惠州强子谱仪(HHaS)合作组2025年年会 2025.11.28-30, 惠州

Progress on chiral EFT studies of eta and eta'



Zhi-Hui Guo (郭志辉)

Hebei Normal University (河北师范大学)

Reminder of chiral symmetry of QCD

- QCD with $m_{u,d,s} = 0$ at classic level: $U_L(3) \otimes U_R(3)$.
- $U_V(1) \equiv U_{L+R}$: conserved baryon number.
- $U_A(1) \equiv U_{L-R}$: violated at the quantum level QCD $U(1)_A$ anomaly \Rightarrow massive η_0 .
- $SU_L(3) \otimes SU_R(3) \rightarrow SU_V(3)$: Goldstone π , K, η_8 [$SU(3) \chi PT$]. [Gasser and Leutwyler, NPB'85]
- $N_C \to \infty$: $M_{\eta_0}^2 \sim \mathcal{O}(1/N_C)$, η_0 becomes Goldstone. [Witten, NPB'79]
- U(3) $\chi PT: \pi, K, \eta_8 \text{ and } \eta_0, \delta \sim p^2 \sim m_q \sim 1/N_C.$
- Main decay channels: $\eta \to \gamma \gamma \ (\sim 40\%)$ and $\eta' \to \rho \gamma \ (\sim 30\%)$ **Driven by the EM anomaly**

 η/η ': ideal laboratory to study many striking features (chiral symmetry, large Nc, axial anomalies) of SM in the low energy

A quick glance at η and η'

Narrow-width hadrons:

$$\Gamma_{\eta}=1.31~keV~(M_{\eta}=548~MeV), \quad \Gamma_{\eta'}=188~keV~(M_{\eta'}=958~MeV)~,$$
 to be compared with $\Gamma_{\rho}=140~MeV~(M_{\rho}=775~MeV).$

- \triangleright Quantum numbers $I^GJ^{PC}=0^+0^{-+}$
 - C & P eigenstates;
 - all additive quantum numbers are zero: I=J=S=C=B=Q=L=0
- \triangleright Precicion study in η/η': discrete symmetry (*C*, *P*, *CP*, *G*, ...) test in flavor-conserving processes (weak interaction from SM highly suppressed).
 - Complentary to flavor-changing cases, such as those in K, D, B, hadrons.
- > Opportunities to search the light BSM particles in the MeV-GeV range.

U(3) χ PT: a reliable framework for π , K, $\eta \& \eta'$

- Power counting: $\delta \sim p^2 \sim m_q \sim 1/N_C$, also dubbed as large $N_C \chi PT$
- Axion can be also systematically included in $U(3) \chi PT$

$$\mathcal{L}_{\text{QCD}}^{\text{axion}} = \bar{q}(i\not\!\!D - M_q)q - \frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \frac{1}{2}\partial_{\mu}a\partial^{\mu}a - \frac{1}{2}m_{a,0}^2a^2 + \boxed{\frac{a}{f_a}\frac{\alpha_s}{8\pi}G_{\mu\nu}\tilde{G}^{\mu\nu}}$$

Two ways to proceed:

(1) Remove the $aG\widetilde{G}$ term via the quark axial transformation

$$Tr(Q_a) = 1$$

$$q \to e^{i\frac{a}{2fa}\gamma_5 Q_a} q$$

$$-rac{alpha_s}{8\pi f_a}G ilde{G}-rac{\partial_{\mu}a}{2f_a}ar{q}\gamma^{\mu}\gamma_5Q_aq \qquad \qquad M_q o M_q(a)=e^{-irac{a}{2f_a}Q_a}M_qe^{-irac{a}{2f_a}Q_a}$$

$$M_q \rightarrow M_q(a) = e^{-i\frac{a}{2f_a}Q_a}M_qe^{-i\frac{a}{2f_a}Q_a}$$

Mapping to
$$\chi PT$$

$$\mathcal{L}_2 = \frac{F^2}{4} \langle \partial_\mu U \partial^\mu U^\dagger + \chi_a U^\dagger + U \chi_a^\dagger \rangle + \frac{\partial_\mu a}{2 f_a} J_A^\mu |_{\mathrm{LO}}$$

$$\chi_a = 2B_0 e^{-i\frac{a}{2f_a}Q_a} M_q e^{-i\frac{a}{2f_a}Q_a} \qquad J_A^{\mu}|_{\mathrm{LO}} = -i\frac{F^2}{2} \langle Q_a(\partial^{\mu}UU^{\dagger} + U^{\dagger}\partial^{\mu}U) \rangle$$

- $Q_a = M_a^{-1}/\text{Tr}(M_a^{-1})$ [Georgi, Kaplan, Randall, PLB'86]
- $J_A^{\mu} \partial_{\mu} a$ [Bauer, et al., PRL'21]

(2) Explicitly keep the $aG\widetilde{G}$ term and match it to χPT

Reminiscent:

QCD U(1)_A anomaly that is caused by topological charge density $\omega(x) = \alpha_s G_{\mu\nu} \tilde{G}^{\mu\nu}/(8\pi)$ is responsible for the massive singlet η_0 .

Axion could be similarly included as the η_0 mass via the U(3) χ PT:

$$\mathcal{L}^{\text{LO}} = \frac{F^{2}}{4} \langle u_{\mu} u^{\mu} \rangle + \frac{F^{2}}{4} \langle \chi_{+} \rangle + \frac{F^{2}}{12} M_{0}^{2} X^{2}$$

$$\mathcal{L}^{\text{NLO}} = L_{5} \langle u^{\mu} u_{\mu} \chi_{+} \rangle + \frac{L_{8}}{2} \langle \chi_{+} \chi_{+} + \chi_{-} \chi_{-} \rangle - \frac{F^{2} \Lambda_{1}}{12} D^{\mu} X D_{\mu} X - \frac{F^{2} \Lambda_{2}}{12} X \langle \chi_{-} \rangle,$$

$$U = u^{2} = e^{i \frac{\sqrt{2} \Phi}{F}}, \qquad \chi = 2B(s + ip), \qquad \chi_{\pm} = u^{\dagger} \chi u^{\dagger} \pm u \chi^{\dagger} u$$

$$u_{\mu} = i u^{\dagger} D_{\mu} U u^{\dagger}, \qquad D_{\mu} U = \partial_{\mu} U - i (v_{\mu} + a_{\mu}) U + i U (v_{\mu} - a_{\mu})$$

$$X = \log (\det U) - i \frac{a}{f_{a}} \qquad \Phi = \begin{pmatrix} \frac{1}{\sqrt{2}} \pi^{0} + \frac{1}{\sqrt{6}} \eta_{8} + \frac{1}{\sqrt{3}} \eta_{0} & \pi^{+} & K^{+} \\ \pi^{-} & \frac{-1}{\sqrt{2}} \pi^{0} + \frac{1}{\sqrt{6}} \eta_{8} + \frac{1}{\sqrt{3}} \eta_{0} & K^{0} \\ K^{-} & \frac{-2}{\sqrt{6}} \eta_{8} + \frac{1}{\sqrt{3}} \eta_{0} \end{pmatrix}$$

- Q_a is not needed in U(3) χ PT.
- $M_0^2 = 6\tau/F^2$, with τ the topological susceptibility. Note that $M_0^2 \sim O(1/N_c)$.
- Axion interactions enter via the axion-meson mixing terms at LO.

