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Nuclear physics on
a lattice

T. Lähde & UGM

Nuclear Lattice Effective Field Theory - An Introduction

Springer Lecture Notes in Physics 957 (2019) 1 - 396 [2nd edition in the works]
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4The nucleus as a quantum laboratory

• The nucleus is a challenging and fascinating many-body system

↪→ non-perturbative strong interactions balanced by the Coulomb force

↪→ many interesting phenonema: drip lines, clustering, reactions, ...

↪→ a plethora of few-body/many-body methods already exists

• Macroscopic nuclear matter = neutron stars

↪→ gained prominence again in the multi-messenger aera

↪→ must be able to describe these with the same methods

• I will advocate here a new quantum many-body appraoch

↪→ synthezies chiral EFT w/ stochastic methods

↪→ allows to tackle nuclear structure and reactions

↪→ allows to access the multiverse
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Foundations
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6Nuclear lattice effective field theory (NLEFT)
p

p

n

n a

1−2 fm

• new method to tackle the nuclear many-body problem

• discretize space-time V = Ls × Ls × Ls × Lt:
nucleons are point-like particles on the sites

• discretized chiral potential w/ pion exchanges
and contact interactions + Coulomb

→ see Epelbaum, Hammer, UGM, Rev. Mod. Phys. 81 (2009) 1773

• EFT on the lattice, maximal momentum:

pmax =
π

a
' 315− 630 MeV [UV cutoff]

• strong suppression of sign oscillations SU(4)
due to approximate Wigner (spin-isospin) symmetry

Wigner, Phys. Rev. 51 (1937) 106; Chen et al., Phys. Rev. Lett. 93 (2004) 242302

↪→ works well for even-even nuclei

↪→ we still need another method Shen et al., Nature Commun. 14 (2023) 2777
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7Wave function matching
Elhatisari et al., Nature 630 (2024) 59

• A new quantum many-body method: Bring a complex Hamiltonian Hχ close to a

simple one HS (with HS essentially free of sign oscillations)

↪→ treat HS non-perturbatively & H′χ −HS in perturbation theory

• Graphical representation of w.f. matching

R

directly
computable
Hamiltonians

unitary 
transformation

⇒ Efficient suppression of sign oscillations, applicable in many fields!
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8Pinhole algorithm
Elhatisari et al., Phys. Rev. Lett. 119 (2017) 222505

• Solution to the CM-problem:

track the individual nucleons using the pinhole algorithm
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𝜏𝑖 = 0 

𝜏𝑖 = 𝜏 

𝜏/2 𝑖1, 𝑗1 
𝑖8, 𝑗8 

𝑖5, 𝑗5 

𝑖4, 𝑗4 𝑖6, 𝑗6 

𝑖3, 𝑗3 
𝑖7, 𝑗7 

𝑖2, 𝑗2 

• Insert a screen with pinholes with spin & isospin labels
that allows nucleons with corresponding spin &
isospin to pass = insertion of the A-body density op.:

ρi1,j1,···iA,jA(n1, · · · nA)

= : ρi1,j1(n1) · · · ρiA,jA(nA) :

• MC sampling of the amplitude:

Ai1,j1,···iA,jA(n1, . . . ,nA, Lt)

= 〈ΨA(τ/2)|ρi1,j1,···iA,jA(n1, . . . ,nA)|ΨA(τ/2)〉

• Allows to measure proton and neutron distributions & A-body correlations

• Resolution scale ∼ a/A as cm position rcm is an integer ncm times a/A

• Induces some sign oscillations, partiularly in p/n-rich nuclei

HMC updates for auxiliary/pion fields

Metropolis updates for pinholes
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9Partial pinhole algorithm
Ren, Elhatisari, UGM, PRL 135 (2025) 152502

• Nuclear radii can be expressed in terms of two-particle correlations Gpp, Gpn, Gnn

〈r2〉 =
∑
c1,c2

〈: ρi1j1(n1)ρi2j2(n2) :〉(n1 − n2)2 , ck = (ik, jk, nk)

↪→ the number of pinholes needed in such a calculation can be reduced:

ρM(c1, . . . , cM) =
(A−M)!

