl. Instrum. Meth. A 614, 345-399 (2010).

V. V. Anashin et al. "Final analysis of KEDR data on J/ψ and $\psi(2S)$ masses," Phys. Lett. B 749, 50-56 (2015).

$$J/\psi
ightarrow \gamma ~~\pi^0\pi^0$$
 and $K_{s}K_{s}$

$\eta\eta$ and $\omega\phi$

M. Ablikim *et al.* [BESIII Collaboration], "Amplitude analysis of the $\pi^0 \pi^0$ system produced in radiative J/ψ decays," Phys. Rev. D 92 no.5, 052003 (2015).

M. Ablikim et al. [BESIII Collaboration], "Amplitude analysis of the $K_S K_S$ system produced in radiative J/ψ decays," Phys. Rev. D 98 no.7, 072003 (2018).

M. Ablikim et al. [BESIII Collaboration], "Partial wave analysis of $J/\psi
ightarrow \gamma\eta\eta$,"

Phys. Rev. D 87, no. 9, 092009 (2013).

M. Ablikim et al. [[BESIII Collaboration], "Study of the near-threshold $\omega\phi$ mass enhancement in doubly OZI-suppressed" $J/\psi \rightarrow \gamma \omega \phi$ decays," Phys. Rev. D 87 no.3, 032008 (2013).

Partial waves from $J/\psi ightarrow \pi^0\pi^0$ in slices of the $2\pi^0$ mass

M. Ablikim *et al.* [BESIII], and A.P. Szczepaniak, P. Guo, "Amplitude analysis of the $\pi^0 \pi^0$ system produced in radiative J/ψ decays," Phys. Rev. D 92, no.5, 052003 (2015).

3.2 The Crystal Barrel data

··· and further Dalitz plots.

3.3 The CERN-Munich data on $\pi\pi \to \pi\pi$ elastic scattering

The CERN-Munich data have different PWA solutions. The ambiguity is resolved by the GAMS data on $\pi^- p \rightarrow \pi^0 \pi^0 n$ (at 200 GeV/c pion momenta).

3.4 GAMS and BNL data on pion-induced reactions

GAMS: D. Alde *et al.*, "Study of the $\pi^0 \pi^0$ system with the GAMS-4000 spectrometer at 100 GeV/c," Eur. Phys. J. A 3, 361 (1998).

BNL: S. J. Lindenbaum and R. S. Longacre, "Coupled channel analysis of $J^{PC} = 0^{++}$ and 2^{++} isoscalar mesons with masses below 2 GeV," Phys. Lett. B 274, 492 (1992).

4. Results and interpretation

Pole masses and widths (in MeV) of scalar mesons. The RPP values are listed as small numbers for comparison.

Name	<i>f</i> ₀ (500)	<i>f</i> ₀ (1370)	<i>f</i> ₀ (1710)	<i>f</i> ₀ (2020)	<i>f</i> ₀ (2200)
М	410±20 ₄00→550	1370 <u>+</u> 40 1200→1500	1700±18 1704±12	1925±25	2200±25 2187±14
Г	480±30 ₄00→700	390±40 100→500	255±25 123±18	320±35 442±60	150±30 ~ 200
Name	<i>f</i> ₀ (980)	<i>f</i> ₀ (1500)	<i>f</i> ₀ (1770)	<i>f</i> ₀ (2100)	f ₀ (2330)
М	1014±8 990±20	$1483 \pm 15_{_{1506 \pm 6}}$	1765±15	2075±20 2086 ⁺²⁰ -24	2340±20 ~2330
Г	71±10 ₁0→100	116±12 112±9	180±20	$260{\pm}25_{_{284}{+60}_{-32}}$	165±25 250±20

4.1 The low-mass scalar mesons

 $f_0(980) = \cos \theta \ f_0^8 - \sin \theta \ f_0^{1}$

Tetraquarks

The energy to excite $q\bar{q}$ to L = 1 is approximately equivalent to the creation of a new $q\bar{q}$ pair.¹

¹ R. L. Jaffe, "Multi-Quark Hadrons. 1. The Phenomenology of (2Q2Q) Mesons," Phys. Rev. D 15, 267 (1977).