π - η - η '-a mixing in U(3) A χ PT

[Gao, ZHG, Oller, Zhou, JHEP'23] [Gao, Hao, ZHG, et al., EPJC'25]

$$\begin{array}{ll} \textbf{LO} \\ \textbf{(mass mixing only)} \end{array} \hspace{0.2cm} \begin{pmatrix} \overline{\pi}^0 \\ \overline{\eta} \\ \overline{\eta}' \\ \overline{a} \end{pmatrix} = \begin{pmatrix} 1 + v_{11} & -v_{12} & -v_{13} & -v_{14} \\ v_{12} & 1 + v_{22} & -v_{23} & -v_{24} \\ v_{13} & v_{23} & 1 + v_{33} & -v_{34} \\ v_{41} & v_{42} & v_{43} & 1 + v_{44} \end{pmatrix} \begin{pmatrix} \pi^0 \\ \frac{\circ}{\eta} \\ \frac{\circ'}{\eta} \\ a \end{pmatrix} \hspace{0.2cm} \begin{pmatrix} \frac{\circ}{\eta} \\ \frac{\circ}{\eta'} \\ a \end{pmatrix} = \begin{pmatrix} c_{\theta} - s_{\theta} \\ s_{\theta} & c_{\theta} \end{pmatrix} \begin{pmatrix} \eta_{8} \\ \eta_{0} \end{pmatrix}$$

$$v_{12} = -\frac{\epsilon}{\sqrt{3}} \frac{c_{\theta} - \sqrt{2}s_{\theta}}{m_{\overline{\pi}}^2 - m_{\frac{\circ}{\eta}}^2}, \qquad v_{13} = -\frac{\epsilon}{\sqrt{3}} \frac{\sqrt{2}c_{\theta} + s_{\theta}}{m_{\overline{\pi}}^2 - m_{\frac{\circ}{\eta}'}^2}, \qquad v_{23} = \frac{\sqrt{2}s_{\theta}^2 + c_{\theta}s_{\theta} - \sqrt{2}c_{\theta}^2}{3(m_{\frac{\circ}{\eta}}^2 - m_{\frac{\circ}{\eta}}^2)}\epsilon, \qquad v_{41} = -\frac{M_0^2\epsilon}{6(m_a^2 - m_{\overline{\pi}}^2)} \frac{F}{f_a} \left[-\frac{(\sqrt{2}c_{\theta} - 2s_{\theta})s_{\theta}}{m_a^2 - m_{\frac{\circ}{\eta}'}^2} + \frac{c_{\theta}(2c_{\theta} + \sqrt{2}s_{\theta})}{m_a^2 - m_{\frac{\circ}{\eta}'}^2} \right]$$

$$v_{42} = \frac{M_0^2 s_\theta}{\sqrt{6} (m_a^2 - m_{\frac{\circ}{\eta}}^2)} \frac{F}{f_a} - \frac{M_0^2 \epsilon}{3\sqrt{6} (m_a^2 - m_{\frac{\circ}{\eta}}^2)} \frac{F}{f_a} \left[\frac{c_\theta (-\sqrt{2}c_\theta^2 + c_\theta s_\theta + \sqrt{2}s_\theta^2)}{m_a^2 - m_{\frac{\circ}{\eta}'}^2} - \frac{s_\theta (2c_\theta^2 + 2\sqrt{2}c_\theta s_\theta + s_\theta^2)}{m_a^2 - m_{\frac{\circ}{\eta}}^2} \right]$$

$$v_{43} = -\frac{M_0^2 c_\theta}{\sqrt{6}(m_a^2 - m_{\frac{o}{\eta}}^2)} \frac{F}{f_a} - \frac{M_0^2 \epsilon}{3\sqrt{6}(m_a^2 - m_{\frac{o}{\eta}}^2)} \frac{F}{f_a} \left[\frac{c_\theta (c_\theta^2 - 2\sqrt{2}c_\theta s_\theta + 2s_\theta^2)}{m_a^2 - m_{\frac{o}{\eta}}^2} - \frac{s_\theta (-\sqrt{2}c_\theta^2 + c_\theta s_\theta + \sqrt{2}s_\theta^2)}{m_a^2 - m_{\frac{o}{\eta}}^2} \right]$$

Physical masses after diagnolization

$$m_{\overline{\eta}}^2 = m_{\frac{\circ}{\eta}}^2 + \frac{\epsilon}{3}(\sqrt{2}c_{\theta} + s_{\theta})^2 + O(\epsilon^2)$$

$$m_{\overline{\eta}'}^2 = m_{\frac{\circ}{\eta}'}^2 + \frac{\epsilon}{3}(c_{\theta} - \sqrt{2}s_{\theta})^2 + O(\epsilon^2)$$

$$\begin{split} m_{\overline{a}}^2 &= m_{a,0}^2 + \frac{M_0^2 F^2}{6f_a^2} \bigg[1 + \frac{c_\theta^2 M_0^2}{m_{a,0}^2 - m_{\mathring{\eta}'}^2} + \frac{s_\theta^2 M_0^2}{m_{a,0}^2 - m_{\mathring{\eta}}^2} \bigg] \\ &+ \frac{M_0^4 F^2 \epsilon}{9f_a^2} \bigg[\frac{s_\theta^2 (\sqrt{2}c_\theta + s_\theta)^2}{2(m_{a,0}^2 - m_{\mathring{\eta}}^2)^2} + \frac{c_\theta^2 (c_\theta - \sqrt{2}s_\theta)^2}{2(m_{a,0}^2 - m_{\mathring{\eta}'}^2)^2} \\ &+ \frac{c_\theta s_\theta (\sqrt{2}c_\theta^2 - c_\theta s_\theta - \sqrt{2}s_\theta^2)}{(m_{a,0}^2 - m_{\mathring{\eta}'}^2)(m_{a,0}^2 - m_{\mathring{\eta}'}^2)} \bigg] + O(\epsilon^2), \end{split}$$

$$m_a^2 = \frac{m_\pi^2 F^2}{4f_a^2}$$
 [Weinberg, PRL'78]

(keep LO terms in $m_{\pi}/m_{K} \& m_{\pi}/M_{0} \& \epsilon$ expansions)

