

Quantum Simulation of Nuclear Scattering

Weijie Du (杜伟杰)

Iowa State University Institute of Modern Physics, CAS

2020. 8. 7.

Outline

- 1. Background and basics
- 2. Time-Dependent Basis Function on Qubits (TBFQ) method
- 3. Future efforts and summary

Limitations of world leading supercomputing techniques

Problems:

- Exascale supercomputer extremely power consuming
- Complex architecture and algorithms
- Transistor size (~8 10 nm) decreases; quantum effects manifest

Computation resources at exascale and beyond

Difficulty: exponential growth in the number of states as particle number increases

A scaling problem for classical computation

Question: what is the dimension of the wave function of a spin system?

Particle number	Basis set	Dimension
1	$\{ \uparrow angle,\; \downarrow angle\}$	2 ¹
2	$\{ \uparrow\uparrow\rangle, \uparrow\downarrow\rangle, \downarrow\uparrow\rangle, \downarrow\downarrow\rangle\}$	2 ²
3	$\{ \uparrow\uparrow\uparrow\rangle, \uparrow\uparrow\downarrow\rangle, \uparrow\downarrow\uparrow\rangle, \uparrow\downarrow\downarrow\rangle,$	2 ³
	$ \downarrow\uparrow\uparrow\rangle,\; \downarrow\uparrow\downarrow\rangle,\; \downarrow\downarrow\uparrow\rangle,\; \downarrow\downarrow\downarrow\rangle\}$	
•	•	•
Ν	•••	2 ^N

- Laptop: 40-particle system (~2⁴⁰ bytes)
- 100-particle system beyond the capability of largest supercomputer nowadays (< 2¹⁰⁰ bytes) !

Seminal idea: let's make the computation fully quantum mechanical

[Int. J. Theor. Phys. Vol. 21, pp. 467-488, (1982)]

"I'm not happy with all the analyses that go with the classical theory, because nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy." --- R. P. Feynman's vision in 1982

From classical to quantum mechanical

The principles of quantum computing

Superposition, e.g.,

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

Entanglement, e.g.,

$$|\psi\rangle = \frac{|1\rangle_1|0\rangle_2 + |0\rangle_1|1\rangle_2}{\sqrt{2}}$$

Fundamental change

- computation methodology and algorithm
- information storage and manipulation

Operating a qubit (illustration)

Quantum operation

Matrix interpretation

$$\mathbf{X} |0\rangle = |1\rangle, \ \mathbf{X} |1\rangle = |0\rangle$$
$$\mathbf{X} = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} \begin{bmatrix} \alpha\\ \beta \end{bmatrix} = \begin{bmatrix} \beta\\ \alpha \end{bmatrix}$$
$$|q_0\rangle = \alpha |0\rangle + \beta |1\rangle$$
$$X|q_0\rangle = \alpha |1\rangle + \beta |0\rangle$$

Various other operations, e.g., the phase gate, the Hadamard gate etc.

Quantum computers

- Quantum computers make use of quantum systems to perform calculations
- Such quantum systems need to be well controlled and sufficiently isolated from the environment
- Quantum computers can potentially circumvent the roadblock of exponential cost in computational science

Quantum leap in computation power

Factorization into two prime numbers

rsa **250**=21403246502407449612644230728393335630086147151447550 1779775492088141802344714013664334551909580467961099285187247 0914587687396261921557363047454770520805119056493106687691590 0197594056934574522305893259766974716817380693648946998715784 94975937497937

 $= p \times q$

Need 2700 core-years! 1.5×10^{14} **P**=64135289477071580278790190170577 3890848250147429434472081168596320 1.0 × 10¹⁴ 2453234463023862359875266834770873 7661925585694639798853367 5.0 × 10¹³

q=3337202759497815655622601060535 511422794076034476755466678452098 702384172921003708025744867329688 1877565718986258036932062711

Computation time T

[https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html]

Natural way of processing quantum information

Expressing a quantum state of *N*-particle system

- Classical computer: intractable as N increases (exponential)
- Quantum computer: ~N qubits

 $|\Psi\rangle = (\alpha_1|\uparrow\rangle_1 + \beta_1|\downarrow\rangle_1) \otimes (\alpha_2|\uparrow\rangle_2 + \beta_2|\downarrow\rangle_2) \cdots \otimes (\alpha_N|\uparrow\rangle_N + \beta_N|\downarrow\rangle_N)$

Quantum computer: natural way to express and manipulate quantum states

Hardware development

Hardware improvement/innovations

joint tasks for scientists from many areas

Challenges: decoherence time, precise control/readout, scalability with error corrections

Circuit-based quantum processors [edit]

[Wikipedia]

These QPUs are based on the quantum circuit and quantum logic gate-based model of computing.