Scalar mesons are ideally mixed

with $f_0(500) = u\bar{u}d\bar{d}$ and

 $f_0(980) = \frac{1}{\sqrt{2}}(u\bar{u} + d\bar{d})s\bar{s}$

Dynamical generated scalar mesons¹

¹ J. D. Weinstein and N. Isgur, "K K Molecules," Phys. Rev. D 41, 2236 (1990).

Scalar mesons are dynamically generated with $f_0(500) = \pi\pi$ and $f_0(980) = K\bar{K}$

The $f_0(500) - f_0(980)$ mixing angle

	g(f ₀ (500	$) \rightarrow \pi \pi$	$) = -\frac{\sqrt{3}}{4}c$	os θ g 1 –	$-\sqrt{\frac{3}{10}}$ sin	θ g 8,
	g(f ₀ (500	$) \rightarrow K\bar{K}$	$=-\frac{1}{2}\cos(\frac{1}{2})$	os θ g 1 +	$-\frac{1}{\sqrt{10}}\sin$	θ g 8 ,
!	g(f ₀ (500)	$ ightarrow \eta_8 \eta_8$	$= \frac{1}{4} \cos \theta$	εθ g 1 –	$-\frac{1}{\sqrt{10}}\sin$	θ g ₈ ,
	g(f ₀ (980	$) \rightarrow \pi \pi$) $=\frac{\sqrt{3}}{4}$ sin	n	$-\sqrt{\frac{3}{10}}$ co	sθ g 8 ,
	g(f ₀ (980)	$) \rightarrow K\bar{K}$) $=\frac{1}{2}\sin(1)$	θ g 1 +	$-\frac{1}{\sqrt{10}}\cos \theta$	sθ <mark>g</mark> 8,
	g(f ₀ (980)	$ ightarrow \eta_8 \eta_8$	$=-\frac{1}{4}\sin^2$	n <i>θ <mark>g</mark>1 –</i>	$-\frac{1}{\sqrt{10}}\cos \frac{1}{\sqrt{10}}$	sθ <mark>g</mark> 8 .
ſ	(19 ± 5)	° (39±6)° (17 ± 3)°	(1 ⁺¹⁵ ₋₉)°	(12±4)°	(32±3) ^o
	[1]	[2]	[3]	[4]	[5]	[6]
Ī	≈10°	(3±8)°	$(12\pm3)^\circ$	(0 ±	5)°	$(8\pm2)^\circ$
	[7]	[8] /	D ⁺ →π ⁺ π ⁺ π ⁻	$D^0 \rightarrow \pi^0$	$\pi^{+}\pi^{-}$	$ab \rightarrow \alpha \pi \pi$

$$heta$$
 = (19 \pm 5)°

J. A. Oller, "The Mixing angle of the lightest scalar nonet," Nucl. Phys. A 727, 353-369 (2003).

 $f_0(500) pprox ext{singlet;} f_0(980) pprox ext{octet}$

$$\theta = (14 \pm 4)^{\circ}$$

E. K., "Scalar mesons and the fragmented glueball", in preparation.

J. A. Oller, Nucl. Phys. A 727, 353 (2003). [2] A. V. Anisovich et al., Eur. Phys. J. A 12, 103 (2001). [3] W. Ochs, J. Phys. G 40, 043001 (2013).
 [4] J. W. Li et al., Eur. Phys. J. C 72, 2229 (2012). [5] R. Aaij et al. [LHCb], Phys. Rev. D 92, 032002 (2015). [6] R. Aaij et al. [LHCb], Phys. Rev. D 89, 092006 (2014). [7] X. Liu, Z. T. Zou, Y. Li and Z. J. Xiao, Phys. Rev. D 100, 013006 (2019). [8] N. R. Son et al., Phys. Rev. D 102, 016013 (2020).

4.2 The $f_0(1370) - f_0(1500)$ mixing angle

æ

4.3 The $f_0(1770)$ wave function

4.4 Interference in $\pi\pi$ and $K\bar{K}$

4.5 (M^2, n) trajectories of scalar mesons

··· and where is the scalar glueball ?

4.6 Evidence for strong glue-glue interactions

S. Ropertz, C. Hanhart and B. Kubis, "A new parametrization for the scalar pion form factors," Eur. Phys. J. C 78, no.12, 1000 (2018).