NLO: (kinetic & mass mixing)

$$\mathcal{L} = \frac{1 + \delta_{k}^{\eta}}{2} \partial_{\mu} \overline{\eta} \partial^{\mu} \overline{\eta} + \frac{1 + \delta_{k}^{\eta'}}{2} \partial_{\mu} \overline{\eta}' \partial^{\mu} \overline{\eta}' + \delta_{k}^{\eta\eta'} \partial_{\mu} \overline{\eta} \partial^{\mu} \overline{\eta}' - \frac{m_{\overline{\eta}}^{2} + \delta_{m_{\overline{\eta}}^{2}}}{2} \overline{\eta} \, \overline{\eta} - \frac{m_{\overline{\eta}'}^{2} + \delta_{m_{\overline{\eta}'}^{2}}}{2} \overline{\eta}' \, \overline{\eta}' - \delta_{m^{2}}^{\eta\eta'} \overline{\eta} \, \overline{\eta}'$$

$$+ \frac{1 + \delta_{k}^{\pi}}{2} \partial_{\mu} \overline{\pi}^{0} \partial^{\mu} \overline{\pi}^{0} + \delta_{k}^{\pi\eta} \partial_{\mu} \overline{\pi}^{0} \partial^{\mu} \overline{\eta} + \delta_{k}^{\pi\eta'} \partial_{\mu} \overline{\pi}^{0} \partial^{\mu} \overline{\eta}' - \frac{m_{\overline{\pi}}^{2} + \delta_{m_{\overline{\pi}}^{2}}}{2} \overline{\pi}^{0} \, \overline{\pi}^{0} - \delta_{m^{2}}^{\pi\eta'} \overline{\pi}^{0} \overline{\eta}' + \delta_{m^{2}}^{\eta\eta'} \overline{\pi}^{0} \overline{\eta}'$$

$$+ \frac{1 + \delta_{k}^{a}}{2} \partial_{\mu} \overline{a} \partial^{\mu} \overline{a} + \delta_{k}^{a\pi} \partial_{\mu} \overline{a} \partial^{\mu} \overline{\pi}^{0} + \delta_{k}^{a\eta} \partial_{\mu} \overline{a} \partial^{\mu} \overline{\eta} + \delta_{k}^{a\eta'} \partial_{\mu} \overline{a} \partial^{\mu} \overline{\eta}' - \frac{m_{\overline{\pi}}^{2} + \delta_{m_{\overline{\pi}}^{2}}}{2} \overline{a} \, \overline{a} - \delta_{m^{2}}^{a\pi} \overline{a} \, \overline{\pi}^{0}$$

$$- \delta_{m^{2}}^{a\eta} \overline{a} \, \overline{\eta} - \delta_{m^{2}}^{a\eta'} \overline{a} \, \overline{\eta}'$$

Separately handle the kinetic (x_{ij}) and mass (y_{ij}) mixing terms: x_{ij} , y_{ij} L_5 , L_8 , Λ_1 , Λ_2

$$\begin{pmatrix} \hat{\pi}^0 \\ \hat{\eta} \\ \hat{\eta}' \\ \hat{a} \end{pmatrix} = \begin{pmatrix} 1 & -y_{12} & -y_{13} & -y_{14} \\ y_{12} & 1 & -y_{23} & -y_{24} \\ y_{13} & y_{23} & 1 & -y_{34} \\ y_{14} & y_{24} & y_{34} & 1 \end{pmatrix} \times \begin{pmatrix} 1 - x_{11} & -x_{12} & -x_{13} & -x_{14} \\ -x_{12} & 1 - x_{22} & -x_{23} & -x_{24} \\ -x_{13} & -x_{23} & 1 - x_{33} & -x_{34} \\ -x_{14} & -x_{24} & -x_{34} & 1 - x_{44} \end{pmatrix} \begin{pmatrix} \overline{\pi}^0 \\ \overline{\eta} \\ \overline{\eta}' \\ \overline{a} \end{pmatrix}$$

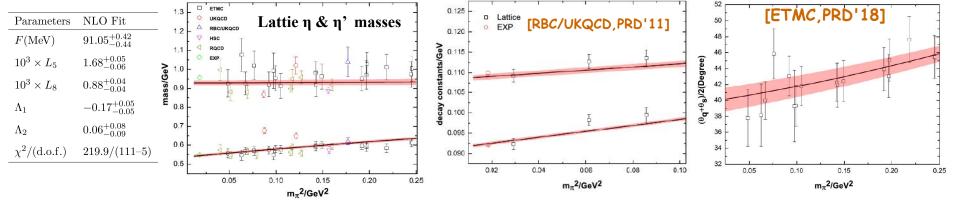
naturally leading to the so-called two-mixing-angle formula

$$\begin{pmatrix} \hat{\eta} \\ \hat{\eta}' \end{pmatrix} = \frac{1}{F} \begin{pmatrix} F_8 \cos \theta_8 - F_0 \sin \theta_0 \\ F_8 \sin \theta_8 & F_0 \cos \theta_0 \end{pmatrix} \begin{pmatrix} \eta_8 \\ \eta_0 \end{pmatrix}$$

- $\succ F_{\theta} F_{\theta} \theta_{\theta} \theta_{\theta}$ are now predicted in terms of the chiral low energy constants.
- Two-mixing-angle formalism is needed in phenomenologies of η & η '. [Chen, ZHG, et al., PRD'12] [Chen, ZHG, et al., PRD'15] [Yan, Chen, et al., PRD'23]
- For NNLO η-η' mixing studies: [X.K.Guo, ZHG, et al., JHEP'15] [Gu,Duan,ZHG,PRD'18]

Fit to lattice data

[Gao, ZHG, Oller, Zhou, JHEP'23] [Gao, Hao, ZHG, et al., EPJC'25]