Manufacturer +	Name/Codename/Designation +	Architecture \$	Layout 🗢	Socket +	Fidelity 🗢	Qubits 🔶	Release date 🔹 🗢
Google	N/A	Superconducting	N/A	N/A	99.5% ^[1]	20 qb	2017
Google	N/A	Superconducting	7×7 lattice	N/A	99.7% ^[1]	49 qb ^[2]	Q4 2017 (planned)
Google	Bristlecone	Superconducting	6×12 lattice	N/A	99% (readout) 99.9% (1 qubit) 99.4% (2 qubits)	72 qb ^{[3][4]}	5 March 2018
Google	Sycamore	Nonlinear superconducting resonator	N/A	N/A	N/A	54 transmon qb 53 qb effective	2019
IBM	IBM Q 5 Tenerife	Superconducting	bow tie	N/A	99.897% (average gate) 98.64% (readout)	5 qb	2016 ^[1]
IBM	IBM Q 5 Yorktown	Superconducting	bow tie	N/A	99.545% (average gate) 94.2% (readout)	5 qb	
IBM	IBM Q 14 Melbourne	Superconducting	N/A	N/A	99.735% (average gate) 97.13% (readout)	14 qb	
IBM	IBM Q 16 Rüschlikon	Superconducting	2×8 lattice	N/A	99.779% (average gate) 94.24% (readout)	16 qb ^[5]	17 May 2017 (Retired: 26 September 2018) ^[6]
IBM	IBM Q 17	Superconducting	N/A	N/A	N/A	17 qb ^[5]	17 May 2017
IBM	IBM Q 20 Tokyo	Superconducting	5x4 lattice	N/A	99.812% (average gate) 93.21% (readout)	20 qb ^[7]	10 November 2017
IBM	IBM Q 20 Austin	Superconducting	5x4 lattice	N/A	N/A	20 qb	(Retired: 4 July 2018) ^[6]
IBM	IBM Q 50 prototype	Superconducting	N/A	N/A	N/A	50 qb ^[7]	
IBM	IBM Q 53	Superconducting	N/A	N/A	N/A	53 qb	October 2019
Intel	17-Qubit Superconducting Test Chip	Superconducting	N/A	40-pin cross gap	N/A	17 qb ^{[8][9]}	10 October 2017
Intel	Tangle Lake	Superconducting	N/A	108-pin cross gap	N/A	49 qb ^[10]	9 January 2018
Rigetti	8Q Agave	Superconducting	N/A	N/A	N/A	8 qb	4 June 2018 ^[11]
Rigetti	16Q Aspen-1	Superconducting	N/A	N/A	N/A	16 qb	30 November 2018 ^[11]
Rigetti	19Q Acorn	Superconducting	N/A	N/A	N/A	19 qb ^[12]	17 December 2017
IBM	IBM Armonk ^[13]	Superconducting	Single Qubit	N/A	N/A	1 qb	16 October 2019
IBM	IBM Ourense ^[13]	Superconducting	Т	N/A	N/A	5 qb	03 July 2019
IBM	IBM Vigo ^[13]	Superconducting	Т	N/A	N/A	5 qb	03 July 2019
IBM	IBM London ^[13]	Superconducting	Т	N/A	N/A	5 qb	13 September 2019
IBM	IBM Burlington ^[13]	Superconducting	Т	N/A	N/A	5 qb	13 September 2019
IBM	IBM Essex ^[13]	Superconducting	Т	N/A	N/A	5 qb	13 September 2019

The Noisy Intermediate-Scale Quantum era is arriving! 14

Requests for quantum algorithms in nuclear physics

Grand Challenges in Subatomic Physics

Rapidly developing quantum hardware **boosts/requests** inventions/discoveries of new quantum algorithms.

