

Hadron Physics Online Forum (HAPOF)

Latest results on exotic hadrons at BESIII

 $\square \text{ Observation of the charged } Z_{cs}(3985)^- \text{ in } e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$

arXiv: 2011.07855

Pei-Rong Li (李培荣) (Lanzhou University) On behalf of the BESIII Collaboration

2020.11.27

QCD predicted states

• Exotic hadrons: states composed of quarks and gluons beyond conventional mesons $(q\bar{q})$ and baryons (qqq).

- Provide new insights into internal structure and dynamics of hadrons.
- Unique probe to non-perturbative behavior of QCD.

Exotic hadrons in heavy-heavy systems $c\overline{c}$ or $b\overline{b}$

- Theoretical models are well-established for conventional states: QCD potential modes are well constructed.
- Experimentally easier to measure: relative narrow compared with light hadron systems.
- Quarkonium-like exotic states is an ideal place for exotic search.

Exotic quarkonium-like spectroscopy

The BESIII Detector

<u>NIM A614, 345 (2010)</u>

The new BESIII detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

The Zc Family at BESIII

- What is the nature of these states?
 Different decay, channels of the same observed states?
- **D** Different decay channels of the same observed states? Other decay modes? J^{P} ?
- Searches for Z_{cs} partners were proposed few years ago. e.g., $Z_{cs}/Z'_{cs} \rightarrow KJ/\psi$, D_sD^* , D_s^*D , $D_s^*D^*$ etc. => decay rate of Z_{cs} to open-charm final states is supposed to be larger than hidden-charm.

Do search in
$$e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$$

- BEPCII extend the energy limit to 4.7GeV in 2019-2020.
- We analyze 3.7fb⁻¹ data accumulated at 4.628, 4.641, 4.661, 4.681, 4.698GeV.

How to identify
$$e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$$

• Partial reconstruction of the process $e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$

- Reconstruct a D_s^- with two tag modes: $D_s^- \to K_s^0 K^-$ and $D_s^- \to K^+ K^- \pi^-$.
- Tag a bachelor charged K^+ .
- Use signature in the recoil mass spectrum of $K^+D_s^-$ to identify the process of $e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0).$ Similar technique with the pape
- Study the mass spectrum of recoil mass of K^+ .
- The charge conjugated channels are also implied.

Similar technique with the paper of Zc(4025)⁺ observation. PRL 112, 132001 (2014)

Tag a D_s^- and select $K^+(D_s^-D^{*0} + D_s^{*-}D^0)$ signals

Select candidates for $K^+(D_s^-D^{*0} + D_s^{*-}D^0)$

- Data-driven technique to describe combinatorial background.
- Right Sign(RS): combination of D_s^- and K^+ .
- Wrong Sign(WS): combination of D_s^- and K^-

to mimic combinatorial background.

- No peaking background observed in WS events; => WS technique is well validated by MC simulations and data sideband events.
- Both $e^+e^- \rightarrow K^+D_s^-D^{*0}$ and $e^+e^- \rightarrow K^+D_s^{*-}D^0$ can survive with this criterion.
- Fitting to $RM(K^+D_s^-)$ sideband events give number of WS in signal region: 282.6 ± 12.0;
- This WS number will be fixed in $RM(K^+)$ spectrum fitting.

$RM(K^+D_s^-)$ distributions at other four energy points

Recoil-mass spectra of K^+ and two-dimensional distributions of $M(K^+D_s^-)$ vs. $RM(K^+)$

- The K^+ recoil-mass spectrum in data at 4.681GeV.
- Combinatorial backgrounds are subtracted.
- A structure next to threshold raging from 3.96 to 4.02GeV/c².
- The enhancement cannot be attributed to the non-resonant (NR) signal process $e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$.

