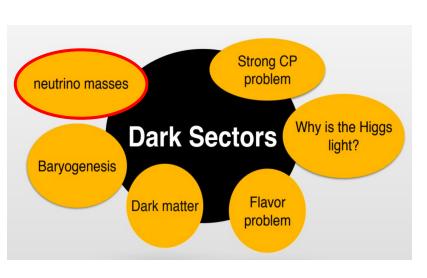
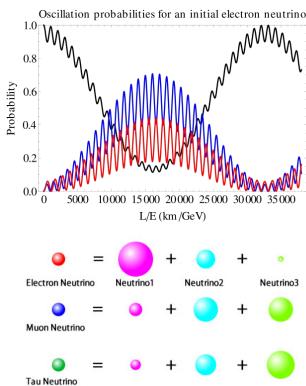

Huizhou Hadron Spectrometer (HHaS)

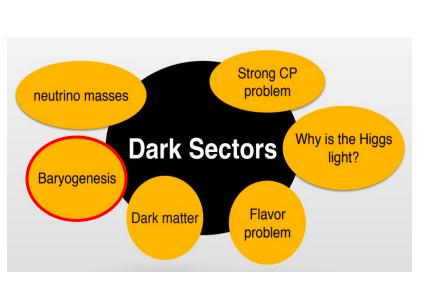
Hao Qiu 仇浩

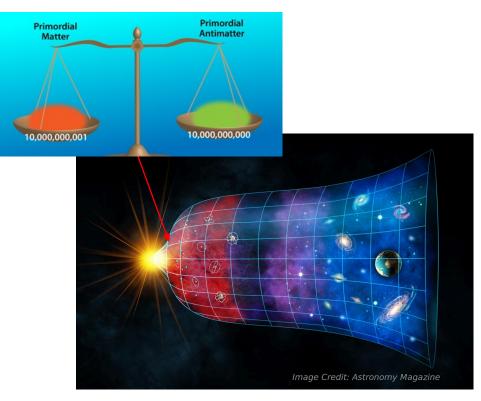
Institute of Modern Physics, CAS

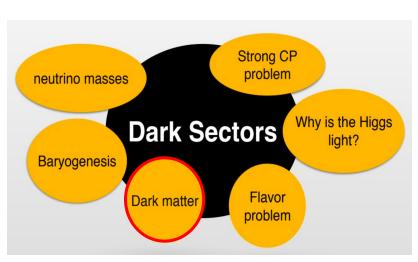

HIAF & HIAF-U

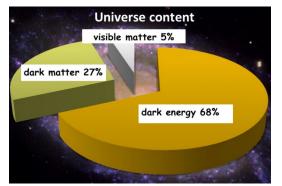

	E _k (GeV/u)	√s _{NN} (GeV)
HIAF p beam	<9.3	<4.58
HIAF U beam	<2.45	<2.85
HIAF-U U beam	<9.1	<4.54

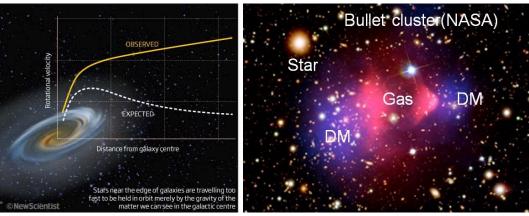
Huizhou Hadron Spectrometer (HHaS)


- Proton and potential secondary K/π beam: η meson physics, light hadron physics ...
- Heavy-ion beam: nuclear matter phase structure, equation of state, hypernucleus ...

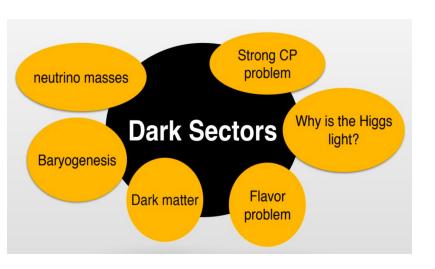

C. Gatto

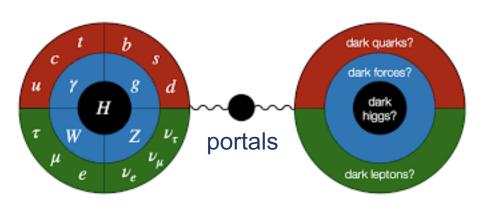

- The standard model confronts several problems, calling for new physics beyond the current standard model
- Neutrino oscillation ⇒ neutrinos have mass