A!
: ρi1j1(n1) · · · ρiM jM (nM) : ,

with
∑
c1,...,cM

ρM = 1

• However, ρM |ΨA〉 is not a Slater determinant, even if |ΨA〉 is

↪→ use the rank-one operator method for ρM Ma et al. (2024)

: ρi1j1(n1) · · · ρiM jM (nM) :

= lim
ε→∞

1

εM
: eε[ρi1j1

(n1)+··· ] :

↪→ much improved signal allows for a more precise extraction 0.0 0.1 0.2 0.3 0.4
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The chiral Hamiltonian
at N3LO
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11The chiral Hamiltonian

• Chiral Hamiltonian with smeared N3LO (2N) and N2LO (3N) interactions�



�
	H = K + VOPE + VC + V Q3

3N + V Q4

2N +WQ4

2N

−K – kinetic energy term with correct nucleon dispersion relation (FFT)

− VOPE – regulated OPE (similar to continuum case) Reinert et al. (2018)

− VC – Coulomb interaction

− V Q3

3N – 3N interaction at N2LO→ to be discussed later

− V Q4

2N – 2N short-range interaction at N3LO (2π exchange absorbed) → next2 slide

−WQ4

2N – 2N Galilean invariance restoration (GIR) interaction at N3LO Li et al. (2019)

• Smearing explained in what follows

• Throughout, we use a = 1.32 fm, corresponding to the magic momentum

cutoff Λ ' 470 MeV Lee et al. (2021)
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12Smeared operators & densities

• Annihilation/creation operators ai,j, a
†
i,j , spin i = 0, 1(↑, ↓) and isospin j = 0, 1(p, n)

• Non-locally smeared annihilation and creation operators, velocity-independent:

ã
(†)
i,j (~n) = a

(†)
i,j (~n) + sNL

∑
|~n′−~n|=1

a
(†)
i,j (~n′) , sNL = 0.1− 0.5 Lu et al. (2019,2020)

• Most general form of the point-like density operators, velocity-dependent:

ρ̃(d)(~n) =
∑
i,j

ã†i,j(~n) ãi,j(~n) + sL

d∑
|~n−~n′|2=1

∑
i,j

ã†i,j(~n
′) ãi,j(~n

′) , sL = 0.05− 0.15

Elhatisari et al., (2016), Lu et al. (2019,2020)

• In the NN system, local and non-local interactions are equally valid

• However, α-α scattering is very sensitive to the degree of locality of the NN interaction
Elhatisari et al., (2016)

↪→ purely nonlocal forces suppress the α-α interaction

↪→ thus require stronger 3NFs in heavier nuclei to compensate for this
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13Two-pion exchange potential

• Here, we absorb the TPEP in the short distance LECs→ works, see also Li et al. (2018)
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↪→ needs to be improved (work underway)

↪→ especially important for getting consistent currents beyond LO
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Determination of 3NFs
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15Three-nucleon forces

• Basic topologies at N2LO: #

"

 

!
• 2-pion topology entirely fixed from πN scattering

• Smearing of the one-pion and contact term topologies

↪→ more LECs (see below)

↪→ effectively higher-order op’s

12

ω̃
(d)
I (εn) =

∑

i,j,j→=0,1

ã
†
i,j(εn) [ϑI ]j,j→ ãi,j→(εn) + sL

d∑

|ωn→ωn→|2=1

∑

i,j,j→=0,1

ã
†
i,j(εn

↑) [ϑI ]j,j→ ãi,j→(εn
↑) , (21)

where the nonlocally smeared annihilation and creation operators with the nonlocal smearing parameter

sNL are given as,

ãi,j(εn) = ai,j(εn) + sNL

∑

|ωn→→ωn|=1

ai,j(εn
↑). (22)

TABLE II: The locally smeared three-nucleon one-pion exchange potential. The pion exchange is depicted by a blue

dashed line.

Coefficients c
(0)
D c

(1)
D c

(2)
D c

(3)
D

sL 0.07 0.07 0.07 0.07

RsL (fm) 0.00 1.32 1.86 2.28

Shape
ω ω ω ω

ω ω ω ω

• On the market so far (more in the works!)