Check with high excited D_s^{**} states

 $0(?^{?})$

 $0(0^{+})$

 $0(1^{+})$

 $0(1^{+})$

 $0(2^{+})$

 $0(1^{-})$

 $0(1^{-})$

 $0(3^{-})$

 $0(?^{7})$

D^{*±}

D^{*}_{s0}(2317)[±]

• $D_{s1}(2460)^{\pm}$

 $D_{S}^{*}(2573)$

 $D_{s1}^{*}(2700)^{\pm}$

 $D_{s1}^{*}(2860)^{\pm}$

 $D_{s3}^{*}(2860)^{\pm}$

 $D_{sI}(3040)^{\pm}$

 $D_{s1}(2536)^{\pm}$

D_{s}^{**+}	mass(MeV/c ²)	width(MeV)	JP	$\boldsymbol{D}_{\boldsymbol{s}}^{**+}(\boldsymbol{K}^{+}\boldsymbol{D}^{*0})\boldsymbol{D}_{\boldsymbol{s}}^{-}$	$D_s^{**+}(K^+D^0)D_s^{*-}$			
$D_{s1}(2536)^+$	2535.11 <u>±</u> 0.06	0.92 <u>±</u> 0.05	1+	(*) Fixed in nominal fitting	Parity Violation in decay			
D_{s2}^{*} (2573) ⁺	2569.1 <u>±</u> 0.8	16.9 <u>±</u> 0.7	2+	Not decay to KD*	(*) Fixed in nominal fitting			
D_{s1}^{*} (2700) ⁺	$2708.3^{+4.0}_{-3.4}$	120 <u>+</u> 11	1-	(*) Fixed in nominal fitting	Q=-139.3MeV P-wave suppression in production.			
D_{s1}^{*} (2860) ⁺	2859 <u>+</u> 27	159 <u>+</u> 80	1-	(*)less contribution than D_{s1}^* (2700) ⁺ ; Q=-146MeV.	Q=-290MeV; P-wave suppression in production.			
D_{s3}^{*} (2860) ⁺	2860±7	53±10	3-	(*)F-wave suppression; Q=-147MeV	Q=-291MeV			
• D_{s}^{\pm}	$0(0^{-})$ = Most high excited D^{**} states have negative O value or forbidden due							

- Most high excited D^{**}_s states have negative Q value or forbidden due to Parity Violation.
- $D_{s1}^* (2536)^+ (K^+ D^{*0}) D_s^-, D_{s2}^* (2573)^+ (K^+ D^0) D_s^{*-} \text{ and }$
- D_{s1}^* (2700)⁺(K^+D^{*0}) D_s^- are studied using control sample.
- Most high excited $D_{(s)}^{**}$ states contribute a broad peak around 4 GeV which could not describe the enhancement in $RM(K^+)$.

13

Check with high excited D_S^{**} states

$\sqrt{s}({ m GeV})$	4.628	4.641	4.661	4.681	4.698
$D_{s1}(2536)^+(K^+D^{*0})D_s^-$	41.2 ± 6.3	26.2 ± 5.4	23.9 ± 5.6	54.4 ± 8.0	15.3 ± 4.2
$D_{s2}^{*}(2573)^{+}(K^{+}D^{0})D_{s}^{*-}$	—	—	—	19.1 ± 7.6	17.3 ± 7.3
$D_{s1}^*(2700)^+(K^+D^{*0})D_s^-$	0.0 ± 1.8	18.6 ± 8.7	16.6 ± 7.8	15.0 ± 13.3	7.7 ± 8.4

- The estimated sizes of excited D_s^{**} contributions at each energy point.
 - "-" means the production is not allowed kinematically.