Interesting problem set:

- Many-particle problems
- Strongly coupled systems
- Real-time evolution and dynamics

[J. Preskill, arXiv: 1801.00862]

Potential applications of quantum computing

Quantum Field Theories and Fundamental Symmetries

- indefinite particle number
- gauge symmetries and constraints
- entangled ground states

Real-Time Dynamics

- nuclear reactions
- neutrino-nucleus interactions
- neutrinos in matter
- early universe
- non-equilibrium heavy-ions
- parton showers fragmentation

Dense Matter

- neutron stars
- gravity waves ?
- heavy nuclei
- chemical potentials

[Adapted from M. J. Savage's talk in NUCLEI - SciDAC, June 2020]

Ground-breaking activities in nuclear physics

RESEARCH ARTICLE

Quantum Algorithms for Quantum Field Theories

Stephen P. Jordan^{1,*}, Keith S. M. Lee², John Preskill³

[Science vol. 336, pp. 1130-1133 (2012)]

Quantum computing for neutrino-nucleus scattering

Alessandro Roggero,^{1,*} Andy C. Y. Li^(a),^{2,†} Joseph Carlson,^{3,‡} Rajan Gupta^(b),^{3,§} and Gabriel N. Perdue^(b),^{2,∥} [PRD 101, 074038 (2020)]

Cloud Quantum Computing of an Atomic Nucleus

E. F. Dumitrescu,¹ A. J. McCaskey,² G. Hagen,^{3,4} G. R. Jansen,^{5,3} T. D. Morris,^{4,3} T. Papenbrock,^{4,3,*} R. C. Pooser,^{1,4} D. J. Dean,³ and P. Lougovski^{1,†}

[PRL 120, 210501 (2018)]

Neutrino oscillations in a quantum processor

C. A. Argüelles¹ and B. J. P. Jones \mathbb{O}^2

[Phys. Rev. Research 1, 033176 (2019)]

Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

Esteban A. Martinez¹*, Christine A. Muschik^{2,3}*, Philipp Schindler¹, Daniel Nigg¹, Alexander Erhard¹, Markus Heyl^{2,4}, Philipp Hauke^{2,3}, Marcello Dalmonte^{2,3}, Thomas Monz¹, Peter Zoller^{2,3} & Rainer Blatt^{1,2}

Quantum bit (qubit)

- the basic element in quantum computation
- a two-level quantum system (e.g., spin- $\frac{1}{2}$ system)

Basis states of two-level quantum system

$$|0\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix} \qquad |1\rangle = \begin{bmatrix} 0\\ 1 \end{bmatrix}$$

1-qubit case

a general superposition of basis states (infinite state vectors)

$$\begin{aligned} |\psi\rangle &= \alpha |0\rangle + \beta |1\rangle \\ |\psi\rangle &= \alpha \begin{bmatrix} 1\\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0\\ 1 \end{bmatrix} = \begin{bmatrix} \alpha\\ \beta \end{bmatrix} \end{aligned}$$

normalization

$$|\alpha|^2 + |\beta|^2 = 1$$

Bloch representation of a general state vector

2-qubit case

Superposition of basis states

$$|\psi\rangle = \alpha |0\rangle_1 |0\rangle_2 + \beta |0\rangle_1 |1\rangle_2 + \gamma |1\rangle_1 |0\rangle_2 + \delta |1\rangle_1 |1\rangle_2$$

2² basis states

$$|0\rangle_{1}|0\rangle_{2} \equiv |0\rangle_{1} \otimes |0\rangle_{2} = \begin{bmatrix} 1\\ 0\\ 1\\ 0 \end{bmatrix}_{1} \otimes \begin{bmatrix} 1\\ 0\\ 0\\ 2 \end{bmatrix}_{2} = \begin{bmatrix} 1\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}, \ |0\rangle_{1}|1\rangle_{2} = \begin{bmatrix} 0\\ 1\\ 0\\ 0\\ 0 \end{bmatrix}, \ |1\rangle_{1}|0\rangle_{2} = \begin{bmatrix} 0\\ 0\\ 1\\ 0\\ 0 \end{bmatrix}, \ |1\rangle_{1}|1\rangle_{2} = \begin{bmatrix} 0\\ 0\\ 1\\ 0\\ 1 \end{bmatrix}$$

Normalization

$$|\alpha|^{2} + |\beta|^{2} + |\gamma|^{2} + |\delta|^{2} = 1$$

N-qubit case

Superposition of basis states

2^N basis states

 $|0\rangle_1|0\rangle_2\cdots|0\rangle_N, |0\rangle_1|0\rangle_2\cdots|1\rangle_N, \cdots, |1\rangle_1|1\rangle_2\cdots|1\rangle_N$