C. Gatto

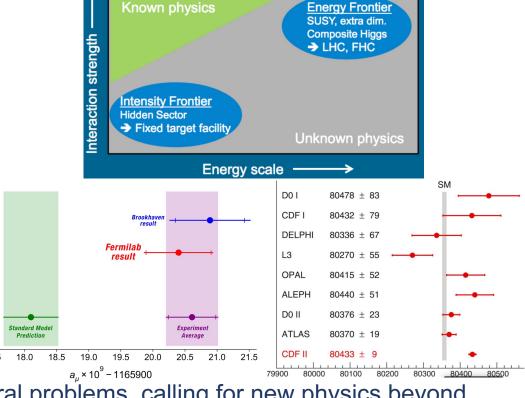


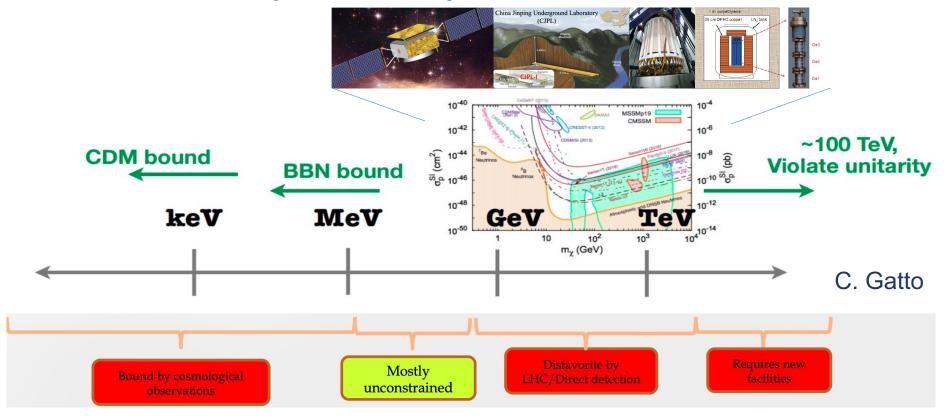
- The standard model confronts several problems, calling for new physics beyond the current standard model
- Tiny amount of matter-antimatter asymmetry in the early universe is the basis for the matter world today




C. Gatto

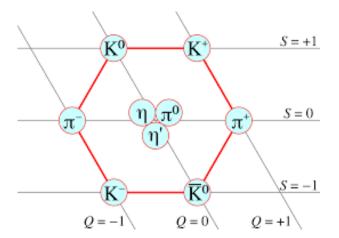
- The standard model confronts several problems, calling for new physics beyond the current standard model
- There are ~5 times more dark matter than normal matter in our universe



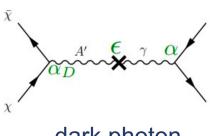

C. Gatto

- The standard model confronts several problems, calling for new physics beyond the current standard model
- Possible portals connecting the dark sectors and the standard model
 - Dark photons (vectors), dark Higgs (scalars), axion(-like particle), sterile
 neutrinos
 Hao Qiu IMP, CAS

- The standard model confronts several problems, calling for new physics beyond the current standard model
- High-luminosity / high-precision is an important frontier for the discovery of new physics, e.g. abnormal magnet moment of μ (g-2), W mass

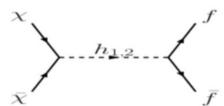

- In the search for dark matter particles, the parameter space for traditional WIMP (GeV~100TeV) is gradually being excluded by experiments
- Light dark matter particles (MeV~GeV) are currented less constrained by experiments

8


High-intensity accelerators are powerful tools for light dark matter particle search
 Hao Qiu - IMP, CAS

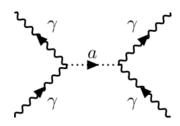
η meson physics – new particles & forces

- η / η ' & Higgs are the only known particles with all-zero quantum numbers
 - Q = I = J = S = B = L = 0
- ⇒ Standard-model decays are suppressed
- ⇒ BR with new physics are relatively enhanced



η / η' decays can be used to explore various portals to the dark sector

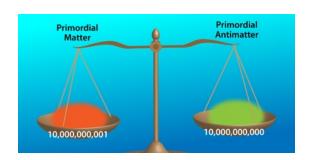
dark photon

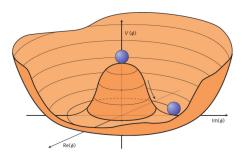

$$A' \rightarrow \mu^+ \mu^- / e^+ e^-$$

dark Higgs

$$\eta \rightarrow \pi^0 H$$

$$H \rightarrow \pi^{+}\pi^{-}/\mu^{+}\mu^{-}/e^{+}e^{-}$$

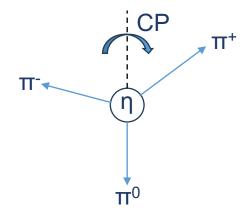



axion(-like particle)

$$η \rightarrow ππa$$

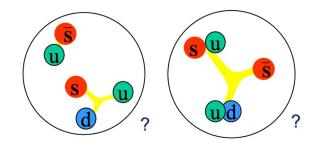
$$a \rightarrow \gamma \gamma / \mu^+ \mu^- / e^+ e^-$$