Mixing pattern@NLO

$$\begin{pmatrix} \hat{\pi}^0 \\ \hat{\eta} \\ \hat{\eta}' \\ \hat{a} \end{pmatrix} = M^{\text{LO+NLO}} \begin{pmatrix} \pi^0 \\ \eta_8 \\ \eta_0 \\ a \end{pmatrix}$$

$$\begin{pmatrix} \hat{\pi}^{0} \\ \hat{\eta} \\ \hat{\eta}' \\ \hat{a} \end{pmatrix} = M^{\text{LO+NLO}} \begin{pmatrix} \pi^{0} \\ \eta_{8} \\ \eta_{0} \\ a \end{pmatrix} \qquad M^{\text{LO+NLO}} = \begin{pmatrix} 1 + (0.015 \pm 0.001) & 0.017 + (-0.007 \pm 0.001) & 0.009 + (-0.011 \pm 0.001) \\ -0.019 + (0.005 \pm 0.001) & 0.94 + (0.21 \pm 0.01) & 0.33 + (-0.21 \pm 0.03) \\ -0.003 + (-0.001 \pm 0.000) & -0.33 + (-0.18 \pm 0.02) & 0.94 + (0.13^{+0.01}_{-0.02}) \\ \frac{12.1 + (0.5 \pm 0.1)}{f_{a}} & \frac{23.8 + (1.0^{+0.2}_{-0.1})}{f_{a}} & \frac{35.7 + (1.7^{+0.2}_{-0.1})}{f_{a}} \end{pmatrix}$$

$$\frac{-12.8+(-0.13\pm0.02)}{f_a}$$

$$\frac{f_a}{-34.3+(1.7^{+0.8}_{-0.7})}$$

$$\frac{f_a}{f_a}$$

$$\frac{-25.9+(0.2^{+0.4}_{-0.3})}{f_a}$$

$$1+\frac{-921.5+(-56.6^{+7.9}_{-9.6})}{f_a^2}$$

Mass decomposition@NLO

$$\begin{split} m_{\hat{\pi}} &= \left[134.9 + (0.1 \pm 0.07)\right] \text{MeV}, \\ m_{\hat{K}} &= \left[492.1 + (5.1^{+3.4}_{-3.3})\right] \text{MeV}, \\ m_{\hat{\eta}} &= \left[490.4 + (61.1^{+10.0}_{-8.7})\right] \text{MeV}, \\ m_{\hat{\eta}'} &= \left[954.5 + (-28.5^{+11.9}_{-10.9})\right] \text{MeV}, \\ m_{\hat{a}} &= \left[5.96 + (0.12 \pm 0.02)\right] \mu \, \text{eV} \frac{10^{12} \, \text{GeV}}{f_a}, \end{split}$$

Two-photon couplings (driven by the EM anomaly)

$$\mathcal{L}_{WZW}^{\text{LO}} = -\frac{3\sqrt{2}}{8\pi^2 F} \varepsilon_{\mu\nu\rho\sigma} \partial^{\mu} A^{\nu} \partial^{\rho} A^{\sigma} \langle Q^2 \Phi \rangle, \qquad \qquad Q = \text{Diag}(\frac{2e}{3}, -\frac{e}{3}, -\frac{e}{3})$$

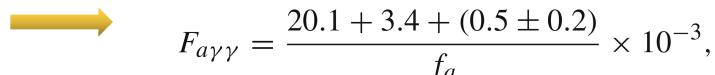
$$\mathcal{L}_{WZW}^{\text{NLO}} = t_1 \frac{32\sqrt{2}B}{F} \varepsilon_{\mu\nu\rho\sigma} \partial^{\mu} A^{\nu} \partial^{\rho} A^{\sigma} \langle \left(M_q \Phi + \Phi M_q \right) Q^2 \rangle + 16k_3 \varepsilon_{\mu\nu\rho\sigma} \partial^{\mu} A^{\nu} \partial^{\rho} A^{\sigma} \langle Q^2 \rangle \left(\frac{\sqrt{2}}{F} \langle \Phi \rangle - \frac{a}{f_a} \right)$$

* Note: one needs the π -η-η'-a mixing as input to calculate g_{ayy}

$$F_{\pi^0\gamma\gamma}^{\text{Exp}} = 0.274 \pm 0.002 \text{GeV}^{-1},$$

 $F_{\eta\gamma\gamma}^{\text{Exp}} = 0.274 \pm 0.006 \text{GeV}^{-1},$
 $F_{\eta'\gamma\gamma}^{\text{Exp}} = 0.344 \pm 0.008 \text{GeV}^{-1},$
 $t_1 = -(3.8 \pm 2.4) \times 10^{-4} \text{GeV}^{-2},$
 $k_3 = (1.21 \pm 0.23) \times 10^{-4}$

isospin limit(LO) isospin breaking(LO) NLO



(IB corrections amount to be around 15%!)

$$g_{a\gamma\gamma} = 4\pi\alpha_{em}F_{a\gamma\gamma} = \frac{\alpha_{em}}{2\pi f_a} (1.89 \pm 0.02).$$

which can be compared to: 1.92 ± 0.04 [Grilli de Cortona, et al., JHEP'16] and 2.05 ± 0.03 [Lu, et al., JHEP'20]

η/η ' decays as probes of SM precision test and new physics

(1) $\eta \rightarrow \pi^0 \pi^+ \pi^-$

$$\eta$$
 (IG=0+) $\rightarrow \pi^0\pi^+\pi^-$ (IG=1-): G-parity violation

- **QED** correction negligible
- Dominated by strong IB effect (m_u-m_d)

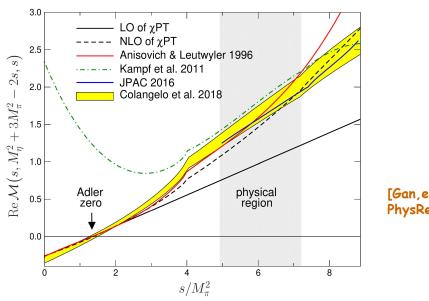
$$\Gamma(\eta \to \pi^+ \pi^- \pi^0) = \frac{1}{Q^4} \frac{M_K^4 (M_K^2 - M_\pi^2)^2}{6912\pi^3 M_\eta^3 M_\pi^4 F_\pi^4} \int_{s_{\min}}^{s_{\max}} ds \int_{u_-(s)}^{u_+(s)} du \, |\mathcal{M}(s, t, u)|^2$$

$$Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$$

- χPT converges rather slowly
- $\pi\pi$ rescattering is significant

Other ways to extract Q

- **Kaon mass splitting**
- **Lattice QCD**

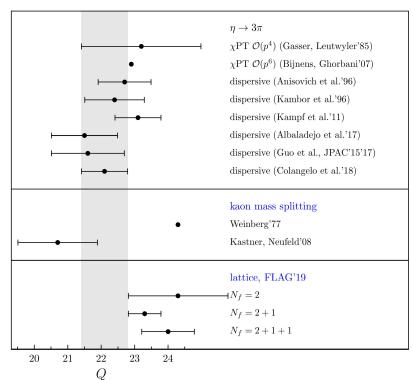


[Gan, et al., PhysRept'22]

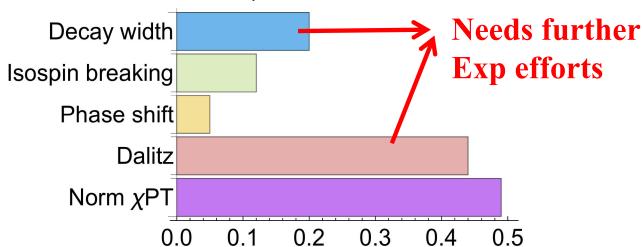
Current determinations of Q

$$Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$$

[Gan, et al., PhysRept'22]