Normalization

$$\sum_{i_1 \in \{0,1\}} \sum_{i_2 \in \{0,1\}} \cdots \sum_{i_N \in \{0,1\}} |\alpha_{i_1 i_2 \cdots i_N}|^2 = 1$$

Quantum gates: controlled local unitary operations applied on qubit(s)

- Identity gate $\mathbf{I} |0\rangle = |0\rangle, \ \mathbf{I} |1\rangle = |1\rangle$ $\mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$
- X gate (NOT gate) $\mathbf{X} |0\rangle = |1\rangle, \mathbf{X} |1\rangle = |0\rangle$ $\mathbf{X} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \beta \\ \alpha \end{bmatrix}$

$$-\mathbf{H}$$

$$\mathbf{H} |0\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle, \ \mathbf{H} |1\rangle = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$$
$$\mathbf{H} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

Phase gate

$$\mathbf{R}_{\phi} \left| 0 \right\rangle = \left| 0 \right\rangle, \, \mathbf{R}_{\phi} \left| 1 \right\rangle = e^{i\phi} \left| 1 \right\rangle$$

$$\mathbf{R}_{\phi} = \begin{bmatrix} 1 & 0\\ 0 & e^{i\phi} \end{bmatrix}$$

Rotational gates

with the Pauli gates

$$X \equiv \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}; \quad Y \equiv \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}; \quad Z \equiv \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Controlled-NOT (CNOT) gate

Controlled phase gate

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{i\phi} \end{bmatrix}$$

 $|00\rangle \rightarrow |00\rangle \qquad |01\rangle \rightarrow |01\rangle \qquad |10\rangle \rightarrow |10\rangle \qquad |11\rangle \rightarrow e^{i\phi} |11\rangle$

More gates

Available at:

https://qiskit.org/textbook/ch-states/single-qubit-gates.html

Basic concepts of quantum computing

Quantum circuit

a sequence of quantum gates output the solution to a problem

Quantum algorithm

- designing a quantum circuit for a particular problem
- performance of a quantum algorithm characterized by
 - the number of gates
 - the run time as a function of the problem size (dimension)

Algorithm illustration: quantum Fourier transformation

$$|j\rangle \longrightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i j k/N} |k\rangle$$

= $\frac{1}{2^{n/2}} \left(|0\rangle + e^{2\pi i 0.j_n} |1\rangle\right) \left(|0\rangle + e^{2\pi i 0.j_{n-1}j_n} |1\rangle\right) \dots \left(|0\rangle + e^{2\pi i 0.j_1 j_2 \dots j_n} |1\rangle\right)$

Exponential speedup

Quantum Fourier transform $\sim O(n^2)$ gates Classical Fourier transform $\sim O(n2^n)$ gates

Outline

1. Background and basics

2. Time-Dependent Basis Function on Qubits (TBFQ) method

3. Future efforts and summary

Motivations

- Construct a unified *ab initio* theory for nuclear structure and reaction
- Study complex nuclear processes (e.g., rare isotopes)
- Investigate nuclear interaction (both on- and off- shell properties)

Requests for theories with predictive power for nuclear structures and reactions

Global investment in RIBs over next decade ~\$4B (OECD)

Background

Existing methods, e.g.,

- No-core Shell Model with Continuum
- No-core Shell Model/Resonating Group Method
- Gamow Shell Model
- Harmonic Oscillator Representation of Scattering Equation
- Green's Function Approaches
- Nuclear Lattice Effective Field Theory

Challenges

- Retaining full quantal coherence
- Tracking all potentially possible nuclear processes (rare isotopes)
- Large and complex reaction systems (exponential scaling)

Solutions

- Hamiltonian dynamics
- Real-time evolution; information on the amplitude level
- Quantum computation

Time-dependent Basis Function on Qubits (TBFQ) algorithm (Hamiltonian simulation)

- Unified structure and reaction theory
- Based on successful nuclear structure theory
- *Ab initio* approach
- Non-perturbative method
- Retaining full quantal coherence & entanglement
- Circumventing the exponential cost in computation resource in simulating real-time many-body dynamics

Demonstration problem: Coulomb excitation of deuterium system by peripheral scattering with heavy ion

- H₀: Target (deuteron in trap) Hamiltonian
- φ: Coulomb field from heavy ion (U⁹²⁺) sensed by target
- ρ: Charge density distribution of target

Elements of TBFQ

Construct the basis representation from *ab initio* nuclear structure calculation