↪→Fp = 8, only local smearings (next slide) Elhatisari et al. (2024)

↪→Fp = 6, a few non-locally smeared ops Ren et al. (2025)
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16Locally smeared three-nucleon forces

• Most used set with Fp = 8 locally smeared op’s:

• Note the two additional SU(4) symmetric terms V (l,t)
cE motivated by cluster EFT
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17Determination of the 3NFs

• Main ingredients to fit the parameters of the 3NFs:

− Objective function: Gaussian likelihood for selected binding energies

L(~β, σ2) ∝
∏
n∈S

exp

− 1

2σ2
n

[
zexp
n − zth

n,NP −
∑
k∈Fp

βk
∂zth

n

∂βk

]2
βk = 3NF LECs, S = subset of nuclei, Fp = chosen set of p ∈ {6, 7, 8} 3NF ops

− Number & sampling of observables: to avoid bias, perform MCMC over

(i) subsets S and (ii) operator sets Fp with update of ~β

− Choice-of-observables uncert.: sensitivity to chosen set of energies & subset of 3NFs

− Expected N3LO accuracy: EFT truncation uncertainties either using history matching

or the EKM procedure with Q ' 0.3− 0.4

HM: Vernon et al. (2018), Hu et al. (2022), Elhatisari et al. (2024)
EKM: Epelbaum et al. (2015)
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18Fixing the 3NF LECs: Binding Energies at N3LO
Elhatisari et al., Nature 630 (2024) 59

• Quality of the fit: RMSD(S) =

√√√√ 1

MS

∑
i∈S

(
Ei − E

exp
i

Ai

)2

with size MS

↪→ here, RMSD = 0.079 MeV = 1.11% of the average BE per nucleon
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Applications to structure,
reactions and matter
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20Prediction: Charge radii at N3LO
Elhatisari et al., Nature 630 (2024) 59

• Charge radii (a = 1.32 fm, statistical errors can be reduced)
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↪→ no radius problem! but radii to be improved, see later
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21Prediction: Neutron & nuclear matter at N3LO
Elhatisari et al., Nature 630 (2024) 59

• Equation of State (EoS) of pure neutron matter & nuclear matter (a = 1.32 fm)
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↪→ can be improved using twisted b.c.’s
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22Some predictions based on high-fidelity forces
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23Prediction: Tin isotopes close to the proton dripline
Hildenbrand et al., 2509.08579 [nucl-th]
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765 786.5 795 808.5

• First application using the Exascale system

JUPITER @ FZJ

• Signal still strong enough for even-odd isotopes

↪→ can extract the BEs of 99Sn to 102Sn

Nucleus N3LO N3LO* Exp.
99Sn 765±8 804±8 807.9± 0.6

100Sn 786.5±3.0 825.2±3.0 825.16±0.24
101Sn 795±10 834±10 836.39±0.30
102Sn 808.5±3.4 848.1±3.4 849.09±0.10

Isotopes N3LO N3LO* Exp.
102-101 13.5±10.6 14.1±10.6 12.7±0.3
102-100* 22.5±4.6 22.9±4.6 23.9±0.3
102-99 43.5±8.7 44.1±8.7 41.2±0.6
101-100 8.5±10.4 8.9±10.4 11.2±0.4
101-99* 30.0±12.8 30.1±12.8 28.5±0.7
100-99 21.5±8.6 21.2±8.6 17.3±0.7
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24Prediction: Multi-neutron correlations in light nuclei I
Zhang, Elhatisari, UGM, 2512.18849 [nucl-th]
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• 3n and 4n clusters much thought about

↪→ breakup, knockout & double charge exchange reactions

↪→ investigate multi-n correlations in light nuclei

• Use 282 chiral interactions to predict:

Egs(
6H) = −4.94± 0.14 MeV

Egs(
7H) = −5.29± 0.16 MeV

• Marginal posteriors suggest:

Sn(7H) = 0.35± 0.32 MeV

↪→ sequential 6H+n decay disfavored

↪→ enhances the relevance of multi-n correlations

↪→ two-neutron correlations clearly visible
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25Prediction: Multi-neutron correlations in light nuclei II
Zhang, Elhatisari, UGM, 2512.18849 [nucl-th]
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• Define four-neutron correlations via:

ρ4(θ1, ϕ1, θ2, ϕ2; Θ, ζ)

=

(ij),(kl)∑
i<j, k<l

〈
δ(θij − θ1) δ(ϕij − ϕ1)

×δ(θkl − θ2) δ(ϕkl − ϕ2)

×δ(Θij,kl −Θ) δ(ζij,kl − ζ)
〉

,

• The four-neutron correlations show:

↪→ symmetric 2n-2n configuration is dominant
(∼ 95%, Θ ' 140◦ − 160◦)

↪→ compact tetraneutron configuration small
(∼ 5%, Θ ' 60◦ − 90◦)

↪→ must consider the 2n-2n config. in exp analysis!

– Ulf-G. Meißner, Status and perspectives of NLEFT – CRC-WS, ITP/CAS, Beijing, Jan. 20., 2026 –



26Prediction: Searching for the tetraneutron
Wu, Elhatisari, UGM, Shen, Geng, Kim, 2601.01801 [nucl-th]
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• Latest tetraneutron sighting in 4He(8He,8Be)4n
Duer et al., Nature 606 (2022) 678

↪→ analysis presumably too simplified,
various re-analyses show no resonance

↪→ most theory analyses do not give a 4n resonance

• Search on the lattice (SU(4) and N3LO interactions)

↪→ volume-dependence shows no sign of a resonance

↪→ 2n-2n scattering shows a shallow attraction
in the momentum range p ' 60− 85 MeV
corresponds to confined 4n energies of 1.7− 3.3 MeV
similar to the 4n peak energies in experiment
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27Prediction: Neutron-alpha scattering
Elhatisari, Hildenbrand, UGM, J. Phys. G 52 (2025) 125102

-90

-60

-30

 0

 0  3  6  9  12  15

δ 0
(d

eg
re

es
)

E
n

(MeV)

-90

-60

-30

 0

 0  3  6  9  12  15

δ 0
(d

eg
re

es
)

E
n

(MeV)

2
S1/2 from R-matrix

N3LO (2N)

N3LO (2N+3N)

 0

 45

 90

 135

 0  3  6  9  12  15

δ 1
(d

eg
re

es
)

E
n

(MeV)

 0

 45

 90

 135

 0  3  6  9  12  15

δ 1
(d

eg
re

es
)

E
n

(MeV)

2
P3/2 from R-matrix

2
P1/2 from R-matrix

N3LO (2N)
N3LO (2N+3N)

• n-α scattering know to be a good testbed of 3NFs
Pieper, Pandharipande (1993), Quaglioni, Navratil (2008), Kravvaris et al. (2020), ...

• Use the time-honoured Lüscher approach

• Compare to R-matrix results
G. M. Hale, private communication (2023)

↪→ S-wave (2S1/2) well described when 3NFs are included

↪→ Large 2P3/2 well described when 3NFs are included

↪→ Visible deviation in the 2P1/2 wave for En ≥ 3 MeV

•What is the reason for the deviations in the
2P3/2-2P1/2 splitting?
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28Neutron-alpha scattering revisited
Elhatisari, Hildenbrand, UGM, J. Phys. G 52 (2025) 125102

• Investigate one possible reason: Choice of nuclei to fix the LECs?

• Perform MCMC searches to explore systematically the set of 8 3NF ops

and also reduce to sets with 6 and 7 ops and quantify the uncertainty using RSMD
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↪→ clearly, this is not the source of the problem

↪→ must improve the 3NFs!
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Towards improved 3NFs

– Ulf-G. Meißner, Status and perspectives of NLEFT – CRC-WS, ITP/CAS, Beijing, Jan. 20., 2026 –



30A minimal set of 3NFs
Ren, Elhatisari, UGM, PRL 135 (2025) 152502

• Consider sets of 6 3NF op’s (called minimal set)

