
Nucleon Resonances and Kaonic Atoms
with
Hamiltonian Effective Field Theory
Zhan-Wei Liu
School of Physical Science and Technology, Lanzhou University

ZWL Kamleh Leinweber Stokes Thomas Wu, PRL116, 082004
ZWL Kamleh Leinweber Stokes Thomas Wu, PRD95, 034034
ZWL Hall Leinweber Thomas Wu, PRD95, 014506
ZWL Wu Leinweber Thomas, PLB808, 135652

HAPOF, online 29/1/2021



CONTENTS

1. Introduction

2. Nucleon excition resonance with Hamiltonian effective field theory

3. Kaonic hydrogen and deuteron from Hamiltonian effective field theory

4. Summary

1



Introduction



Hadron Physics

Hadron physics is mainly focused on hadron scatterings, spectra,
structures, interactions, etc.

• Hadron spectra are obtained from experimental
Hadron scattering.

• Hadron structures and interactions ⇌
Hadron spectra and scattering.

Hadron physics lies in the region of low energies with a large αs,
traditional perturbation expansion in series of (αs)n cannot work here.

• constituent quark model
• effective field theory —expanded by small momenta
• lattice QCD —discretized QCD
• QCD sum rule —operator product expansion—twist
• large Nc —1/Nc
• ... 2



Lattice QCD

• LQCD starts from the first principle of QCD
• model independent, reliable
• LQCD gives hadron spectra and quark distribution functions

at finite volumes, large quark masses, discrete spaces
• not directly related to physical observables
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Connection between Scattering Data and Lattice QCD Data

Lattice QCD

• large pion mass: extrapolation
• finite volume
• discrete space

Lattice QCD Data → Physical Data

• Lüscher Formalisms and extensions:
Model independent; efficient in single-channel problems

Spectrum → Phaseshifts; mKL − mKS etc.
• Effective Field Theory (EFT), Models, etc

with low-energy constants fitted by Lattice QCD data

Physical Data → Lattice QCD Data

• EFT: discretization, analytic extension, Lagrangian modification
• various discretization: eg. discretize the momentum in the loop
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Lattice QCD and Effective Field Theory

Effective field theory deals with extrapolation powerfully.

Finite-volume effect can be studied by discretizing the EFT.
find the poles of T matrix in finite volumes T = V + VGT
discretize the mass equation m2 − Π(m2) = 0
discretize the Hamiltonian equation (H0 + V)ψ = Eψ
......

Discrete spacing effects can also be studied with EFT.
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Scattering Data and Lattice QCD data are two important sources for
studying resonances.

We should try to analyse them both at the same time.
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Hamiltonian Effective Field Theory

Hamiltonian Effective Field Theory (HEFT)
analyses both experimental data at infinite volume
and lattice QCD results at finite volume at the same time.

• at infinite volume
Lagrangian (via 2-particle irreducible diagrams) →

potentials (via Betha-Salpeter Equation) →
phaseshifts and inelasticities

Tα,β(k, k′;E) = Vα,β(k, k′) +
∑
γ

∫
q2dqVα,γ(k, q)Gγ(E, q)Tγ,β(q, k′;E)

• at finite volume
potentials discretized (via Hamiltonian Equation)→ spectra
wavefunctions: analyse the structure of the eigenstates on the lattice

(H0 + V)ψ = Eψ

• finite-volume and infinite-volume results are connected by the
coupling constants etc.
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Nucleon excition resonance with
Hamiltonian effective field theory



N∗(1535) with πN Scattering

N∗(1535) is the lowest resonance with I(JP) = 1
2 (

1
2
−
).

• One needs to consider the interactions
among the bare baryon N∗

0 , πN channel, and ηN channel.
• Phase shifts and inelasticities

are obtained by solving Bethe-Salpeter equation with the interactions.
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• Pole position for N∗(1535): 1531 ± 29 − i 88 ± 2 MeV.
Particle Data Group (PDG): 1510±20 − i 85 ± 40 MeV. 8
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Spectra at Finite Volumes

3 sets of lattice data at different pion masses and finite volumes
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Spectra at Finite Volumes

3 sets of lattice QCD data at different pion masses and finite volumes
Non-interacting energies of the two-particle channels
Eigenenergies of Hamiltonian effective field theory
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Spectra at Finite Volumes

3 sets of lattice data at different pion masses and finite volumes
Eigenenergies of Hamiltonian effective field theory
Coloured lines indicating most probable states observed in LQCD
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Components of Eigenstates with L ≈ 3 fm
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• The 1st eigenstate at light quark masses is mainly πN scattering
states.