Error budgets: O=22.04(72)



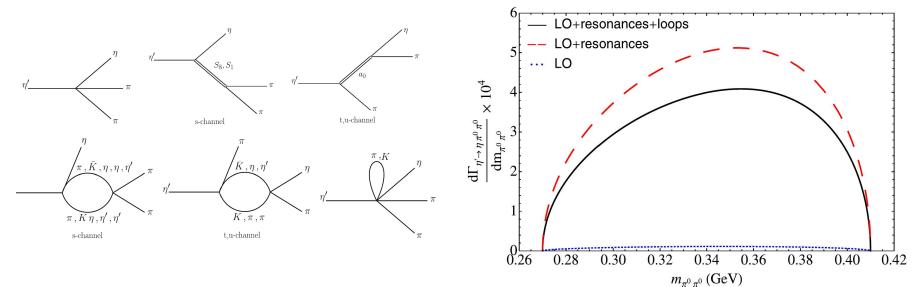
• $\eta' \rightarrow 3\pi$: BR suppressed; less prescise than that of η ; more complicated in theory as well; future improvements in Exp and Theo are definitely required. 11

(2) $\eta' \rightarrow \eta \pi^+ \pi^- (\pi^0 \pi^0)$

- G-parity allowed: no IB suppression
- Largest BRs for η' : $\eta' \rightarrow \eta \pi^+ \pi^- (\sim 43\%)$ $\eta' \rightarrow \eta \pi^0 \pi^0 (\sim 22\%)$
- Interesting subjects: resonances ($\pi\pi$ & $\pi\eta$ rescattering), large Nc χ PT, η - η ' mixing Amplitude from leading-order χ PT is small:

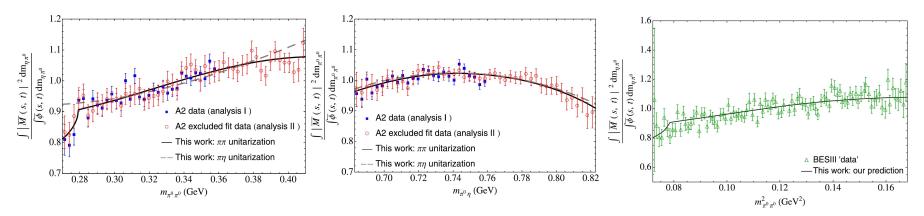
$$\mathcal{A}_{\eta' \to \eta \pi \pi}^{\chi \text{PT}} \Big|_{\text{LO}} = \frac{M_{\pi}^2}{6F^2} \left[2\sqrt{2}\cos(2\theta_P) - \sin(2\theta_P) \right]$$
 (no energy dependence)

Higher-order contributions are essential: [Gonzalez-Solis, Passemar, EPJC'18]

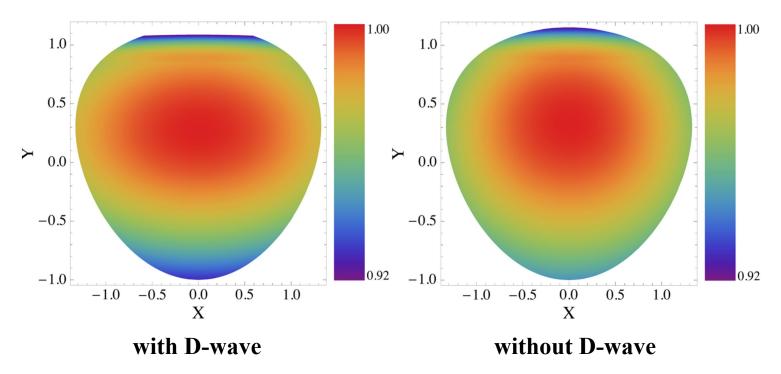


 \triangleright Dispersive method [Isken, et al., EPJC'17]: $\pi\pi$ & $\eta\pi$ phase shifts as inputs

> Invairant-mass distributions [Gonzalez-Solis, Passemar, EPJC'18]



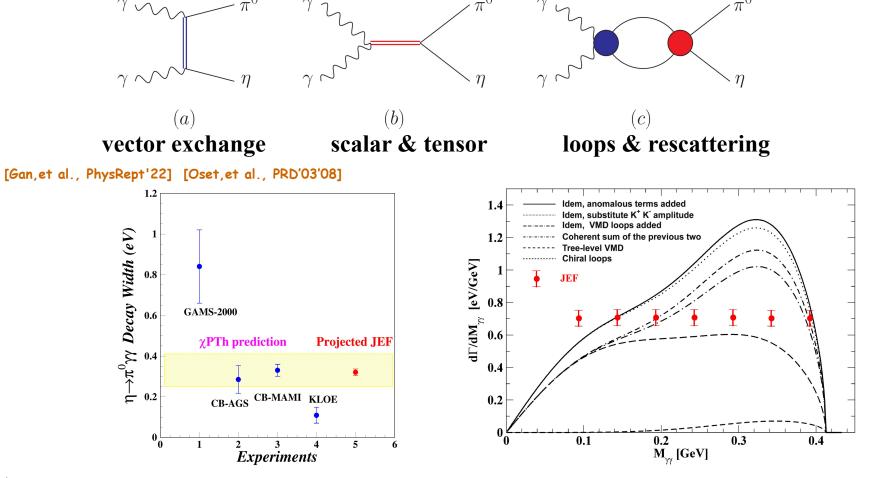
 $\triangleright \pi\pi$ D-wave are found to be important for Dalitz parameters.



More precise Exp measurement are required for confirmation.

(3) $\eta/\eta' \rightarrow \pi^0 \gamma \gamma \& \eta' \rightarrow \eta \gamma \gamma$

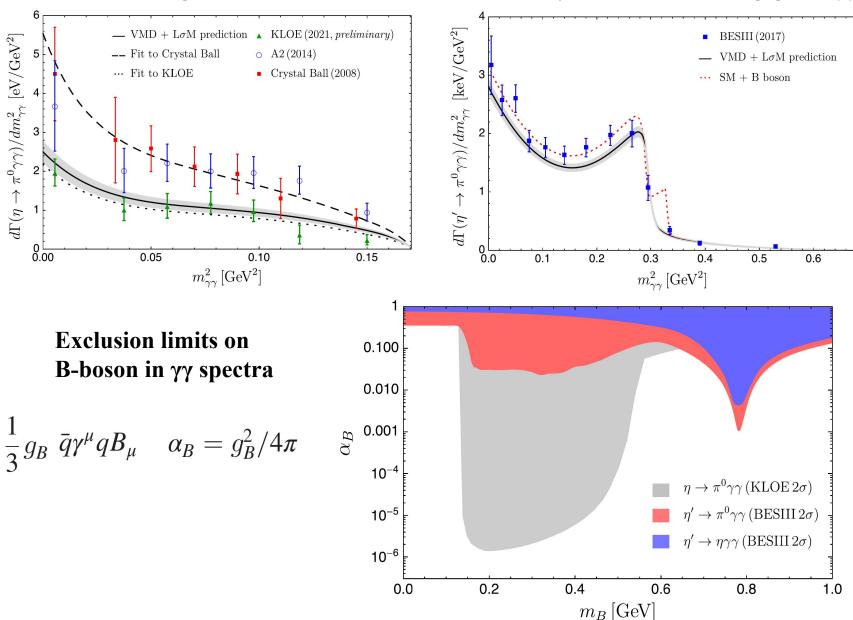
- Leading-order χ PT contributions either vanish or strongly supppressed.
- Higher-order effects: interplay between vector and scalar resonances
- Renewed interests in searching for B-boson [U(1) gauges symm. of baryon number]



