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Outline
Motivation
• ALEPH and CLEO data on 𝜏 → 𝜐3𝜋

• 𝜏 → 𝜐3𝜋 offers a clean view of 𝑎!(1260) production

• 𝑎!(1420) triangle singularity in 𝑎! 1260 → .𝐾𝐾∗ → 𝑓#𝜋 → 3𝜋

Dispersive framework for three-pion decays 

• construction by unitarity and analyticity

• phase-shifts with good accuracy available

• integral equations for 𝑎! → 3𝜋
Numerical calculation
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𝝉 → 𝝊𝟑𝝅 decay

𝜏!
𝜐

𝑊!

𝜋!

𝜋!

𝜋"ALEPH data on 𝜏 → 𝜐3𝜋
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The spectral function for the 3𝜋 final state
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• accurate measurements of the mass distribution

• component 𝐽!" = 0#$ is suppressed by the 

PCAC

• the 𝐽!" = 1$$ is dominant 

ALEPH Collaboration, Phys. Rept. 421, 191(2005).
J. H. Kuhn and E. Mirkes, Z. Phys. C 56, 661 
(1992) 
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𝝉 → 𝝊𝟑𝝅 decay

𝜏!
𝜐

𝑊!

𝜋!

𝜋!

𝜋"
Final-state interactions in hadronic three-body 

decays play essential role 

• three-body unitary framework used to describe 𝟑𝝅 interaction

+ + + ⋯

Daniel Sadasivan et al., Phys. Rev. D 105, 054020 (2022)

• 𝒂𝟏(𝟏𝟐𝟔𝟎) generated from 𝟑𝝅 interaction

• approximate three-body unitary JPAC Collaboration, Phys. Rev. D 98, 096021 (2018)
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𝝉 → 𝝊𝟑𝝅 decay

𝜏!
𝜐

𝑊!

𝜋!

𝜋!

𝜋"• model of this work 𝝉 → 𝝊𝟑𝝅 decay
𝑑Γ
𝑑𝜎 = cons. (𝑚%

& − 𝜎)&7
'

|
𝐴'(𝜎)

𝜎 − 𝑚(!
(*)& + Σ(𝜎)

|& 𝑑Φ,

• unitarity relation of 𝒂𝟏 → 𝟑𝝅 N. Khuri, S. Treiman, Phys. Rev. 119, 1115 (1960) 

• self-energy Σ(𝜎)

+ + ⋯
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Three-body decay 𝒂𝟏 → 𝟑𝝅
scattering region decay region 

continuation in
𝜎 and s

dispersive treatment
a

b

c

d
=

a c

b d
+

a b

c d
+

a c

d b

s-channel t-channel u-channel

Cartesian isospin indices 

amplitude can be decomposed as 

𝐴#
$ %&'((𝑠, 𝑡, 𝑢) = .𝐴 #

$ %&'( 𝑠, 𝑡, 𝑢   + Σ#!(−1)#
! 𝑑#!#

) 𝜔* .𝐴 #!
* %'&( 𝑡, 𝑠, 𝑢  + Σ#!(−1)#

! 𝑑#!#
) 𝜔+ .𝐴 #!

+ %(&' 𝑢, 𝑡, 𝑠

𝜎 < 3𝑚,
𝑠 ∈ [ (𝜎 + 𝑚,)- , ∞]

𝜎 > 3𝑚,
𝑠 ∈ [ 4𝑚,

- , (𝜎 − 𝑚,)-]

𝜎 is three-body
invariant mass
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From unitarity to integral equations 
• unitarity relation

Disc 𝐴=
> (𝑠, 𝑡, 𝑢)  = ?(@)

ABC! ∫𝑑Ω
D 𝑇∗(>) (𝑠, 𝑡DD, 𝑢′′)  ×  𝐴=

> (𝑠, 𝑡′, 𝑢′) 

𝐴'
- 𝑠, 𝑡, 𝑢 = I𝐴 '

(-) 𝑠, 𝑡, 𝑢 + Σ'"(−1)'
"𝑑'"'
. 𝜔/ I𝐴 '"

(-") 𝑡, 𝑠, 𝑢 0
&
𝐶--"+ Σ'"(−1)'

"𝑑'"'
. 𝜔1 I𝐴 '"

-" 𝑢, 𝑡, 𝑠 0
&
𝐶--"

Disc 𝑎L=
> (𝑠)  = 𝜌 𝑠 𝜏L

(>) 𝑠 𝑎L=
> 𝑠 + >𝑎L=

> 𝑠

left-hand cut right-hand cut 

.𝐴 #
(/) 𝑠, 𝑡, 𝑢  = Σ1 2𝑗 + 1 𝑑#2

1 𝜃$ 𝑎1#
(/)(𝑠)

𝑇 / 𝑠, cos𝜃$ = 32𝜋G
342

5

2𝑙 + 1 𝑃3 cos𝜃$ 𝜏3
(/) 𝑠

• kinematic singularities arising from the kinematics (spinor)
kinematic singularities free (KSF) amplitude

𝑎"#
$ 𝑠 = (#!