No. V3N ’s
1 V

(0)
cE,sNL1 , V (3)

cD , [V
(0)
cE ]044, [V

(0)
cE ]224, [V

(0)
cE ]125, [V

(0)
cE ]145

2 [V
(1)
cE ]000, V (3)

cD , [V
(0)
cE ]044, [V

(0)
cE ]222, [V

(0)
cE ]114, [VcE,sL ]033

3 V
(0)
cE,sNL1 , V (3)

cD , [V
(0)
cE ]044, [V

(0)
cE ]224, [V

(0)
cE ]125, [V

(0)
cE ]235

4 V
(0)
cD , V (2)

cD , [V
(0)
cE ]044, [V

(0)
cE ]222, [V

(0)
cE ]224, [V

(0)
cE ]125

5 V
(1)
cD , V (3)

cD , [V
(0)
cE ]033, [V

(0)
cE ]044, [V

(0)
cE ]222, [V

(0)
cE ]125

6 V
(0)
cE,sNL1 , V (0)

cD , V (3)
cD , [V

(0)
cE ]044, [V

(0)
cE ]224, [V

(0)
cE ]125

7 V
(1)
cD , V (3)

cD , V (0)
cD,sNL2 , [V

(0)
cE ]044, [V

(0)
cE ]224, [V

(0)
cE ]125

8 V
(0)
cD , V (2)

cD , [V
(0)
cE ]044, [V

(0)
cE ]224, [V

(0)
cE ]125, [V

(0)
cE ]145

9 [V (0)
cE ]000, V (3)

cD , [V
(0)
cE ]224, [V

(0)
cE ]125, [VcE,sL ]044, [V

(0)
cE ]334

10 [V (0)
cE ]000, V (0)

cE,sNL3 , V (1)
cD , V (0)

cD,sNL3 , [V
(0)
cE ]224, [V

(0)
cE ]125

• contains also non-local operators (marked in blue)

• only some sets contain the SU(4) symmetric V (l,t)
cE [here: [V

(0)
cE ]144, [V

(0)
cE ]222]
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31Determination of the 3NF LECs
Ren, Elhatisari, UGM, PRL 135 (2025) 152502

• Fit to the BE of a selected number of nuclei and also include the 4He charge radius

3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 24 28 32 36 40

2

3
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6

7

8

9

10

 Experiment
 Minimal set of 3NFs
 Elhatisari et al. (2024)

↪→ Quality similar to the WFM 3NFs: RMSD = 0.101 MeV (1.4%) [0.093 MeV (1.1%)]

↪→ use these now for the calculation of selected oxygen radii
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32Radii of selected oxygen isotopes
Ren, Elhatisari, UGM, PRL 135 (2025) 152502

• Use the partial pinhole algorithm to study the radii of 16,17,18,20O with M = 4

Isotope NLEFT Exp.
16O 2.704(17) 2.699(5)
17O 2.709(15) 2.693(8)
18O 2.768(17) 2.776(2)
20O 2.810(32)

• Trend of the data reproduced: rch(16O) ' rch(17O) < rch(18O)

• Prediction for rch(20O)→ nice test
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Summary & outlook

• Nuclear lattice simulations: a new quantum many-body approach

→ based on the successful continuum nuclear chiral EFT

→ a number of highly visible results already obtained

• Recent developments

→ NN(N) interaction at N3LO w/ wave function matching

↪→ first promising results for nuclear structure, matter and scattering

↪→ first results for β-decays [ulitimately 0ν2β decays]

Elhatisari, Hildenbrand, UGM, Phys. Lett. B 859 (2024) 139086 + PKU group

↪→ hypernuclei & neutron stars are under investigation

Hildenbrand et al., Eur. Phys. J. A 60 (2024) 215; Tong et al., 2509.26148

• Improved 3NFs are being worked out ↪→ stay tuned!
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SPARES
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35Comparison to lattice QCD
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Accessible by 
Lattice EFT

neutron star crust

excited 
nuclei
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sign problem severe sign problem moderate

• For nuclear physics, NLEFT is the far better methodology!
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Transfer matrix method

• Correlation–function for A nucleons: ZA(τ) = 〈ΨA| exp(−τH)|ΨA〉

with ΨA a Slater determinant for A free nucleons

[or a more sophisticated (correlated) initial/final state]