• The most probable state at physical quark mass is the 4th eigenstate.
It contains about 60% bare N∗(1535), 20% πN and 20% ηN.
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Components of Eigenstates with L ≈ 3 fm
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N∗(1440) Resonance

• N∗(1440), usually called Roper , is the excited state I(JP) = 1
2 (

1
2
+
)

• Naive quark model predicts mN∗(1440) > mN∗(1535)
if they are both dominated by 3-quark core. But contrary to experiment.

To check whether a 3-quark core largely exists in Roper, we consider models

• with a bare Roper

• without any bare baryons

• including the effect of the bare nucleon

11



N∗(1440) Resonance
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Our results are verified
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Λ(1405) with K−p scattering

• The well-known Weinberg-Tomozawa potentials are used.
momentum-dependent, non-separable

• We can fit the cross sections of K−p well
both with and without a bare baryon.
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Λ(1405) with K−p scattering

• The well-known Weinberg-Tomozawa potentials are used.
momentum-dependent, non-separable

Vα,β(k, k′) = gα,β
ωαM(k) + ωβM(k′)

8π2f2
√

2ωαM(k)
√
ωβM(k′)

• We can fit the cross sections of K−p well
both with and without a bare baryon.
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Spectrum on the Lattice
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Spectra with S = −1, I(JP) = 0( 1

2
−
) in the finite volume.

• The bare baryon is important for interpreting the lattice QCD data
at large pion masses.

• Λ(1405) is mainly a K̄N molecular state
containing very little of bare baryon at physical pion mass.
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Relevant developments and plans

Other development of HEFT

• Further check of Roper
Wu Leinweber Liu Thomas, PRD 97, 094509 (2018)

• Partial Wave Mixing in Hamiltonian Effective Field Theory
Li Wu Abell Leinweber Thomas, PRD 101, 114501 (2020),...

• ...

In future,

• Λ(1405)+Λ(1670)
• N(1535)+N(1650)+KΣ+KΛ+...
• N(1535) in γN → πN
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Kaonic hydrogen and deuteron
from Hamiltonian effective field
theory



Mesonic Atoms

Experimental progresses

• pionic hydrogen and deuterium,
the Paul Scherrer Institute (PSI), Ref[Hauser:1998yd]

• kaonic hydrogen, SIDDHARTA-2, Ref[Curceanu:2013bxa]
• kaonic deuterium, proposed by SIDDHARTA-2 and the J-PARC E57
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Kaonic Hydrogen

• energy shift and width of 1s level were measured at SIDDHARTA-2

ϵp1S = 283 ± 36(stat)± 6(sys) eV,
Γp

1S = 541 ± 89(stat)± 22(sys) eV ,

• they are related to the scattering length of K−p

ϵp1S − i
2Γ

p
1S =

−2α3
e µ

2
K−p aK−p

1 + 2αe µK−p (lnαe − 1) aK−p
,

• HEFT provides

ϵp1S = 307 eV, Γp
1S = 533 eV ,

where K̄N interactions are not fine tuned. 17



Kaonic Deuteron without Recoil Effect

K̄NN scattering amplitude can be solved by the Faddeev equation

p

n

K−

Tp
p

n

K−

=
p

n

K−

TK−p
p

n

K−

+

p

n

K−

TK−p
Tn

p

n

K−

K−
+

p

n

K− TK−p→K̄0n

Tx
n

p

K−

K̄0

,...

With the static approximation,

aK−d =
md

mK + md

∫
d3⃗r |ψd(⃗r)|2 ÂK−d(r) ,

where

ÂK−d(r) =
ãK−p + ãK−n + (2ãK−pãK−n − b2

x)/r − 2b2
x ãK−n/r2

1 − ãK−pãK−n/r2 + b2
x ãK−n/r3 .

Our results without recoil effect are similar to others

ϵd1S|StaticApprox = 855 eV, Γd
1S|StaticApprox = 1127 eV .
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Recoil Effect
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dΩ q2 |ψd|2 (unnormalised) Im, I = 0
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• The recoil effect is mainly from the single scattering process

⟨Td
K̄N ⟩ ≡

∫
d3q⃗ |ψd(⃗q)|2 TK̄N(⃗q).

• If no Λ(1405) exists,
this kind of recoil effect can be totally neglected.
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Comparison
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Summary



Summary

In this talk we have introduced the Hamiltonian Effective Field theory
and applied it in the low-lying baryons and kaonic atoms.

By analyzing the scattering data and LQCD data,

• N∗(1535) contains a 3-quark core;

• N∗(1440) should contain little of 3-quark consistent;

• Λ(1405) is mainly a K̄N molecular state at physical quark mass,
while a 3-quark core dominates at large quark masses.

Recoil effect makes kaonic deuteron much short lived because of the
close Λ(1405) through HEFT study.
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