Check with high excited \overline{D}^{**0} states

\overline{D}^{**0}	mass(MeV/c ²)	width(MeV)	JP	$\overline{\boldsymbol{D}}^{**\boldsymbol{0}}(K^+D_s^{*-})\boldsymbol{D}^{\boldsymbol{0}}$	$\overline{\boldsymbol{D}}^{**\boldsymbol{0}}(K^+D_s^-)\boldsymbol{D}^{*\boldsymbol{0}}$
$\overline{D}_1(2430)^0$	2427±40	384^{+130}_{-110}	1+	below KDs* threshold; Q=-72.22MeV soft Kaon	Parity Violation decay
\overline{D}_{2}^{*} (2460) ⁰	2460.7±0.4	47.5±1.1	2+	below KDs* threshold; Q=-39.52MeV soft Kaon	(*)Test fit
$\overline{D}(2550)^0$	2564 <u>±</u> 20	135 <u>+</u> 17	0-	(*)Test fit	Parity Violation in decay
$\overline{D}_J^*~(2600)^0$	2623±12	139±31	1-	(*)Test fit	(*)Control sample & nominal fit
$\overline{D}^{*}(2640)^{0}$	2637 <u>±</u> 6	<15	?	(*)Test fit	(*)Test fit
$\overline{D}(2740)^{0}$	2737±12	73±28	2-	(*)Test fit	Parity Violation in decay
$\overline{D}_{3}^{*}~(2750)^{0}$	2763 ± 3.4	66±5	3-	(*)Control sample	P-wave suppressed. Q=-89.8MeV
$D_{1}(2420)^{\pm}$ $D_{1}(2430)^{0}$ • $D_{2}^{*}(2460)^{0}$ • $D_{2}^{*}(2460)^{\pm}$ $D(2550)^{0}$ $D_{J}^{*}(2600)$ was $D(2600)$ $D^{*}(2640)^{\pm}$	1/2(? [?]) 1/2(1 ⁺) 1/2(2 ⁺) 1/2(2 ⁺) 1/2(? [?]) 1/2(? [?])	D ^{**0}	D_s^{*-}	$\pi^{0}(\gamma)$ D_{s}^{-}	D_s^{**0} K^+ D^{*0}
$D(2740)^{0}$ $D_{3}^{*}(2750)$ $D(3000)^{0}$	$ \begin{array}{c} 1/2(?^{\circ}) \\ 1/2(3^{\circ}) \\ 1/2(?^{\circ}) \end{array} \qquad \qquad$	2640) is quite r ICb. Dest \overline{D}^{**0} states a	harrow and i re not favor	not confirmed by any high sta ed from the check of test fit.=	tistic experiment including

Check with high excited non-strange $\overline{D}_1^*(2600)^0$ states

The $RM(K^+)$ spectrum is distorted due to limited production phase space. However, it is much broader than the observed enhancement.

 $e^+e^- \rightarrow D^{*0}\overline{D}_1^*(2600)^0 (\rightarrow D_s^-K^+)$ is studied using an PWA of control sample $e^+e^- \rightarrow D^{*0}\overline{D}_1^*(2600)^0 (\rightarrow D^-\pi^+).$

- The ratio R= $B(\overline{D}_1^*(2600)^0 \rightarrow D_s^-K^+)/B(\overline{D}_1^*(2600)^0 \rightarrow D^-\pi^+)$ is unknown. => difficult to produce absolute size.
- Determine the ratio in nominal simultaneous fit, providing constraint on its size.

Interference effect of $K^+ D_s^{*-} D^0$ final states (1)

- Data subtracted with WS backgrounds.
- Any two MC simulated backgrounds with interferences are taken into account.
- The interference angle is tuned to give the largest interference effect around 4.0GeV/c².

Interference effect of $K^+ D_s^{*-} D^0$ final states (2)

- The component of non-resonant process is also considered under different angular momentum $(L_{\text{KX}}, L_{D_c^{*-}D^0})$ assumption.
- Normalizations are scaled according to the observed yields in control samples.

Interference effect of $K^+ D_s^- D^{*0}$ final states (1)

Interference effect of $K^+ D_s^- D^{*0}$ final states (2)

Interference between any two $D_{(s)}^{**}$ /NR will not produce such a narrow peak we observed in data.

What do we learn

- Do you clearly see $e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$ events? Yes
- Can the WS shape represent the combinatorial backgrounds?
- Do you see an excess of data over the backgrounds? **Yes**
- Is the enhancement due to the $e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$ non-resonant process? **NO**
- Is the enhancement due to the $D_{(s)}^{**}$ resonant process? **NO**
- Is the enhancement due to interference effect between any $D_{(s)}^{**}/NR?$ **NO**
- Can we try the assumption of $e^+e^- \rightarrow K^+Z_{cs}^-, Z_{cs}^- \rightarrow D_s^-D^{*0}/D_s^{*-}D^0$ to interpret it? Yes, we could.

