

Experimental studies of doubly-charmed baryons at LHCb

Jibo He (何吉波), UCAS (中国科学院大学), Seminar at 入人**P**OF~, May 29, 2020

Large Hadron Collider

RANCI

CMS

Jibo HE (UCAS)

CERN Prévessin

Proton energy: up to 7 TeV (10¹² eV) speed: 0.999999991 c

ATLAS

CERN Mevrin

Doubly charmed baryon

27 km

ALICE

Beauty/charm production

- Large production cross-section @ 7 TeV
 - Minibias ~60 mb
 - Charm ~6 mb
 - Beauty $\sim 0.3 \text{ mb c.f. 1nb} @Y(4S)$

Flavor factory!

3

Predominantly in forward/backward cones

- Compared to minimum bias (background)
 - Relatively high mass \rightarrow high *transverse momentum*
 - Relatively long lifetime \rightarrow large impact parameter (IP)
- Requires excellent vertexing, tracking, particleidentification

The LHCb experiment

Jibo HE (UCAS)

Doubly charmed baryon

LHCb data flow

LHCb luminosity prospects

	LHC era	HL-LHC era		
Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2021-24)	Run 4 (2027-30)	Run 5+ (2031+)
3 fb ⁻¹	6 fb⁻¹	23 fb ⁻¹	46 fb ⁻¹	>300 fb ⁻¹ ??
		Phase-1 Upgrade!!	Phase-1b Upgrade!?	Phase-2 Upgrade??

Lots of singly charmed baryons

Λ⁺_c → pK⁻π⁺: ~ 1×10⁶ per fb⁻¹ @ 7 TeV
Ξ⁺_c → pK⁻π⁺: ~ 3×10⁵ per fb⁻¹ @ 7 TeV

Doubly charmed baryons

- Particles formed by (u, d, s, c)
- Unique system for testing Quantum ChromoDynamics

u

Predicted mass

• $M(\Xi_{cc}^+) \approx M(\Xi_{cc}^{++}) \sim 3.5 - 3.7 \text{ GeV}$

LQCD*: 3610(23)(22) MeV

M(Ω⁺_{cc})~3.6-3.9 GeV
 LQCD*: 3738(20)(20) MeV

	Quark	Present			Mass in GeV			
Baryon	content	J^P	work	[11]	[10]	[9]	[6]	[28]
$\overline{\Xi}_{cc}$	$\{cc\}q$	$1/2^{+}$	3.620	3.478	3.66	3.66	3.61	3.69
Ξ_{cc}^*	$\{cc\}q$	$3/2^{+}$	3.727	3.61	3.81	3.74	3.68	
Ω_{cc}	$\{cc\}s$	$1/2^{+}$	3.778	3.59	3.76	3.74	3.71	3.86
Ω^*_{cc}	$\{cc\}s$	$3/2^{+}$	3.872	3.69	3.89	3.82	3.76	

Ebort of al DDD 66 (2002) 01/0081

*[Z. Brown *et al.*, PRD 90 (2014) 094507]

Jibo HE (UCAS)

Doubly charmed baryon

Production cross-section

- Production similar to B_c
 - Accompanying $\bar{c}\bar{c} \Longrightarrow$ Trigger
- Total cross-section [nb] for
 *p*_T>4 GeV & |y|<1.5

[J.-W. Zhang et al., PRD 66 (2002) 014008]

g man

g 70000

	Ξ_{cc}		Ξ	Ξ_{bc}	Ξ_{bb}		
	$\sqrt{S} = 7.0 \text{ TeV}$	$\sqrt{S} = 14.0 \text{ TeV}$	$\sqrt{S} = 7.0 \text{ TeV}$	$\sqrt{S} = 14.0 \text{ TeV}$	$\sqrt{S} = 7.0 \text{ TeV}$	$\sqrt{S} = 14.0 \text{ TeV}$	
$[{}^{3}S_{1}]$	38.11	69.40	16.7	28.55	0.503	1.137	
$[{}^{1}S_{0}]$	9.362	17.05	3.72	6.315	0.100	0.226	
Total	47.47	86.45	20.42	34.87	0.603	1.363	

- In LHCb acceptance at 13 TeV: $\sigma(cc) = 90$ nb
- Fragmentation fraction: u:d:s~1:1:0.3
 - $-\sigma(\Xi_{cc}^{++}) = \sigma(\Xi_{cc}^{+}) \sim 40 \text{ nb}, \ \sigma(\Omega_{cc}^{+}) \sim 13 \text{ nb}$

 \overline{c}

 \overline{c}

Predicted lifetime

• Large ambiguity...

Literatures	<i>Ξ</i> cc ⁺⁺	Ecc⁺	$arOmega_{cc}$ +	
Karliner, Rosner, 2014	185	53		
Kiselev, Likhoded, Onishchenko, 1998	430±100	110±10		
Kiselev, Likhoded, 2002	460±50	160±50	270±60	
Guberina, Melic, Stefancic, 1998	1550	220	250	
Chang, Li, Li, Wang, 2007	670	250	210	

• $\tau(\Xi_{cc}^{++}) \gg \tau(\Xi_{cc}^{+}) \approx \tau(\Omega_{cc}^{+})$

 $\Rightarrow \Xi_{cc}^{++}$ is easier to detect

Ξ_{cc}^+ @ SELEX

Jibo HE (UCAS)

13

3.9

4_0

(C)

3.62

(b)

(a)

Ξ_{cc}^{++} @ SELEX

0 <u>3.3</u>

3.35

3.4

3.6

3.55

3.5

3.45

Ξ_{cc} @ LHCb & others

- SELEX results not confirmed by FOCUS, Babar, Belle & LHCb
- $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$ searched by LHCb w/ 2011 data

 However, LHCb already had lots of B⁺_c events, and double-charm events...