Game plan for TBFQ

- 1. Prepare the initial state can be entangled state
- 2. Time-evolve the state Trotterized evolution operator & qubitization
- 3. Measurement

The algorithm (Hamiltonian simulation)

State vector evolution

$$|\psi;t\rangle_{I} = U_{I}(t;t_{0})|\psi;t_{0}\rangle_{I} = \hat{T}\left\{\exp\left[-i\int_{t_{0}}^{t}V_{\text{int}}^{I}(t')dt'\right]\right\}|\psi;t_{0}\rangle_{I}$$

Time discretization

$$U_I(t;t_0) \approx \hat{T} \left\{ \exp\left[-i\left[V_{\text{int}}^I(t)\delta t + V_{\text{int}}^I(t_{n-1})\delta t + \dots + V_{\text{int}}^I(t_1)\delta t\right] \right\} \right\}$$

Trotterization (1st order)

$$U_I(t;t_0) = \underbrace{e^{-iV_{\text{int}}^I(t)\delta t}}_{U(t;\ t_{n-1})} \cdots \underbrace{e^{-iV_{\text{int}}^I(t_k)\delta t}}_{U(t_k;\ t_{k-1})} \cdots \underbrace{e^{-iV_{\text{int}}^I(t_1)\delta t}}_{U(t_1;\ t_0)} + \mathcal{O}(\delta t^2)$$

Qubitization

$$\{\underbrace{|\beta_0\rangle}_{|000\cdots\rangle_n}, \underbrace{|\beta_1\rangle}_{|100\cdots\rangle_n}, \cdots, \underbrace{|\beta_N\rangle}_{|111\cdots\rangle_n}\}$$
$$\mathbf{n} \sim [\log N_{basis}]$$

Basis set of the inelastic scattering problem

($({}^{3}S_{1}, {}^{3}D_{1})$	M = -1	$-0.65289 \mathrm{MeV}$
	$({}^{3}S_{1}, {}^{3}D_{1})$	M = 0	$-0.65289~{\rm MeV}$
	$({}^{3}S_{1}, {}^{3}D_{1})$	M = +1	$-0.65289~{\rm MeV}$
	${}^{3}P_{0}$	M = 0	$12.0733~{\rm MeV}$
	${}^{3}P_{1}$	M = -1	$12.7585~{\rm MeV}$
	${}^{3}P_{1}$	M = 0	$12.7585~{\rm MeV}$
	${}^{3}P_{1}$	M = +1	12.7585 MeV $\big/$

- 1. 7 basis states of the target solved via *ab initio* structure calculation
- 2. Initial state set to be antiparallel to z-axis

Basis set of the inelastic scattering problem

- 1. 7 basis states of the target solved via *ab initio* structure calculation
- 2. Initial state set to be antiparallel to z-axis
- 3. E1 radiative transitions retained in dynamics (time-evolution operator)

Basis set of the inelastic scattering problem

- 1. 7 basis states of the target solved via *ab initio* structure calculation
- 2. Initial state set to be antiparallel to z-axis
- 3. E1 radiative transitions retained in dynamics (time-evolution operator)
- 4. Trotterization; 7 basis states *mapped* to 3 qubits

[Weijie Du et al., 2017]

46

Illustration: what's going on in the Hamiltonian simulation?

- The initial state in the qubit representation is |000>
- The quantum circuit is constructed by Quantum Shannon Decomposition

By measurement, we obtain the final state in terms of probability distribution.

Transition probabilities and observables

Outline

- 1. Background and basics
- 2. Time-Dependent Basis Function on Qubits (TBFQ) method

3. Future efforts and summary

Future efforts

Generalization to real scattering

Channels and states increase dramatically

[P. Yin, WD et al., arXiv: 1910.10586]

Real-time dynamics in gauge fields

- Electron scattering in intense E&M fields (e.g., laser facilities)
- Quark scattering in color field
- Particle production and evolution in the glasma field

[X. Zhao et al., PRD 88 065064 (2013)]
[G. Chen et al., PRD 95 096012 (2017)]
[M. Li et al., PRD 101 076016 (2020)]
[M. Li et al., private communication]

Summary

- Quantum computing techniques make use quantum mechanics principles to outperform classical computers
- The rapid development of quantum computing techniques shed light on many challenging problems in nuclear physics
- We develop the TBFQ algorithm to simulate low-energy nuclear scattering on quantum computers
- This work can be further generalized to study complicated problems in low-energy nuclear, QED and QCD scattering processes
- Stay tuned...

Thanks!