Yes

Study of recoil-mass spectra of K^+

Resonance parameter:

$$\begin{split} m_0(Z_{cs}(3985)^-) &= 3985.2^{+2.1}_{-2.0}(stat.) \text{ MeV/c}^2 \, ,\\ \Gamma_0(Z_{cs}(3985)^-) &= 13.8^{+8.1}_{-5.2}(stat.) \text{ MeV}. \end{split}$$

- Assume the structure as a $D_s^- D^{*0}/D_s^{*-} D^0$ resonance, denote it as $Z_{cs}(3985)^-$.
- Simultaneous unbinned maximum likelihood fit to five energy points.
 - $Z_{cs}(3985)^{-}$ signal shape: S-wave Breit-Wigner with mass dependent width with phase-space factor.

$$\mathcal{F}_{j}(M) \propto \left| \frac{\sqrt{q \cdot p_{j}}}{M^{2} - m_{0}^{2} + im_{0}(f\Gamma_{1}(M) + (1 - f)\Gamma_{2}(M))} \right|^{2}$$

$$\Gamma_j(M) = \Gamma_0 \cdot \frac{p_j}{p_j^*} \cdot \frac{m_0}{M}$$

- The potential interference effects are neglected.
- The J^P of $Z_{cs}(3985)^-$ is assumed as 1⁺; =>(S,S) is the most promising configuration.
- The significance with systematic uncertainties and look-elsewhere effect considered is evaluated to 5.3σ .

 $e^+e^- \rightarrow D^{*0}\overline{D}_1^*(2600)^0 (\rightarrow D_s^-K^+)$ is fitted to be negligible.

Cross-section measurement at each energy point

• Born cross section:

$$\sigma^{Born}(e^+e^- \to K^+Z^-_{cs} + c.c.) \cdot \mathfrak{B}(Z^-_{cs} \to (D^-_sD^{*0} + D^{*-}_sD^0))$$

$$= \frac{N_{obs}}{\mathcal{L}_{int} \cdot (1+\delta) \cdot f_{vp} \cdot (\tilde{\epsilon}_1 + \tilde{\epsilon}_2)/2}.$$

					L					
$\sqrt{s}(\mathrm{GeV})$	$\mathcal{L}_{int}(pb^{-1})$	$n_{ m sig}$	$f_{\rm corr}\bar{\varepsilon}(\%)$	$\sigma^B \cdot \mathcal{B} ext{ (pb)}$	â			•		
4.628	511.1	$4.2^{+6.1}_{-4.2}$	1.03	$0.8^{+1.2}_{-0.8} \pm 0.6 (< 3.0)$	a 4					
4.641	541.4	$9.3^{+7.3}_{-6.2}$	1.09	$1.6^{+1.2}_{-1.1} \pm 1.3 (< 4.4)$	à	Ţ	Т			
4.661	523.6	$10.6^{+8.9}_{-7.4}$	1.28	$1.6^{+1.3}_{-1.1} \pm 0.8 (< 4.0)$	× a				•	
4.681	1643.4	$85.2^{+17.6}_{-15.6}$	1.18	$4.4^{+0.9}_{-0.8} \pm 1.4$	\hat{b}^2	↓ ↓	•			
4.698	526.2	$17.8^{+8.1}_{-7.2}$	1.42	$2.4^{+1.1}_{-1.0} \pm 1.2 (< 4.7)$	-	•				
					0					
					4.6	2 4.64	4.66	4.68	4.7	4.72

- Uncertainty is quite large,
- Any Y states around 4.68GeV?

√s (GeV)

Systematics uncertainties

TABLE III. Summary of systematic uncertainties on the $Z_{cs}(3985)^-$ resonance parameters and cross sections at $\sqrt{s}=4.628$, 4.641, 4.661, 4.681 and 4.698 GeV. The total systematic uncertainty corresponds to a quadrature sum of all individual items. " \cdots " signifies that the uncertainty is negligible.

Source	Mass (MeV/c^2)	Width (MeV)	$\sigma_{4.628} \cdot \mathcal{B}(\%)$	$\sigma_{4.641} \cdot \mathcal{B}(\%)$	$\sigma_{4.661} \cdot \mathcal{B}(\%)$	$\sigma_{4.681} \cdot \mathcal{B}(\%)$	$\sigma_{4.698} \cdot \mathcal{B}(\%)$
Tracking			3.6	3.6	3.6	3.6	3.6
Particle ID			3.6	3.6	3.6	3.6	3.6
K_S^0			0.4	0.4	0.4	0.4	0.4
$RM(K^+D_s^-)$			4.0	0.3	0.4	0.6	0.2
Mass scale	0.5						
Resolution	0.2	1.0	0.2	1.0	1.9	1.1	0.8
f factor	0.2	1.0	7.8	7.7	6.7	6.4	5.9
Signal model	1.0	2.6	20.5	14.4	16.6	21.9	11.2
Backgrounds	0.5	0.5	54.8	5.9	12.0	3.1	7.8
Efficiencies	0.1	0.2	0.2	0.2	0.2	0.5	0.1
$D_{(s)}^{**}$ states	1.0	3.4	47.1	82.2	35.3	15.7	35.3
$\sigma^{B}(K^{+}Z_{cs}(3985)^{-})$	0.6	1.7	11.9	5.7	22.1	13.4	32.1
Luminosity			1.0	1.0	1.0	1.0	1.0
Input BFs			2.7	2.7	2.7	2.7	2.7
total	1.7	4.9	76.8	84.5	47.3	31.5	50.3