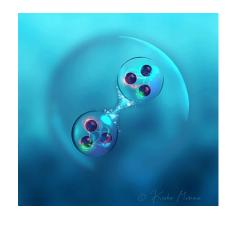
η meson physics – fundamental (a)symmetry



杨振宁、李政道

₽: 1957

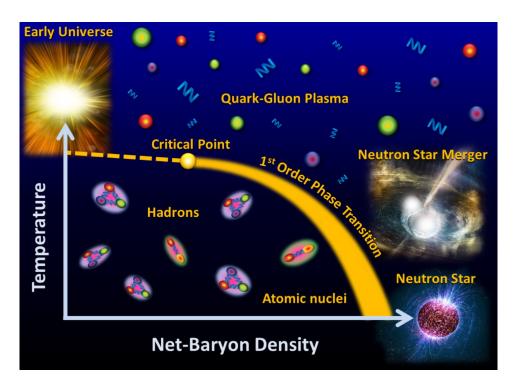

CP: 1980

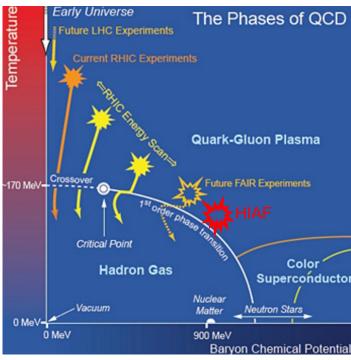


- Foundamental (a)symmetry is an important question in physics
- η / η' decays can be used to search for new fundamental asymmetries

Light hadron physics

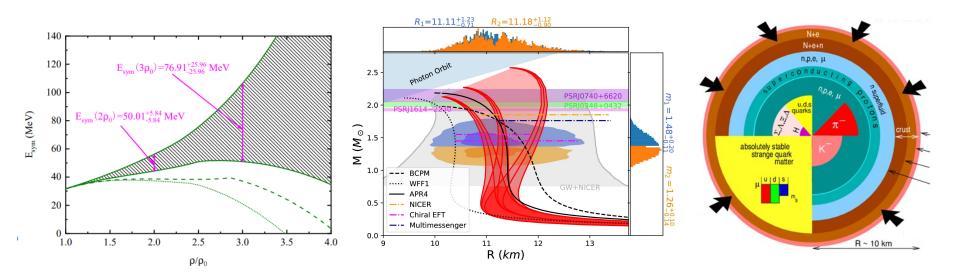
Particle J^P overall $N\gamma$ $N\pi$ $\Delta\pi$ ΣK $N\rho$ $\Delta\eta$ $\Delta(1232)$ $3/2^+$ **** *** **** **** **** **** **** **									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta\pi$	ΣK	$N\rho$	$\Delta \eta$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Delta(1232)$	$3/2^{+}$	****	****	****				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Delta(1600)$	$3/2^{+}$	****	****	***	****			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Delta(1620)$	$1/2^{-}$	****	****	****	****			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Delta(1700)$	$3/2^{-}$	****	****	****	****	*	*	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Delta(1750)$	$1/2^{+}$	*	*	*		*		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Delta(1900)$	$1/2^{-}$	***	***	***	*	**	*	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Delta(1905)$	$5/2^{+}$	****	****	****	**	*	*	**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Delta(1910)$	$1/2^{+}$	****	***	****	**	**		*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Delta(1920)$	$3/2^{+}$	***	***	***	***	**		**
$\Delta(1950)$ $7/2^+$ **** **** *** *** *** $\Delta(2000)$ $5/2^+$ ** * ** * * $\Delta(2150)$ $1/2^-$ * * $\Delta(2200)$ $7/2^-$ *** *** ** ** $\Delta(2300)$ $9/2^+$ ** ***	$\Delta(1930)$	$5/2^{-}$	***	*	***	*	*		
$\Delta(2000)$ 5/2 ⁺ ** * * * * * * * * * * * \\ $\Delta(2150)$ 1/2 ⁻ * * * \\ $\Delta(2200)$ 7/2 ⁻ *** ** ** ** ** ** \\ $\Delta(2300)$ 9/2 ⁺ ** * **	$\Delta(1940)$	$3/2^{-}$	**	*	**	*			*
$\Delta(2150) \ 1/2^- * * * * * * * * * * * * * * * * * * *$	$\Delta(1950)$	$7/2^{+}$	****	****	****	**	***		
$\Delta(2200) \ 7/2^- \ *** \ *** \ *** \ **$ $\Delta(2300) \ 9/2^+ \ ** \ **$	$\Delta(2000)$	$5/2^{+}$	**	*	**	*		*	
$\Delta(2300) \ 9/2^+ \ ** \ **$	$\Delta(2150)$	$1/2^{-}$	*		*				
	$\Delta(2200)$	$7/2^{-}$	***	***	**	***	**		
$\Lambda(2350) 5/9^{-}$	$\Delta(2300)$	$9/2^{+}$	**		**				
$\Delta(2550) \ 5/2 \ *$	$\Delta(2350)$	$5/2^{-}$	*		*				
$\Delta(2390) \ 7/2^{+} *$	$\Delta(2390)$	$7/2^{+}$	*		*				
$\Delta(2400) \ 9/2^- \ ** \ ** \ **$	$\Delta(2400)$	$9/2^{-}$	**	**	**				
$\Delta(2420) \ 11/2^+ **** * ****$	$\Delta(2420)$	$11/2^{+}$	****	*	****				
$\Delta(2750) \ 13/2^- ** **$	$\Delta(2750)$	$13/2^{-}$	**		**				
$\Delta(2950) \ 15/2^{+} ** **$	$\Delta(2950)$	$15/2^{+}$	**		**				