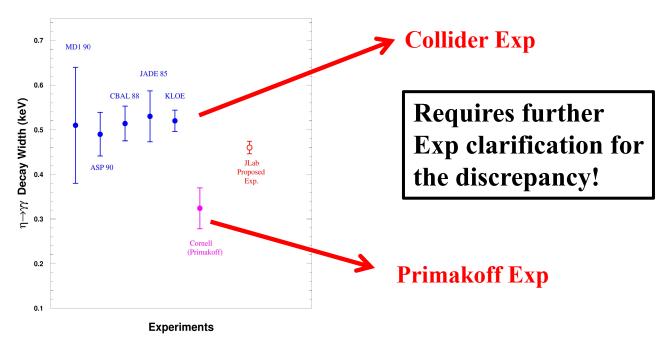
Discrepancies among various BRs need to be clarified in future Exp.

Sensitivities to search for BSM B-boson [Escribano, et al., PRD'20 '22]

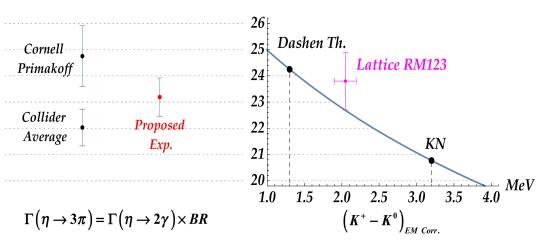
VMD + Linear Sigma Model: unable to simultaneously describe BRs of $\eta/\eta' \rightarrow \pi^0 \gamma \gamma$



- (4) Anomalous decays(odd intrinsic parity): $\pi^0/\eta/\eta^* \rightarrow \gamma^{(*)}\gamma^{(*)}$, $\eta/\eta^* \rightarrow \gamma\pi^+\pi^-(\pi^0\pi^0)$, $\eta^* \rightarrow \pi^+\pi^-\pi^+\pi^-(\pi^0\pi^0)$
 - $\Gamma_{\eta \to \gamma \gamma}$ crucial for other partial widths of η : $\Gamma_{\eta \to X} = \Gamma_{\eta \to \gamma \gamma} BR_{\eta \to X} / BR_{\eta \to \gamma \gamma}$

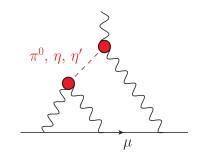


Reflection in the determination of Q via $\Gamma_{\eta \to 3\pi}$



• Important inputs for $(g-2)_{\mu}$ via the hadronic light-by-light process

Transition Form Factors (TFFs) of $\pi^0/\eta/\eta$, not only their two-photon widths, are required!



 $F_{\eta/\eta'\gamma^*\gamma^*}$ (q_1^2, q_2^2) : double virtual (both $q_i^2 \neq 0$), single virual $(q_1^2=0 \text{ or } q_2^2=0)$

- > Double virtual: challenge in Exp (tiny BRs)
 - \Box Time-like region $(q_i^2 > 0)$

η: $\eta \rightarrow e^+e^-e^+e^-$ (direct, tiny BRs), $V \rightarrow \eta e^+e^-$ (indirect), ...

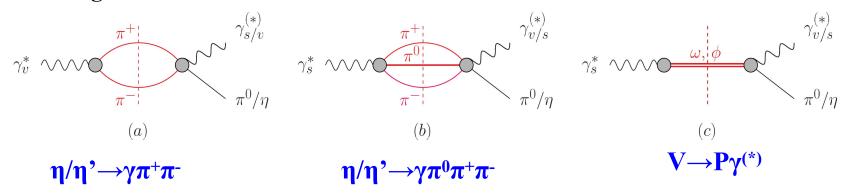
 η' : $\eta' \rightarrow Ve^+e^-$ (direct, single-virtual TFF), $e^+e^- \rightarrow V\eta'$ (indirect), ...

□ Space-like region $(q_i^2 < 0)$

$$e^+e^- \rightarrow \gamma^* \gamma^* e^+ e^- \rightarrow P e^+ e^-$$

- > Single virtual TFFs: important progresses in Exp
 - **□** Time-like region: $P \rightarrow l^+l^-\gamma$, $e^+e^- \rightarrow \gamma^* \rightarrow P\gamma$, ...
 - □ Space-like region: $e^+e^- \rightarrow \gamma^* \gamma^* e^+ e^- \rightarrow P e^+ e^-$ (one lepton tagged)

Leading hadronic intermediate states



□ Comprehensive R χ T studies of VP $\gamma^{(*)}$, P $\gamma^{(*)}$ and J/ ψ →VP, P $\gamma^{(*)}$

$$\begin{pmatrix} \hat{\eta} \\ \hat{\eta}' \end{pmatrix} = \frac{1}{F} \begin{pmatrix} F_8 \cos \theta_8 & -F_0 \sin \theta_0 \\ F_8 \sin \theta_8 & F_0 \cos \theta_0 \end{pmatrix} \begin{pmatrix} \eta_8 \\ \eta_0 \end{pmatrix}$$

$$\eta \rightarrow \gamma \gamma^*, \quad \eta' \rightarrow \gamma \gamma^* \quad \phi \rightarrow \eta \gamma^*$$

$$P \rightarrow V \gamma, \quad V \rightarrow P \gamma, \quad P \rightarrow \gamma \gamma, \quad P \rightarrow \gamma l^+ l^-, \quad V \rightarrow P l^+ l^-, \quad V \rightarrow P \gamma, \quad \psi' \rightarrow P \gamma, \quad \psi' \rightarrow P V, \quad \psi' \rightarrow P V, \quad \psi' \rightarrow P l^+ l^-, \quad \psi' \rightarrow P l^+ l^-$$

$$P = \pi, \quad K, \quad \eta, \quad \eta', \quad V = \rho, \quad K^*, \quad \omega, \quad \phi$$

[Chen, ZHG, Zheng, PRD'12 '14] [Chen, ZHG, Zou, PRD'15] [Yan, ZHG, et al., PRD'23]

(5) axion/axion-like particle production in η decay: $\eta \rightarrow a\pi^+\pi^-(\pi^0\pi^0)$

Why focus on axion in η decay:

- \checkmark $\eta \rightarrow \pi\pi\pi$ (IB suppressed), $\eta \rightarrow \pi\pi$ a (no IB suppression)
- \checkmark $\eta \rightarrow \pi\pi a$: theoretically easier to handel than $\eta' \rightarrow \pi\pi a$ (next step)

Previous works:

- * Most of them rely on leading-order χPT
- * Possible issue: bulk contributions@LO χPT are constant terms, and potential large corrections from higher orders may result.
- ***** Hadron resonance effects may lead to enhancements.