• Transient energy

EA(τ) = − d

dτ
lnZA(τ)

→ ground state: E0
A = lim

τ→∞
EA(τ)

• Exp. value of any normal–ordered operatorO

ZOA = 〈ΨA| exp(−τH/2)O exp(−τH/2) |ΨA〉

lim
τ→∞

ZOA (τ)

ZA(τ)
= 〈ΨA|O |ΨA〉

• Excited states: ZA(τ)→ ZijA (τ), diagonalize, e.g. 0+
1 , 0

+
2 , 0

+
3 , ... in 12C

Euclidean time

𝛑 𝛑 

Eu
cl

id
ea

n
 t

im
e 

𝑎 

𝐿 
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37Configurations

⇒ all possible configurations are sampled
⇒ preparation of all possible initial/final states
⇒ clustering emerges naturally
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38Auxiliary field method

• Represent interactions by auxiliary fields (Gaussian completion):

exp

[
−
C

2

(
N†N

)2]
=
√

1
2π

∫
ds exp

[
−
s2

2
+
√
C s

(
N†N

)]

𝛑 𝛑 

Eu
cl

id
ea

n
 t

im
e 

𝒔 

𝒔𝑰 

𝒔𝝅 

�� ��optimally suited for parallel computing!
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Computational equipment

• Present = JUPITER + FRONTIER + ...

1 Exaflop
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40Prediction: Be isotopes
Shen et al., Phys. Rev. Lett. 134 (2025) 162503

• Systematic study of the Be isotopes & their radii & their em transitions:
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↪→ new method to quantify nuclear shapes

↪→ clusters, halos, molecular orbitals in one shot
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41Prediction: Isotope chains of carbon & oxyen
Song et al., Phys. Lett. B 872 (2026) 140086

• Towards the neutron drip-line in carbon and oxygen:

 4
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↪→ 3NFs of utmost importance for the n-rich isotopes!

↪→ universal features of neutron correlations
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Strongly correlated
electronic systems
in low dimensions
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43Why low-dimensional materials?

• At least one of the dimensions of the
material is small (∼ nanoscale)

• Quantum effects and strong correlations
induce novel phenomena (emergence)

• Novel quantum electronics

• Fault tolerant quantum computing

• Can be tackled by MC simulations & EFTs
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44Why strong correlations in low-d materials?

• Compare the Coulomb to the kinetic energy of an electron in a d-dimensional system:�
�

�

Γ =

EC

EK
≈
(
n0

nd

)1/d nd = electron density
n0 = (m∗e2/ε0)d = fiducial density
m∗ = effective mass, ε0 = dielectric constant

↪→ strength of electron correlations depends on the density of electrons
and the dimensionality of the system

↪→ Γ < 1 perturbative , Γ > 1 non-perturbative

↪→ in general, lower dimensions enhance correlations

• Graphene (2D) is a good example, linear dispersion gives for the electrons:

Γ ≈ 2− 3

↪→ the electrons in graphene are strongly interacting
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45Symmetries pertinent to low-d materials

• Time-reversal symmetry T : T 2 = ±1

t→ −t −→ E(k) = E(−k)

• Charge conjugation symmetry (or

particle-hole symmetry) C: C2 = ±1

↪→ Spectrum symmetric about zero:

E+(k) = −E−(−k)

• Chiral symmetry (or sublattice symmetry)

S : S2 = S E+(k) = −E−(k)

• No spontaneous symmetry breaking in d ≤ 2

↪→ no Goldstone modes
Mermin, Wagner, Phys. Rev. Lett. 17 (1966) 1133

⇒ Phases of matter classified topologically

↪→ all symmetry classes cataloged (for non-interacting systems) Chiu et al., Rev. Mod. Phys. 88 (2016) 035005
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46Localization in hybrid nanoribbons

• Consider armchair graphene nanoribbons (AGNRs), defined by the shape of their edges

• These can be fabricated!