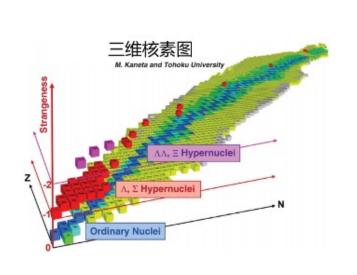


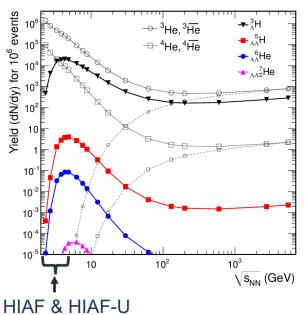


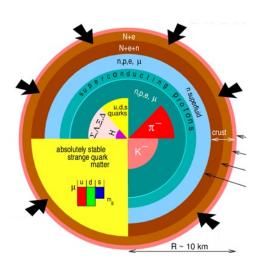
 Pentaquark states with only light quarks? Di-baryons?

Baryon spectroscopy


Nuclear matter phase diagram

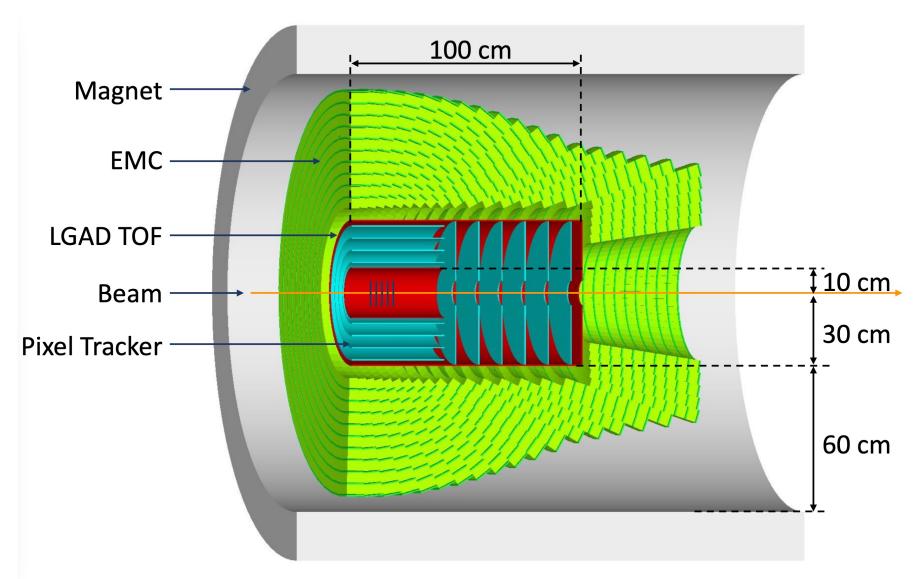

- The nuclear matter phase diagram can be scanned by heavy ion collisions at different energies.
- The 1st order phase transition and the critical point can be searched.