Advances in our work:

- > Study of renormalization of $\eta \rightarrow \pi \pi a$ @1-loop level in SU(3) χPT
- \triangleright To implement unitarization to the $\eta \rightarrow \pi \pi a$ χPT amplitude
- > Uncertainty analyse in the phenomenological discussions

$$\mathbf{LO} \ \chi \mathbf{PT} \ \mathbf{Lagrangian} \qquad \mathcal{L}_2 = \frac{F^2}{4} \langle \partial_\mu U \partial^\mu U^\dagger + \chi_a U^\dagger + U \chi_a^\dagger \rangle \\ + \frac{\partial_\mu a}{2 f_a} J_A^\mu \big|_{\mathrm{LO}} + \frac{1}{2} \partial_\mu a \partial^\mu a - \frac{1}{2} m_{a,0}^2 a^2$$

$$\chi_a = 2B_0 M(a)$$

$$\chi_a = 2B_0 M(a) \qquad M(a) \equiv \exp\left(-i\frac{a}{2f_a}Q_a\right) M \exp\left(-i\frac{a}{2f_a}Q_a\right) \qquad J_A^{\mu}|_{\mathrm{LO}} = -i\frac{F^2}{2} \langle Q_a \left\{\partial^{\mu} U, U^{\dagger}\right\} \rangle$$

$$J_A^{\mu}|_{\text{LO}} = -i\frac{F^2}{2} \langle Q_a \left\{ \partial^{\mu} U, U^{\dagger} \right\} \rangle$$

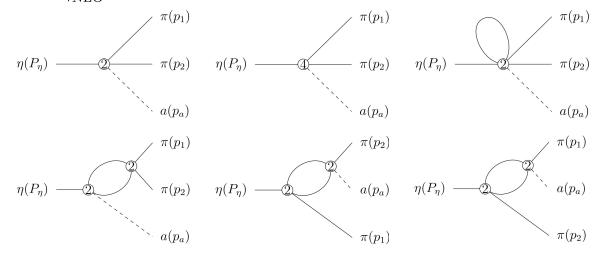
Note: we consider the octet part (\overline{Q}_a) of Q_a in SU(3) χ PT

NLO γPT Lagrangian

$$\mathcal{L}_4 = L_1 \langle \partial_{\mu} U \partial^{\mu} U^{\dagger} \rangle \langle \partial_{\nu} U \partial^{\nu} U^{\dagger} \rangle + \dots + \frac{\partial_{\mu} a}{2 f_a} J_A^{\mu} |_{\text{NLO}},$$

$$J_A^{\mu}|_{\text{NLO}} = -4iL_1\langle \bar{Q}_a\{U^{\dagger}, \partial^{\mu}U\}\rangle\langle \partial_{\nu}U\partial^{\nu}U^{\dagger}\rangle + \cdots$$

Feynman diagrams up to NLO



Parameters

Masses and F_{π} [MeV]				LECs $L_i^r(\mu)$ at $\mu = 770 \text{ MeV}$ (in unit of 10^{-3})							
m_{π}	m_K	m_{η}	F_{π}	L_1^r	L_2^r	L_3^r	L_4^r	L_5^r	L_6^r	L_7^r	L_8^r
137	496	548	92.1	1.0(1)	1.6(2)	-3.8(3)	0.0(3)	1.2(1)	0.0(4)	-0.3(2)	0.5(2)

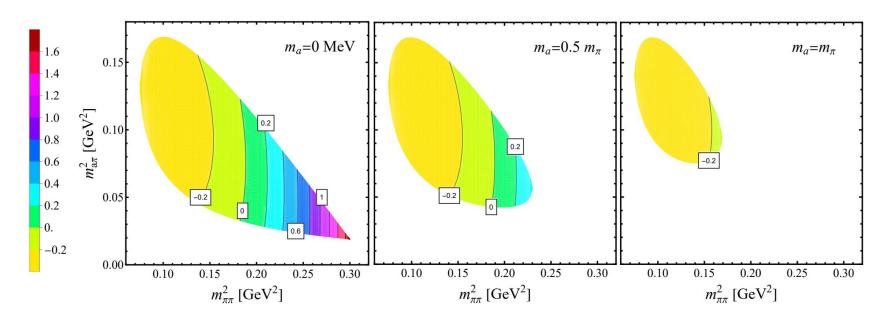
[J. Bijnens and G. Ecker, Ann. Rev. Nucl. Part. Sci. 64, 149 (2014)]

Observations:

- > Strong isospin breaking effects enter the $\eta \rightarrow \pi \pi a$ amplitudes at the order of $(m_u m_d)^2$
- ➤ In the isospin limit ($m_u=m_d$), the amplitudes with $\pi^+\pi^-$ and $\pi^0\pi^0$ in $\eta \to \pi\pi a$ processes are identical.
- Dalitz plots to show the NLO/LO convergence

$$\left(2\mathcal{M}_{\eta;\pi\pi a}^{(2)}\operatorname{Re}\left(\mathcal{M}_{\eta;\pi\pi a}^{(4)}\right) + \left|\mathcal{M}_{\eta;\pi\pi a}^{(4)}\right|^{2}\right) / \left|\mathcal{M}_{\eta;\pi\pi a}^{(2)}\right|^{2}$$

[Wang, ZHG, Lu, Zhou, JHEP'24]



Important lessons:

- \triangleright Non-perturbative effect in the $\pi\pi$ subsystem can be important.
- \triangleright Perturbative treatment of the $a\pi$ subsystem is justified.