Resonance parameter:

 $m_0(Z_{cs}(3985)^-) = 3985.2^{+2.1}_{-2.0}(stat.) \pm 1.7(sys.) \text{MeV/c}^2,$

 $\Gamma_0(Z_{cs}(3985)^-) = 13.8^{+8.1}_{-5.2}(stat.) \pm 4.9(sys.)$ MeV.

Pole position:

$$\begin{split} m_{pole}(Z_{cs}(3985)^{-}) &= 3982.5^{+1.8}_{-2.6}(stat.) \pm 2.1(sys.) \text{MeV/c}^2, \\ \Gamma_{pole}(Z_{cs}(3985)^{-}) &= 12.8^{+5.3}_{-4.4}(stat.) \pm 3.0(sys.) \text{MeV}. \end{split}$$

Discussion on $Z_{cs}(3985)^-$

- Only a few MeV higher than the threshold of $D_s^- D^{*0}/D_s^{*-} D^0$ (3975.2/3977.0)MeV/c².
- At least four quark state (*ccsū*) and a charged hidden-charm state with strangeness.

- They are observed in a combination of $D_s^- D^{*0}$ and $D_s^{*-} D^0$ final states.
- The production is dominated at $\sqrt{s} = 4.681$ GeV. Any Y contribution?
- A tetraquark state or a molecule-like? Or threshold kinematic effects ? Or other scenario?
- Search for other decay modes Z_{cs}^0/Z_{cs}^{*-} can help to pin down its properties.

The Zcs (3985) \pm and Zc(3900) \pm

	1643/pb data @4.681 GeV 525/pb data @4.26		
	$Z_{cs}(3985)^{\pm}$	$Z_{c}(3900)^{\pm}$	$Z_{c}(38850)^{\pm}$
Mass (MeV/ c^2)	$3985.2^{+2.1}_{-2.0} \pm 1.7$	3899.0 <u>+</u> 3.6 <u>+</u> 4.9	$3883.9 \pm 1.5 \pm 4.2$
Width (MeV)	$13.8^{+8.1}_{-5.2} \pm 4.9$	$46 \pm 10 \pm 26$	$24.8 \pm 3.3 \pm 11.0$
$\sigma^{Born} \cdot \mathfrak{B} (pb)$	$4.4^{+0.9}_{-0.8} \pm 1.4$	$13.5 \pm 2.1 \pm 4.8$	83.5±6.6±22.0

Interpretation on the nature of $Z_{cs}(3985)^{-1}$

(DD*)

(BB*)

Various interpretations are possible for the structure

- ◆ 1) Tetraquark state
- ♦ 2) Molecule
- $(3) D_{s2}^* (2573)^+ D_s^{*-}$ threshold kinematic effects (Re-scattering, Reflection, Triangle singularity)
- 4) Mixture of molecular and tetraquark
- ♦ 5) ...

arXiv:2011.08501 arXiv:2011.08628 arXiv:2011.08656 arXiv:2011.08725 arXiv:2011.08747 arXiv:2011.09156 arXiv:2011.09225 arXiv:2011.09244 arXiv:2011.09404 arXiv:2011.10495 arXiv:2011.10922 arXiv:2011.10959 arXiv:2011.11488 arXiv:2011.12230 arXiv:2011.12326 from Steve Olsen

If it's a molecule, what holds it together

Yukawa force dominated by π -exchange \leftarrow not allowed for $D_s D^*/D_s^* D$

What next?