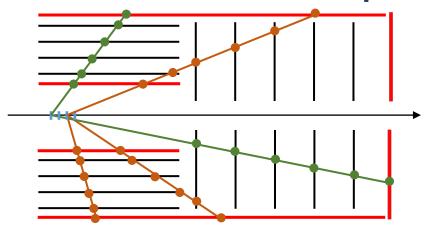

Nuclear matter equation of state

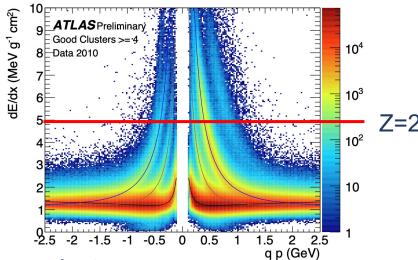


- nuclear matter equation of state
- ⇒ structure and properties of neutron stars

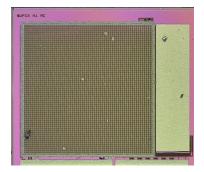
Hypernuclei



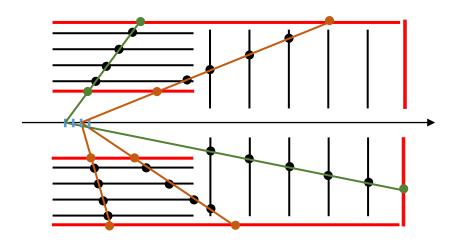


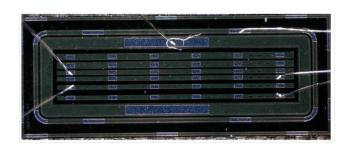

- hypernucleus properties & discovery of new (multi-strange) hypernuclei
- ⇒ hyperon-nucleon & hyperon-hyperon interactions
- ⇒ structure and properties of neutron stars

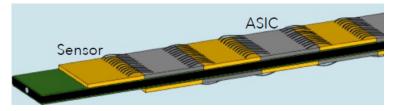
Conceptual design



5D pixel tracker

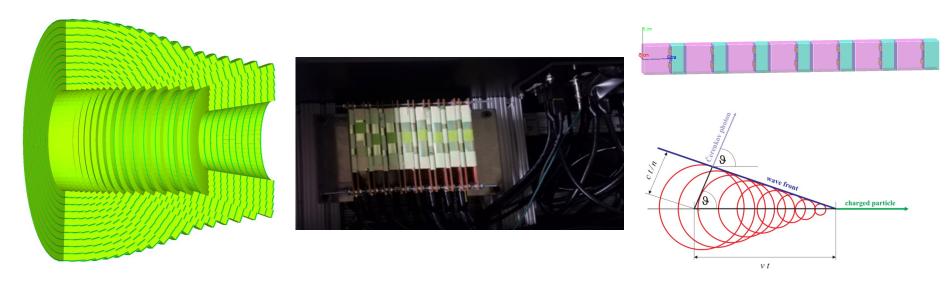

- 5D-tracking: 3D position + time + energy loss readout
 - Distinguish hits from different events by time: Δt ~10ns (1/100MHz)
 - rare physics search, high precision measurements
 - dE/dx to identify light nuclei with different Z (d, ⁴He, ⁶Li...)
 - hypernucleus measurements
- pixel size \sim <100 μ m \Rightarrow $\Delta x \sim$ <30 μ m
- $X/X_0 \sim 0.3\%$




Nupix-H1 sensor

Single pixel dead time ~10µs ⇒ control occupancy when running with high event rate
 Hao Qiu - IMP, CAS
 16

LGAD TOF

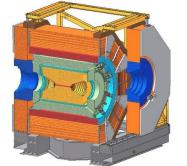


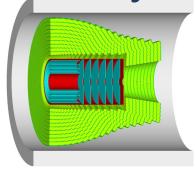
- Low Gain Avalanche Detectors
- Inner barrel (start time) + outer barrel & end cap (end time)
- Δt~30ps
- AC LGAD with strip read-out electrode
 - $\Delta x_{r\phi}$ ~<30 µm \Rightarrow also used in track fitting
 - No in-chip dead area
- $X/X_0 \sim 3\%$

Dual-readout calorimeter

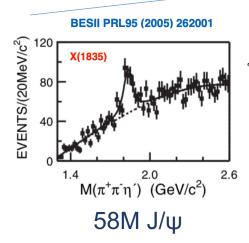


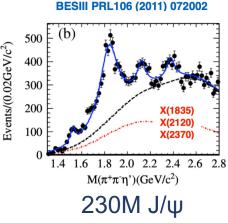
- "ADRIANO2" type of calorimeter adopted by the REDTOP collaboration
- Pb glass + scintillator dual-readout ⇒ very good e⁺⁻ vs. π⁺⁻ & γ vs. n PID
 - Pb glass: Cherenkov light, signal only for EM showers
 - scintillator: signal for both EM and hadronic showers
- ΔE/E~3% @1GeV
- Δt~200ps ⇒ distinguish signals from different events
- shaping time (module dead time) < µs ⇒ control occupancy

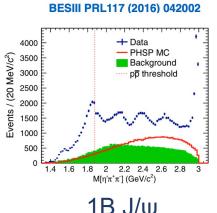

Key feature I: Ultra-high event rate — why?