"/$ & )%&"(#'
"/$ & )%

& ( /$
  $𝑎!"

# 𝑠
𝜆6
7/- 𝑠 = 𝜆(𝑠,𝑀-, 𝑚,

-)

𝜆,
7/- 𝑠 = 𝜆(𝑠,𝑚,

- , 𝑚,
-)

Källén or triangle function 

JPAC, Phys. Rev. D 101, 054018 
(2020) 
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From unitarity to integral equations 
• unitarity relation
Disc ?𝑎L=

> (𝑠)  = 𝜌 𝑠 𝜏L
(>) 𝑠 ?𝑎L=

> 𝑠 + @𝑎L=
> 𝑠

left-hand cut right-hand cut 

• homogeneity contribution 

?𝑎L=
> 𝑠 = 𝑃 𝑠 Ω 𝑠 = 𝑃 𝑠 exp[@

C ∫BM$
%

N O&
' @(

@( @( P@ PQR
d𝑠′]  

R. Omnès, Nuovo Cim. 8, 316 (1958) 
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Integral equations 
• unitarity relation

Disc ?𝑎L=
> (𝑠)  = 𝜌 𝑠 𝜏L

(>) 𝑠 ?𝑎L=
> 𝑠 + @𝑎L=

> 𝑠

?𝑎L=
> 𝑠 = 𝑃 𝑠 + @)

C
 ∫BM$

%
N U@(

@()
VWX O&

' ( @()Y*+,&
' ( .()

(@( P @ PQ R)
?𝑎L=
> 𝑠 + @𝑎L=

> 𝑠

!𝑎NO
P 𝑠 = ΩNP 𝑠 𝑃 𝑠 +

𝑠Q

𝜋
 )
RS2

3

T 𝑑𝑠U

𝑠UQ
sin 𝛿NP ( 𝑠U)

|ΩNP|(𝑠U − 𝑠 − 𝑖 𝜀)
5𝑎NO
P 𝑠U

A. V. Anisovich and H. Leutwyler, Phys. Lett. B 375, 
335 (1996)

It does not determine the amplitude uniquely 
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• inhomogeneities !𝑎%&
' 𝑠

5𝑎NO
P 𝑠 = (−1)O ∑P4,O4,N4 2 𝑗U + 1 𝐶PP4 ∫𝑑 cos𝜃 ′ @𝐶PP4

NN4 𝑠, 𝜃U  @𝑑O V
N 𝜃U @𝑑 O4V

N4 𝜃WU !𝑎N4O4
(P4) 𝑡′

𝐶//! =
1

(2𝐼 + 1) Σ%,&,','𝑃%,&,',(
/ 𝑃%,&,',(/!

𝑑#2
1 𝜃 = ( sin 𝜃 ) # \𝑑# 2

1 𝜃

\𝐶//!
11! 𝑠, 𝜃 = ( sin-𝜃) # 𝐾1#

!7 𝑠, 𝜃 𝑑#! #
7 𝜔* 𝑠, 𝜃 𝐾1!#! 𝑡 𝑠, 𝜃 , 𝜃* 𝑠, 𝜃

𝐾1# 𝑠, 𝜃 = (𝑠!7/- sin 𝜃)|#| (𝜆;
7/- 𝑠 )|1!7 |(𝜆,

7/- 𝑠 )1

5𝑎NO
P 𝑠 = (−1)O C

P4,O4,N4
2 𝑗U + 1 𝐶PP4

2𝑠

𝜆^
Q/` 𝑠 𝜆a

Q/` 𝑠
)𝑑 𝑠′ 𝐾 𝑠, 𝑠U !𝑎N4O4

(P4) 𝑠′

cos 𝜃U → 𝑠′

singularities
𝑛 = 1,3,5

Singularities

𝑠< = (𝑀- + 3𝑚,
- − 𝑠)/2 + 𝜆6

7/- 𝑠 𝜆,
7/- 𝑠 /(2𝑠) cos 𝜃<
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Decay region
• continuation into the decay region 