- We are proposing more data taking near 4.681GeV.
- Precise resonant parameters.
- Spin-parity [PWA].
- More decay modes, like $K^{(*)-}J/\psi, K^{(*)-}h_c, K^{(*)-}\eta_c$ or $K^{(*)-}\chi_{cJ}$.
- Production mechanisms.
- Test various theoretical models.
- Neutral partner of Z_{cs}^0 [on going] : $K_s^0(D_s^-D^{*+} + D_s^{*+}D^-)$.
- Other Z_{cs}^- states? Z_{cs}^{*-} states? [on going] : $K^+D_s^{*-}D^{*0}$.
- Other Z_{bs}^- states? Z_{bs}^{*-} states?
- Search Z⁻_{cs} state in LHCb and B factories? Important!

Summary

- We observed an enhancement near D⁻_sD^{*0}/D^{*-}_sD⁰ mass thresholds in e⁺e⁻ → K⁺(D⁻_sD^{*0} + D^{*-}_sD⁰) (c.c.) at the center-of-mass energy 4.681GeV (significance > 5σ).
- It matches a hypothesis of D⁻_sD^{*0} and D^{*-}_sD⁰ resonant structure
 Z_{cs}(3985)⁻ with a mass-dependent-width Breit-Wigner line shape well;
 - an exotic state with at least four-quark constituent $c\bar{c}s\bar{u}$

Pole position is measured to be

 $m_{pole}(Z_{cs}(3985)^{-}) = 3982.5^{+1.8}_{-2.6}(stat.) \pm 2.1(sys.) MeV/c^{2},$

 $\Gamma_{pole}(Z_{cs}(3985)^{-}) = 12.8^{+5.3}_{-4.4}(stat.) \pm 3.0(sys.)$ MeV.

- The Born cross section $\sigma^{Born} \cdot \mathfrak{B}$ at five energy points are determined.
- It is not a charmonium and the nature is yet unknown.
- New type of resonances? more to be measured/understood!
- More results will come out ...

Thanks!

Especially to the staff of BEPCII and the computing center, the funding agencies, and all the friends of BES!

2011.08656

TABLE II. Numerical results for masses, widths and partial widths. We use "†" to label input. The ratios Γ_3/Γ_2 are estimated with central values of coupling constants. The lower limit of ratios Γ_i/Γ_1 are estimated with upper limits of v_{12} . M and Γ are in unites of MeV and Λ_i are in unites of GeV.

(M,Γ)	$Z_c(3900)$	$Z_c(4020)$	$Z_{cs}(3985)$	Z_{cs}^{\prime}
Exp. [1, 47, 48]	$(3881.7 \pm 2.3, 26.6 \pm 2.9)^{\dagger}$	$(4026.3 \pm 4.5, 24.8 \pm 9.5)^{\dagger}$	$(3982.5^{+1.8}_{-2.6} \pm 2.1, 12.8^{+5.3}_{-4.4} \pm 3.0)$	
$\Lambda_{2/3} = 1.0$	$(3881.3\pm3.3, 26.3\pm6.1)$	$(4028.0\pm2.6,28.0\pm6.5)$	$(3984.2\pm3.3, 27.6\pm7.3)$	$(4130.7\pm2.5,29.1\pm6.4)$
	$\frac{\Gamma_2}{\Gamma_1} \gtrsim 13.7$	$\frac{\Gamma_3}{\Gamma_2} \approx 0.51, \ \frac{\Gamma_3}{\Gamma_1} \gtrsim 12.1$	$\frac{\Gamma_2}{\Gamma_1} \gtrsim 16.1$	$\frac{\Gamma_3}{\Gamma_2} \approx 0.48, \ \frac{\Gamma_3}{\Gamma_1} \gtrsim 13.7$
$\Lambda_{2/3} = 0.5$	$(3881.5\pm3.5, 26.4\pm5.8)$	$(4027.3\pm3.3, 27.0\pm6.7)$	$(3983.7 \pm 4.1, 26.7 \pm 5.8)$	$(4129.4\pm3.3,27.3\pm9.2)$
	$\frac{\Gamma_2}{\Gamma_1} \gtrsim 11.2$	$\frac{\Gamma_3}{\Gamma_2} \approx 2.5, \ \frac{\Gamma_3}{\Gamma_1} \gtrsim 11.0$	$\frac{\Gamma_2}{\Gamma_1}\gtrsim 12.8$	$\frac{\Gamma_3}{\Gamma_2} \approx 2.3, \ \frac{\Gamma_3}{\Gamma_1} \gtrsim 11.6$

FIG. 1. Feynman diagrams for the production mechanisms considered in this work: (a) and (b) for the $K^+D_s^*\bar{D}^0$; (c) for the $K^+D_s\bar{D}^{*0}$; (d) and (e) for both final states. The filled squares denote the *T*-matrix elements which include the effects of the generated Z_{cs} state.