ATLAS: 100 kHz

STAR: 1 kHz


BESIII: 4 kHz



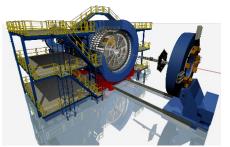

HHaS: 100 MHz

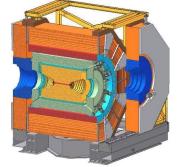
19

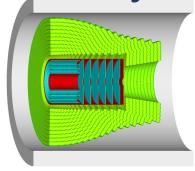
1B J/ψ

BESIII PRL 132 (2024) 181901

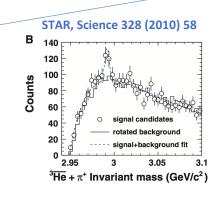
$$X(2370) J^{PC} = 0^{-+}$$


glueball-like particle


10B J/ψ


- HHaS is 3-5 orders of magnitude faster than current experiments
- History has repeatedly shown that more statistics and better precision leads to new discoveries Hao Qiu - IMP, CAS

Key feature I: Ultra-high event rate – why?




ATLAS: 100 kHz

STAR: 1 kHz

BESIII: 4 kHz

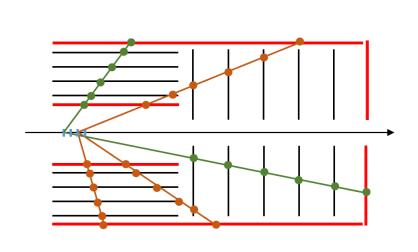
HHaS: 100 MHz

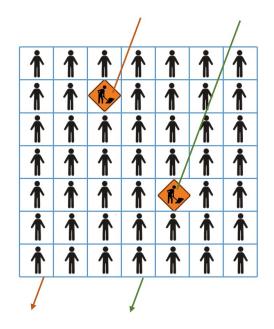
1st observed antihypernucleus

Heaviest observed antihypernucleus

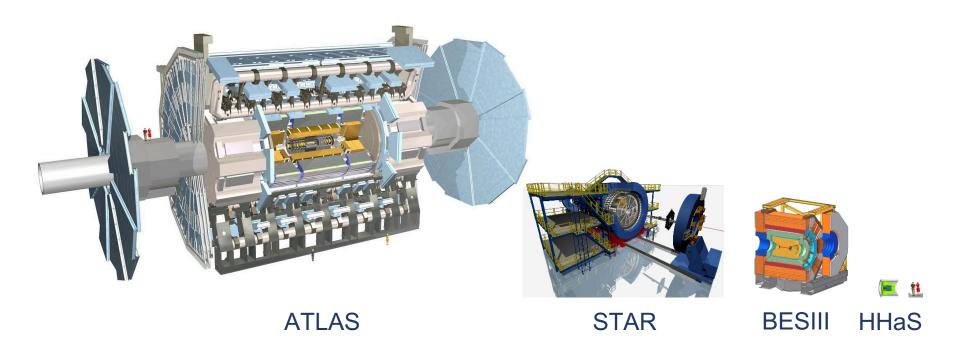
- antihypertriton: 110M events
- antihyperH4: 6B events since yr 2010
- HHaS is 3-5 orders of magnitude faster than current experiments
- History has repeatedly shown that more statistics and better precision leads to new discoveries
 Hao Qiu - IMP, CAS

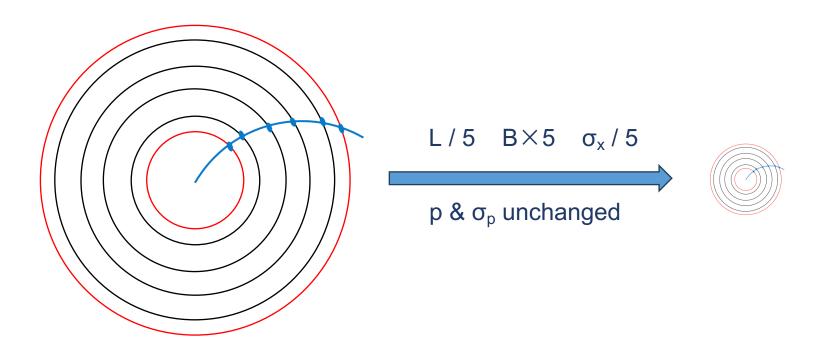
1亿/秒


1 min


Key feature I: Ultra-high event rate – why?

- It's much easier to obtain high luminosity with fixed target experiments than colliders
- <u>High Intensity</u> heavy-ion Accelerator Facility (HIAF)
 - 2×10¹² protons in 0.3s ⇒ ~10 GHz maximum collision rate, far beyond current experiment's capabilities
- Capability to record events with an ultra-high rate is necessary to exploit HIAF's high luminosity


Key feature I: Ultra-high event rate – how?