7/9 ribbon

Rizzo et al. Nature 560 (2018) 204

13/15 ribbon
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47Localization in hybrid nanoribbons continued

• Lowest energy state in AGRNs exhibit localization

Cao et al., PRL 119 (2017) 076401

↪→

• Experimental evidence

Rizzo et al., ACS Nano 2021, 15, 12, 20633

• Potential applications: Topological quantum dots, fault-tolerant QC, ...

• But all theoretical analysis is based on non-interacting dynamics!

– Ulf-G. Meißner, Status and perspectives of NLEFT – CRC-WS, ITP/CAS, Beijing, Jan. 20., 2026 –



48A new type of localization in hybrid nanoribbons
Ostmeyer, Razmadze, Berkowitz, Luu, UGM, Phys. Rev. B 109 (2024) 195135

• Investigating the non-interacting model→ finding a new localization

↪→ standard lore: connect gapped AGNRs, but one gapped with one gapless also works!

7/9 hybrid = Fuji localization 9/11 hybrid = Kilimanjaro localization

Predicted before new form of localization!
Cao et al., Rev. Lett. 119 (2017) 076401 (2017)

↪→ new possibilities!
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49Localization in hybrid nanoribbons: Interacting systems
Luu, UGM, Razmadze, Phys. Rev. B 106 (2022) 195422

• Quantum MC simulations of the Hubbard model

H= − t
∑

〈i,j〉,σ=↑,↓

(
a†iσajσ + h.c.

)
+ U

∑
i

(
ni,↑ −

1

2

)(
ni,↓ −

1

2

)

• Localization persists w/ strong interactions, but energy depends on U
U = 1

U = 2

U = 3

U = 4

− also holds for other geometries!
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50Digression: Domain wall fermions

• These concepts have particle physics origins

• Domain wall fermions are allowing for representing chiral fermions on a lattice (LQCD)

Kaplan, Phys. Lett. B 288 (1992) 342

Kaplan, Phys. Rev. Lett. 132 (2024) 141603

Hybrid nanoribbons provide a physical
manifestation of domain wall fermions
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51An EFT for hybrid nanoribbons
Ostmeyer, Razmadze, Berkowitz, Luu, UGM, Phys. Rev. B 109 (2024) 195135

•We have all the ingredients for an EFT:

� Separation of scales

i.e. energy gap to the bulk states

� Identification of the relevant

low-energy degrees of freedom

i.e. the localized edge states

� Interaction terms constrained

by symmetries

� Power counting

with q some small momentum

of the/or inpinging on the dofs

↪→ let’s see how that works

H1D = −
∑
i

(
t
A

a
†
2i

a
2i−1

+ t
B

a
†
2i+1

a
2i+2

+ h.c.

)

δHi
T,C,S +O

(( q
δE

)i+1
)
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52Exploring the EFT: interacting case
Ostmeyer, Razmadze, Berkowitz, Luu, UGM, Phys. Rev. B 109 (2024) 195135

•We have a 1D EFT with the Hamiltonian

with staggered mass msσ3 as the

energy gap is symmetric about EF
plus particle hole & chiral symmetries

H1D = −
∑
k a
†
k

(
ms tAe

ik + tBe
−ik

tAe
−ik + tBe

ik −ms

)
ak

• Fit tA, tB from the non-interacting theory

↪→ Tune ms to the underlying theory ⇒ Predict spectrum of new geometries

2 4 6 8 10
m9

10 3

10 2

10 1

/(2
)

73/9m9

ms = 0.17(1)
ms = 0.051(6)
ms = 0.014(2)
ms = 0.0098(7)
ms = 0
U = 0
U = 3
U = 1
U = 0.1
U = 0.03

2 4 6 8 10
m7

10 3

10 2

10 1

/(2
)

7m7/98

U = 0
U = 3
U = 1
U = 0.1
U = 0.03
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53Localization in the SSH model
• Consider the renowned Su-Schrieffer-Heeger (SSH) model with even sites

Su, Schrieffer, Heeger, Phys. Rev. Lett. 42 (1979) 1698

• Localization/topology depends on the hopping parameters t1, t2

HSSH =
∑
i

(
t1c
†
i,Aci,B + t2c

†
i+1,Aci,B + h.c.