 $z_{c(s)}^{(\prime)}$ and $z_{b(s)}^{(\prime)}$

Check with high excited $D_{(s)}^{**}$ states

- Data subtracted with WS backgrounds.
- Z_{cs}(3985)⁻ shapes are normalized to yields observed in data.
- D_s^{**} are scaled to the size determined by control sample.
- \overline{D}^{**0} state shapes are arbitrary.
- None of the excited $D_{(s)}^{**}$ can explain the narrow peaking structure.

Check with high excited non-strange $\overline{D}_3^*(2750)^0$ states

- Study $D^0 \overline{D}_3^* (2750)^0 (\to D_s^{*-} K^+)$ by $e^+ e^- \to D^0 \overline{D}_3^* (2750)^0 (\to D^- \pi^+)$.
- $B(\overline{D}_{3}^{*}(2750)^{0} \rightarrow D_{s}^{*-}K^{+})/B(\overline{D}_{3}^{*}(2750)^{0} \rightarrow D^{-}\pi^{+})=4.1\%$

Godfrey_PhysRevD.93.034035(2016)

Initial state	Final state	Width (cu, cd) (MeV)	BR (cu, cd) (%)
$D(1^{3}D_{3})$	$D(1^3P_2)\gamma$	0.69, 0.07	1.34, 0.14
2833	Dπ	20.1	39.2
	Dp	1.30	2.5
	$D\eta$	1.24	2.4
	$D^*\pi$	15.5	30.2
	$D^*\rho$	7.56	14.8
	$D^*\omega$	1.1	2.2
	$D(1^{3}P_{2})\pi$	0.9	1.8
	DsK	1.1	2.20
	Total	51	100

$\sqrt{s}({ m GeV})$	4.628	4.641	4.661	4.681	4.698
$\bar{D}_3^*(2750)^0 (\to D_s^{*-}K^+)D^0$	0.0 ± 0.1	0.0 ± 0.2	0.0 ± 0.2	0.0 ± 0.4	0.0 ± 0.5

□ The estimated sizes of excited $\overline{D}_3^*(2750)$ contributions at each energy point is negligible. □ Both decay and production of $e^+e^- \rightarrow D^0\overline{D}_3^*(2750)^0(\rightarrow D_s^{*-}K^+)$ is F-wave.

Fit results based on three subsets of data set at 4.681GeV

• Two-thirds of the data set at 4.681GeV was kept blinded until after the analysis strategy was established and validated.

Data set	mass (mev/ c)	width (Mev)	$\sigma_{4.681} \cdot \mathcal{B}(\text{pb})$	Statistical Significance
1st one-third	$3987.0^{+2.1}_{-2.4}$	$6.9^{+6.1}_{-4.1}$	$5.1^{+1.4}_{-1.2}$	4.9σ
2nd one-third	$3990.2^{+5.6}_{-5.5}$	$24.2^{+31.0}_{-12.4}$	$5.0^{+2.3}_{-1.8}$	2.9σ
3rd one-third	$3980.9^{+2.0}_{-2.2}$	$4.7^{+9.9}_{-4.7}$	$2.8^{+1.2}_{-1.0}$	3.9σ
nominal	$3985.2^{+2.1}_{-2.0}$	$13.8^{+8.1}_{-5.2}$	$4.4^{+0.9}_{-0.8}$	6.3σ

• Overall, three sets of fit results are compatible.

• Structures are stable with respect to different data-taking periods.

from Steve Olsen

- We observer the Z_{cs} in both D_s^*D and D_sD^* modes, not only in D_s^*D .
- Our control sample of $D_s^* D_{s2}(2573)$ show it size is very small.
- Not in favor of this scenario.