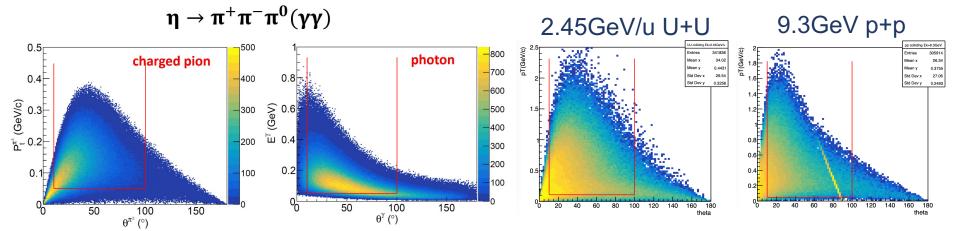


- Each pixel (strip / tower) record hit time information
 - used to distinguish signals from different collisions
- Pixels (strip / tower) work parallelly to record hits from different collisions
 - like GPU: large amount of pixels ⇒ ultra high event rate
 - ~>20M pixels on the innermost layer ⇒ ~0.02% occupancy with 100 MHz event rate

Key feature II: Compact

Key feature II: Compact

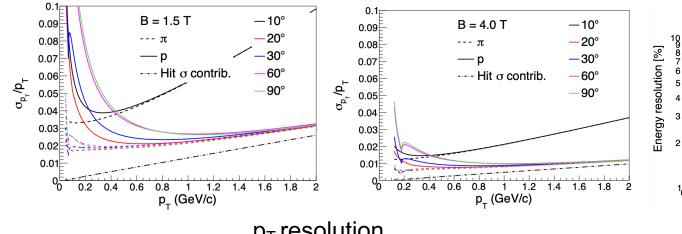
- Traditional gas tracking detector σ_x ~ mm
- Pixel σ_x ~ tens μ m
- \Rightarrow HHaS pixel tracker with R_{out} = 30cm has similar σ_p as meter scale gas detector trackers

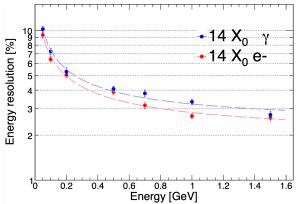

Key feature II: Compact – moderate cost

Sub-system	cost (M Chinese yuan)
Target	0.5
pixel tracker	30
LGAD TOF	33
EMC	22
Solenoid	20
Supporting structure	1
DAQ	24
Total	130.5

• ~1.3亿元

Expected performance – large acceptance

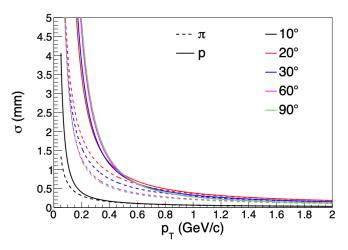

charged particles



angle, momentum and energy coverage

event rate	~100 MHz (p beam), ~1 MHz (HI beam)
angle coverage	θ: 10°~100°; φ: 0~2π
charged particle p _⊤ range	p _T > 50 MeV (B=1.5 T)
γ energy range	E > 50 MeV
typical p _⊤ resolution	~3% (B = 1.5 T); ~1% (B = 4 T)
EM energy resolution	~3% @ 1GeV
typical track pointing resolution	~0.9 mm (p @ 500 MeV/c)
identified particles	e^{+-} , γ, π^{+-} , K^{+-} , p, d, t, ${}^{3}He$, ${}^{4}He$

Expected performance – good resolution



p_T resolution

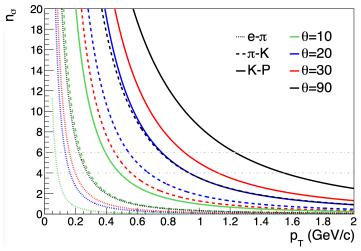
EM energy resolution

event rate	~100 MHz (p beam), ~1 MHz (HI beam)
angle coverage	θ: 10°~100°; φ: 0~2π
charged particle p _⊤ range	p _T > 50 MeV (B=1.5 T)
γ energy range	E > 50 MeV
typical p _⊤ resolution	~3% (B = 1.5 T); ~1% (B = 4 T)
EM energy resolution	~3% @ 1GeV
typical track pointing resolution	~0.9 mm (p @ 500 MeV/c)
identified particles	e ⁺⁻ , γ, π ⁺⁻ , K ⁺⁻ , p, d, t, ³ He, ⁴ He