• Unitarization of the partial-wave $\eta \rightarrow \pi\pi a$ amplitude

$$\mathcal{M}_{\eta;\pi\pi a}^{00,\mathrm{Uni}}(s) = \frac{\mathcal{M}_{\eta;\pi\pi a}^{00,\mathrm{L}}(s)}{1 - G_{\pi\pi}(s)T_{\pi\pi \to \pi\pi}^{00,(2)}(s)},$$

$$G_{\pi\pi}(s) = -\frac{1}{(4\pi)^2} \left(\log \frac{m_{\pi}^2}{\mu^2} - \sigma_{\pi}(s) \log \frac{\sigma_{\pi}(s) - 1}{\sigma_{\pi}(s) + 1} - 1 \right),$$

$$\mathcal{M}_{\eta;\pi\pi a}^{00,\mathrm{L}}(s) = \mathcal{M}_{\eta;\pi\pi a}^{00,(2)}(s) + \mathcal{M}_{\eta;\pi\pi a}^{00,(4)}(s) - G_{\pi\pi}(s) \mathcal{M}_{\eta;\pi\pi a}^{00,(2)}(s) T_{\pi\pi \to \pi\pi}^{00,(2)}(s).$$

The unitarized amplitude satisfies the relation

$$\operatorname{Im}\mathcal{M}_{\eta;\pi\pi a}^{00,\operatorname{Uni}}(s) = \rho_{\pi\pi}(s)\mathcal{M}_{\eta;\pi\pi a}^{00,\operatorname{Uni}}(s)\left(T_{\pi\pi\to\pi\pi}^{00,\operatorname{Uni}}(s)\right)^{*}, \qquad (2m_{\pi}<\sqrt{s}<2m_{K})$$
 with the unitarized PW \$\pi\pi\$ amplitude
$$T_{\pi\pi\to\pi\pi}^{00,\operatorname{Uni}}(s) = \frac{T_{\pi\pi\to\pi\pi}^{00,(2)}(s)}{1-G_{\pi\pi}(s)T_{\pi\pi\to\pi\pi}^{00,(2)}(s)}$$

• Unitarized PW amplitude based on LO $\eta \rightarrow \pi\pi a$ amplitude

$$\mathcal{M}_{\eta;\pi\pi a}^{00,\text{Uni-LO}}(s) = \frac{\mathcal{M}_{\eta;\pi\pi a}^{00,(2)}(s)}{1 - G_{\pi\pi}(s)T_{\pi\pi \to \pi\pi}^{00,(2)}(s)}.$$

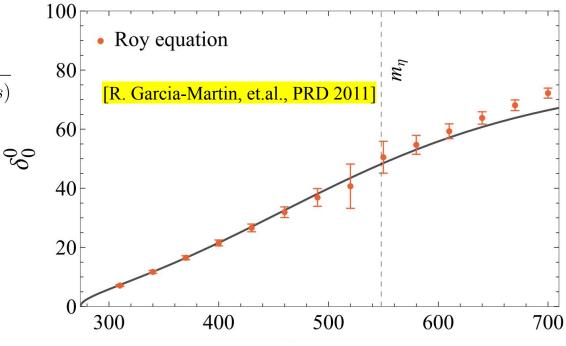
Resemble the method:

[Alves, Gonzalez-Solis, JHEP'24]

$$M_0(s) = P(s)\Omega_0^0(s)$$

Phase shifts from the unitarized PW $\pi\pi$ amplitude

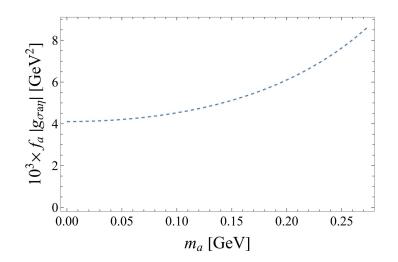
$$T_{\pi\pi\to\pi\pi}^{00,\text{Uni}}(s) = \frac{T_{\pi\pi\to\pi\pi}^{00,(2)}(s)}{1 - G_{\pi\pi}(s)T_{\pi\pi\to\pi\pi}^{00,(2)}(s)}$$



• Pole position of $f_0(500)/\sigma$:

$$\sqrt{s_{\sigma}} = 457 \pm i251 \text{ MeV}$$

$$\mathcal{M}_{\eta;\pi\pi a}^{00,\mathrm{Uni,II}}(s)\big|_{s\to s_{\sigma}} \sim -\frac{g_{\sigma\pi\pi}g_{\sigma a\eta}}{s-s_{\sigma}}$$

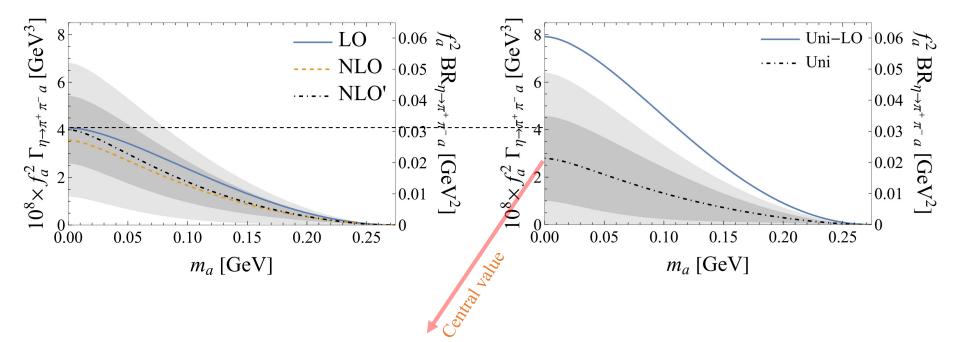


Predictions of the $\eta \rightarrow \pi\pi a$ branching ratios by varying m_a

Uncertainty bands:

- ightharpoonup Lighter regions: $\frac{L_1^r \quad L_2^r \quad L_3^r \quad L_4^r \quad L_5^r \quad L_6^r \quad L_7^r \quad L_8^r}{1.0(1) \quad 1.6(2) \quad -3.8(3) \quad 0.0(3) \quad 1.2(1) \quad 0.0(4) \quad -0.3(2) \quad 0.5(2)}$
- \triangleright Darker regions: freeze the 1/Nc suppressed ones (L₄,L₆,L₇)

[Wang, ZHG, Lu, Zhou, JHEP'24]



$$BR_{\eta \to \pi^+ \pi^- a} \Big|_{m_a \to 0} = 2.1 \times 10^{-2} \left(\frac{\text{GeV}^2}{f_a^2} \right)$$

Possible detection channels: $a \rightarrow \gamma \gamma$, $a \rightarrow e^+e^-$, $a \rightarrow \mu^+\mu^-$

结语: η/η'包含丰富有趣的物理:

> 不仅有诗和远方 --诱人的新物理现象--:

B-boson, 轴子/类轴子,新的C/CP破坏,

- ➤ 也充满了烟火气息 --亟需提升精度/澄清的SM允许的过程--
- 标准模型的精确检验:

$$m_u$$
- m_d , $(g-2)_{\mu}$,

• 强相互作用相关的物理:

强子共振态, 手征对称性, 形状因子,

谢谢大家!