• 𝜎 → 𝜎 + 𝑖 𝛿
J. B. Bronzan and C. Kacser, 
Phys. Rev. 132, 2703 (1963) 

• path deformation needed  

𝜎 < 3𝑚a
𝜎 > 3𝑚a

Integration does not run over 
the cut 

Integration does run over the cut 
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Z𝑎5' 𝑠 = Ω 𝑠 𝑃 𝑠 +
𝑠6

𝜋  ^
78#

$

9 𝑑𝑠:

𝑠:6
sin 𝛿5- ( 𝑠:)

|Ω|(𝑠: − 𝑠 − 𝑖 𝜀) c𝑎5'
- 𝑠:

• Decay amplitude 𝐴= (𝑠, 𝑡, 𝑢)

• Self-energy Σ(𝜎) + +

𝑎5' 𝑠 = ('%
!/$ ; )'(!('#

!/$ ; )'

; ) /$   Z𝑎5' 𝑠.𝐴 # 𝑠, 𝑡, 𝑢  = Σ1 2𝑗 + 1 𝑑#2
1 𝜃$ 𝑎1#(𝑠)

𝐴# (𝑠, 𝑡, 𝑢) = .𝐴 # 𝑠, 𝑡, 𝑢   + Σ#!(−1)#
! 𝑑#!#

) 𝜔* .𝐴 # 𝑡, 𝑠, 𝑢

+

ImΣ 𝜎 ~ ∫Σ#|𝐴#(𝑠, 𝑡, 𝑢)|- 𝑑𝑠𝑑𝑡 Σ 𝜎 ~
𝜎
𝜋
i
=>"

#

5 ImΣ 𝜎′
𝜎<( 𝜎< − 𝜎 − 𝑖𝜀 ) 𝑑𝜎 Real 𝑠, 𝑡, 𝑢 and 𝜎

ImΣ 𝜎 ~ ∫Σ#𝐴#(𝑠, 𝑡, 𝑢) ∗ 𝐴#
(?@ABC) (𝑠, 𝑡, 𝑢) 𝑑𝑠𝑑𝑡 Complex 𝑠, 𝑡, 𝑢 and 𝜎

Only 𝑰 = 𝟏, 𝑱 = 𝟏 𝝅𝝅 scattering 
constrained

Amplitude structure
𝑎no → 𝜋o(𝑝n) 𝜋o 𝑝` 𝜋p 𝑝q
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Tan𝛿/47(𝑠) =
𝑠 − 4𝑚,

-

𝑠
𝑠 − 4𝑚,

-

4𝑚,
- (𝑎 + 𝑏

𝑠 − 4𝑚,
-

4𝑚,
- ) A. Schenk, Nucl.Phys.B 363, 97 (1991)

G. Colangelo, J. Gasser and H. Leutwyler,
Nucl.Phys.B 603, 125 (2001)

Im 𝛿-<0 𝑠Re 𝛿/47 𝑠

Branch point: pole of 𝜌 meson

𝛿/47 𝑠 = 7
-D
log 7 " D EF@G$%&($)

7 ! D EF@G$%&($)
 

• Analytic structure of 𝛿>e! 𝑠
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• Analytic structure of omnès function Ω 𝑠

Ω 𝑠 = exp[;
=∫78#

$
9 >'

* ;"

;" ;" #; #?@
d𝑠′]  First Riemann sheet

Second Riemann sheet Ω(AA) 𝑠 = exp[;
=∫78#

$
9 >'

* ;"

;" ;" #; #?@
d𝑠: + 𝑖𝛿-<0 𝑠 ]  

Z𝑎5' 𝑠 = Ω 𝑠 𝑃 𝑠 +
𝑠6

𝜋  ^
78#

$

9 𝑑𝑠:

𝑠:6
𝑒#?>*+! ; sin 𝛿5- ( 𝑠:)
Ω 𝑠′ (𝑠: − 𝑠 − 𝑖 𝜀) c𝑎5'

- 𝑠:

• Analytic structure of singularities free amplitude ?𝑎L= 𝑠

First Riemann sheet

Across two-body cut Z𝑎5'
(--) 𝑠 = Ω(AA) 𝑠 𝑃 𝑠 +

𝑠6

𝜋  ^
"

𝑑𝑠:

𝑠:6
𝑒#?>*+! ; sin 𝛿5- ( 𝑠:)
Ω 𝑠′ (𝑠: − 𝑠 − 𝑖 𝜀) c𝑎5'

- 𝑠:

Contour deformation (Pick
up a residue)
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• Three-body and complex two-body cut
Σ 𝜎 ~

𝜎
𝜋
i
=>"

#

5 ImΣ 𝜎′
𝜎<( 𝜎< − 𝜎 − 𝑖𝜀 ) 𝑑𝜎ImΣ 𝜎 ~ ∫Σ#𝐴#(𝑠, 𝑡, 𝑢) ∗ 𝐴#

(?@ABC) (𝑠, 𝑡, 𝑢) 𝑑𝑠𝑑𝑡 Complex 𝑠, 𝑡, 𝑢 and 𝜎

𝑠 ∈ [2𝑚,
- , ( 𝜎 − 𝑚, )-]

Ω(AA) 𝑠 = exp[;
=∫78#

$
9 >'

* ;"

;" ;" #; #?@
d𝑠: + 𝑖𝛿-<0 𝑠 ]  

Z𝑎5'
(--) 𝑠 = Ω(AA) 𝑠 𝑃 𝑠 +

𝑠6

𝜋
 ^
"

𝑑𝑠:

𝑠:6
𝑒#?>*+! ; sin 𝛿5- ( 𝑠:)
Ω 𝑠′ (𝑠: − 𝑠 − 𝑖 𝜀)

c𝑎5'
- 𝑠:

Zero

Zero

Branch point

Im 𝜎

Re 𝜎0
-1.0

0
9𝑚,

-

( 𝑚H
IJ3K + 𝑚, )-

…

1.0
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Phase-shift input
𝑃-wave, 𝐼 = 1
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√
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Hyams

B. Hyams et al., Nucl.Phys.B 64, 134 (1973) 

𝜋𝜋 scattering constrained by analyticity and unitarity 

R. Garcı́a-Martı́n et al., Phys. Rev. D 83, 074004
(2011)

Roy equations = partial-wave dispersion 
relations + crossing symmetry + unitarity 

Schenk parameterization
A. Schenk, Nucl.Phys.B 363, 97 (1991)
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Numerical results
𝒂𝟏o → 𝝅o(𝒑𝟏) 𝝅o 𝒑𝟐 𝝅p 𝒑𝟑

Dalitz plots 

𝑚0,
& [GeV&] 𝑚7L

- [GeV-] 

𝑚
&,&

[G
eV

& ]
 

𝑚
&,&

[G
eV

& ]
 

𝑀 = 1.1GeV 𝑀 = 1.3GeV
Dalitz plot shows 𝜌-resonance bands 
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Numerical results

0.5 1.0 1.5 2.0 2.5
0.0

0.1
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s[Gev2]

dΓ
/d
s[
ar
b.
un
its
]

𝑑Γ
𝑑𝜎 = cons. (𝑚M

- − 𝜎)-G
#

|
𝐴#(𝜎)

𝜎 − 𝑚%&
- + 𝑖ImΣ(𝜎)

|- 𝑑ΦL

𝜒-/d.o.f	=220.7/(77-3)
𝑚%&=	1.253	GeV

ALEPH data

ImΣ 𝜎 = 7
-
7
L ∫Σ#|𝐴#(𝑠, 𝑡, 𝑢)|

- 𝑑ΦL

𝑑Γ
𝑑𝜎 = cons. (𝑚M

- − 𝜎)-G
#

|
𝐴#(𝜎)

𝑆 − 𝑚%&
(2)- + Σ(𝜎)

|- 𝑑ΦL

𝜒-/d.o.f	=143.3/(77-3)
𝑚%&
(2)=	3.24	GeV
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s[Gev2]

dΓ
/d
s[
ar
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ALEPH data

Σ 𝜎 =
𝜎
𝜋
i
=>"

#

5 ImΣ 𝜎′
𝜎<( 𝜎< − 𝜎 − 𝑖𝜀 ) 𝑑𝜎′

Fit A Fit B

s[GeV2] s[GeV2]
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Summary

• Only 𝑃-wave 𝜋𝜋 scattering is included
• The 3𝜋 mass distribution was fitted

• The pole position will be explored
• 𝑎!(1420) triangle singularity in 𝑎! 1260 → S𝐾𝐾∗ → 𝑓#𝜋 → 3𝜋

will be studied

Thank you !