Ξ_{cc}^{++} properties

• Ξ_{cc}^{++} mass measured: 3621.40 ± 0.72(stat.) ± 0.27(syst.) ± 0.14(Λ_c^+) MeV/ c^2

SELEX: $m(\Xi_{cc}^+)=3519\pm1$ MeV Isospin partner?

- Decay weakly, mass peak remains after lifetime cut
- \Rightarrow Measurement of $\tau(\Xi_{cc}^{++})$ needed

[PRL 119 (2017) 112001]

Lifetime measurement

• Half-life ($T_{1/2}$), average lifetime (τ)

$$N = N_0 2^{-\frac{t}{T_{1/2}}} = N_0 e^{-\frac{t}{\tau}}$$

• Expected distribution with $\tau = 0.256$ ps

Measurement of Ξ_{cc}^{++} lifetime

- With the same 2016 data and almost the same selection as the observation
- $\Lambda_h^0 \to \Lambda_c^+ 3\pi$ (control) selected w/ same criteria

Decay time distribution/acceptance

- Measure the decay time ratio relative to Λ_b^0 , w/ well known $\tau(\Lambda_b^0) = 1.470 \pm 0.010$ ps
- Decay time acceptance from simulation

Ξ_{cc}^{++} lifetime

- Fitted Λ_h^0 lifetime 1.474 \pm 0.077 ps, validating that simulation well-describes t acceptance
- Unbinned $t(\Xi_{cc}^{++})$ described by

0.5

1.5

Decay time [ps]

- $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$ expected to have large branching fraction [F.-S. Yu *et al.*, CPC 42 (2018) 051001]
- Searched with 2016 data, following similar selection strategy to $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$
- 91 ± 20 signals seen, 5.9 σ , re-discovery!

[PRL 121 (2018) 162002]

 $3610 \pm 23 \pm 22 \text{ MeV}/c^2$ [Z. S. Brown *et al.*, PRD 90 (2014) 094507]

PRL 121 (2018) 162002] Ratio of total branching fractions

 $\frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+) \times \mathcal{B}(\Xi_c^+ \to pK^- \pi^+)}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+) \times \mathcal{B}(\Lambda_c^+ \to pK^- \pi^+)} = 0.035 \pm 0.009 \,(\text{stat}) \pm 0.003 \,(\text{syst})$ at the lower end of prediction [F.-S. Yu et al., CPC 42 (2018) 051001]

Precision measurement of $m(\Xi_{cc}^{++})$

 UROP, preparing to search for excited states, event-selection re-optimised

 $m(\Xi_{cc}^{++}) = 3621.55 \pm 0.23 \pm 0.30 \text{ MeV}/c^2$ c.f., $3620.6 \pm 0.65 \pm 0.31 \text{ MeV}/c^2$

Jibo HE (UCAS)

Doubly charmed baryon

Measurement of Ξ_{cc}^{++} production

- Measured w/ 2016 data

Measurement of Ξ_{cc}^{++} production

Search for Ξ_{cc}^+

g maa

g mm

- Blinded analysis
- $\tau(\Xi_{cc}^+)$: (0 fs, 80 fs) × (non)observation
- Evidence around Ξ_{cc}^{++} , with local (global) significance $3.1\sigma (1.7 \sigma)$

Unblinded Ξ_{cc}^+ mass distribution

 Swtiching to event-selection designed for setting upper limit

Upper limits on Ξ_{cc}^+ production

• UL relateive to Λ_c^+ and Ξ_{cc}^{++} in the fiducial region $4 < p_T < 15$ GeV, 2<y<4.5

[SCPMA 63 (2020) 221062] 95% upper limit on $R(\Lambda_c^+)$ [×10⁻³]

Prospects of DCB in a nutshell

- LHCb (9 fb⁻¹, 2018)
 - $-\Xi_{cc}^{++}$ more decay modes observed
 - Ξ_{cc}^+ search w/ more decay modes
 - Ω_{cc}^+ evidence?
- LHCb upgrade (50 fb⁻¹, 2030)
 - Ξ_{cc}^{++} , O(10k) signals, excited states, new decays, CPV study?
 - $-\Xi_{cc}^+$, $\mathcal{O}(1k)$ signals, properties better known
 - $-\Omega_{cc}^+$, observation
- LHCb upgrade-II, another factor of 6

Summary

- LHCb has done world-leading works on doubly charmed baryons
 - Ξ_{cc}^{++} observation via $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$, mass, lifetime, production, decay: $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$
 - $-\Xi_{cc}^{+}$ appearing on the horizon
- With LHCb upgrade (50 fb⁻¹) & upgrade-II (300 fb⁻¹), much more will be done
- Continuous & strong supports from Chinese theorists greatly appreciated