4.7 The fragmented glueball

Yields in radiative J/ψ decays (in units of 10⁻⁵)

$BR_{J/\psi \to \gamma f_0 \to}$	$\gamma\pi\pi$	$\gamma \mathbf{K} ar{\mathbf{K}}$	$\gamma\eta\eta$	$\gamma\eta\eta^\prime$	$\gamma \omega \phi$	$\begin{array}{ll} {\sf missing} \\ \gamma 4\pi & \gamma \omega \omega \end{array}$	total
f ₀ (500)	105±20	5±5	4±3	~0	~0	~0	114±21
f ₀ (980)	1.3±0.2	0.8±0.3	~0	~0	\sim 0	~0	2.1±0.4
<i>f</i> ₀ (1370)	38±10	13±4 42±15	3.5±1	0.9±0.3	~0	14±5 _{27±9}	69±12
<i>f</i> ₀ (1500)	9.0±1.7 10.9±2.4	3±1 ₂.9±1.2	1.1±0.4 ^{1.7+0.6} –1.4	1.2±0.5 6.4 ^{+1.0} -2.2	~0	33±8 ₃₅±9	47±9
<i>f</i> ₀ (1710)	6±2	23±8	12±4	6.5±2.5	1±1	7±3	56±10
<i>f</i> ₀ (1770) _{<i>f</i>₀(1750)}	24±8 ₃8±₅	60±20 ⁹⁹⁺¹⁰ -6	7±1 ²⁴⁺¹²	2.5±1.1	22±4 ₂₅±6	65±15 _{97±18} 31±10	181±26
f ₀ (2020)	42±10	55±25	10±10			(38±13)	145±32
<i>f</i> ₀ (2100)	20 ±8	32±20	18±15			(38±13)	108±25
f ₀ (2200) f ₀ (2100)/f ₀ (2200)	5±2 _{62±10}	5±5 ¹⁰⁹⁺⁸ –19	0.7±0.4 ^{11.0+6.5} -3.0			(38±13) 115±41	49±17
f ₀ (2330)	4±2	2.5±0.5 20±3	1.5±0.4				8±3

$$\begin{split} \mathrm{M}_{\mathrm{glueball}} &= (1865 \pm 25) \, \mathrm{MeV}, \, \mathsf{\Gamma}_{\mathrm{glueball}} = (370 \pm 50^{+30}_{-20}) \, \mathrm{MeV} \\ \mathrm{Y}_{\mathrm{J}/\psi \to \gamma \mathrm{G}_0} &= (5.8 \pm 1.0) \cdot 10^{-3} \end{split}$$

4.8 The wave function of scalar mesons

$$f_{0}(1500) = \alpha \frac{1}{\sqrt{6}} (u\bar{u} + d\bar{d} - 2s\bar{s}) + \beta \frac{1}{\sqrt{6}} (u\bar{u}s\bar{s} + d\bar{d}s\bar{s} - 2u\bar{u}d\bar{d}) + \gamma \cdot (\text{meson} - \text{meson cloud}) + \delta(gg) + \epsilon(q\bar{q}g) + \cdots \text{ and some singlet contribution} + \{\alpha' \frac{1}{\sqrt{3}} (u\bar{u} + d\bar{d} + s\bar{s}) + \beta' \frac{1}{\sqrt{3}} (u\bar{u}s\bar{s} + d\bar{d}s\bar{s} + u\bar{u}d\bar{d})\}$$

The five Fock states are not realized independently as five mesons ! They are components of the mesonic wave functions. There is no scalar glueball that intrudes the spectrum of scalar mesons

5. Summary

- The BESIII collaboration reported data on radiative J/\u03c6 decays with unprecedented statistics
- The data revelal high intensities in the yield of scalar mesons
- The data can be fit with ten scalar isoscalar resonances.
- The scalar resonances can be grouped into a class of mainly-singlet and mainly-octet states
- ▶ The two groups fall onto linear (*n*, *M*²)-trajectories
- Octet scalar isoscalar resonances are produced mainly in the 1700 -2100 MeV mass range
- Singlet scalar resonances are produced over the full mass range. Their intenisty peaks in the 1700 - 2100 MeV mass range
- The enhanced production of scalar mesons in the 1700 2100 MeV mass range is due to gluon-gluon in the initial state
- The peak is the scalar glueball of lowest mass.

Thank you for your patience!

The scalar mixing angle

æ