)
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54Localization in the SSH model: Experiments

• Topological t1 < t2 [t1 =v, t2 =w]

• Trivial t1 > t2 [t1 =v, t2 =w]

• Even site SSH model

• Different types of experiments

− Silicon quantum dots

Kiczynski et al., Nature 606 (2022) 694

− Artificial lattices

Meier et al., Nature Commun. 7 (2016) 13986

Ligthart et al., Phys. Rev. Res. 7 (2025) 012076

• Disadvantages:

− Sensitive to the parameter choice, e.g., t1 < t2

− Long enough chain to reduce wave function overlap

• Is there another/different way to generate localization in the SSH model?
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55Localization in the SSH model with odd sites
Wang, Luu, UGM, to be published

• Consider the SSH model with an odd number of sites

• Different types of localization for all (nonvanishing) hopping parameters t1, t2
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56Defect enginnering in the SSH model with odd sites
Wang, Luu, UGM, to be published

• Consider the SSH model with an odd number of sites

• Introduce defects = (A,B) or (B,A) pairs w/ a different coupling (diff. ions)

↪→ to have control, we need interactions
︸ ︷︷ ︸
a defect
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57The odd SSH model with interactions
Wang, Luu, UGM, to be published

• Add an onsite Hubbard interaction

HSSH+U = HSSH −
U

2

∑
x

(nx,↑ − nx,↓)2

• This generates localized spin-singlet centers (above some critical value of U ):

•With increasing coupling U , the spin centers are stronger localized

• Possible platforms:
(i) Magnetism and spintronics

(ii) Quantum computations and simulations

︸ ︷︷ ︸
spin singlet

↓ ↑
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58Excited states in the odd SSH model with interactions
Wang, Luu, UGM, to be published

• Can engineer even more exotic forms of localization:

Sz = 1
2 Eg.s.

Sz = 3
2 E3/2 ⪆ Eg.s.

Sz = 5
2 E5/2 ⪆ E3/2 ⪆ Eg.s.

⋮

↪→ Couple these different spin configurations (via an external magnetic field)

↪→ engineer and/or manipulate spin qubits, other applications?→ ideas welcome!
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59Graphene nanosystems with odd sites
Wang, Luu, UGM, to be published

• Similar to the SSH model:

− Two sites A, B in one unit cell

− Chiral (or sublattice) symmetry

• Consider such a systems with odd sites

− Similar to the SSH model with equal hoppings

↪→ Localized states at the edges!'

&

$

%
– Ulf-G. Meißner, Status and perspectives of NLEFT – CRC-WS, ITP/CAS, Beijing, Jan. 20., 2026 –



60Defect engineering graphene nanosystems
Wang, Luu, UGM, to be published

• Introducing defects as before allows for a fine control of the edge states

↪→ Consequences/applications need to be investigated→ ideas please!

– Ulf-G. Meißner, Status and perspectives of NLEFT – CRC-WS, ITP/CAS, Beijing, Jan. 20., 2026 –
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Intermediate Summary

• Low-d materials are amenable to MC simulations
→ borrow methods from lattice field theory in QCD
→ allows for EFTs for quicker access

• Recent developments
→ Localization in AGNRs
↪→ new type of localization found (Kilimanjaro)
↪→ localization persists in the presence of strong interactions

→ A new twist on the SSH model - odd number of sites
↪→ localization of all values of the hopping parameters
↪→ defects allow for new forms of localization
↪→ control of spin centers with interactions possible

→ Similar engineering possible in graphene nanosystems

↪→ stay tuned!

– Ulf-G. Meißner, Status and perspectives of NLEFT – CRC-WS, ITP/CAS, Beijing, Jan. 20., 2026 –
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Summary & outlook

• Strongly interacting fermion systems pose severe challanges

↪→ can be tackled w/ EFT and/or MC (stochastic) methods

• Large progress made in the last few years:

↪→ new insights into nuclear structure and nuclear matter

↪→ new insights into toplogical matter and how to engineer it

• More interactions between fields is needed to make further progress!

�� ��Thank you for your attention!
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– Ulf-G. Meißner, Status and perspectives of NLEFT – CRC-WS, ITP/CAS, Beijing, Jan. 20., 2026 –