Expected performance – good resolution

track pointing resolution

event rate	~100 MHz (p beam), ~1 MHz (HI beam)
angle coverage	θ: 10°~100°; φ: 0~2π
charged particle p _⊤ range	p _T > 50 MeV (B=1.5 T)
γ energy range	E > 50 MeV
typical p _⊤ resolution	~3% (B = 1.5 T); ~1% (B = 4 T)
EM energy resolution	~3% @ 1GeV
typical track pointing resolution	~0.9 mm (p @ 500 MeV/c)
identified particles	e ⁺⁻ , γ, π ⁺⁻ , K ⁺⁻ , p, d, t, ³ He, ⁴ He

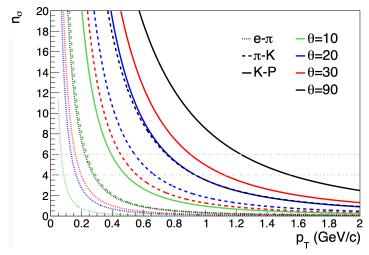

Expected performance – good PID ability

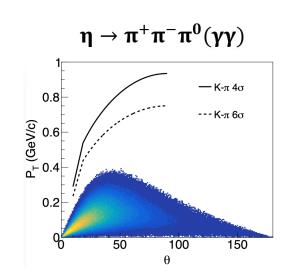
p+p E_k=9.3GeV

 $U+U E_k=2.45GeV/u$

– K-p 4σ - · K-p 6σ

> K-π 4σ K-π 6σ

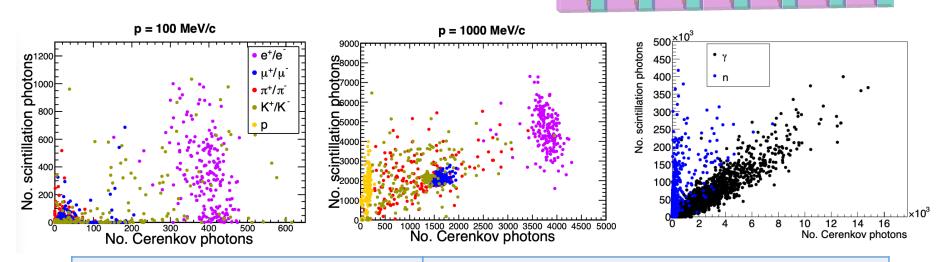



TOF particle identification performance

	_		
event rate	~100 N	p+ p p+	p
angle coverage	θ: 10°~	1.5	
charged particle p _T range	p _T > 50	0.5	
γ energy range	E > 50	0 30 60 90 120 150 30 60 90 120 150 θ	180
typical p _⊤ resolution	~3% (B = 1.5 T); ~1% (B = 4 T)		
EM energy resolution	~3% @ 1GeV		
typical track pointing resolution	~0.9 mm (p @ 500 MeV/c)		
identified particles	e ⁺⁻ , γ, π ⁺⁻ , K ⁺⁻ , p, d, t, ³ He, ⁴ He		

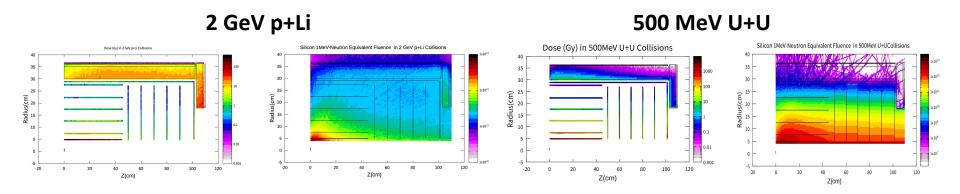
p_T(GeV/c)

Expected performance – good PID ability



TOF particle identification performance

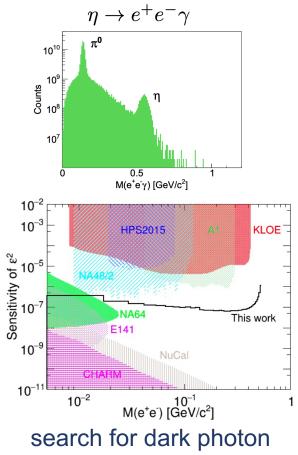
event rate	~100 MHz (p beam), ~1 MHz (HI beam)
angle coverage	θ: 10°~100°; φ: 0~2π
charged particle p _T range	p _T > 50 MeV (B=1.5 T)
γ energy range	E > 50 MeV
typical p _⊤ resolution	~3% (B = 1.5 T); ~1% (B = 4 T)
EM energy resolution	~3% @ 1GeV
typical track pointing resolution	~0.9 mm (p @ 500 MeV/c)
identified particles	e ⁺⁻ , γ, π ⁺⁻ , K ⁺⁻ , p, d, t, ³ He, ⁴ He

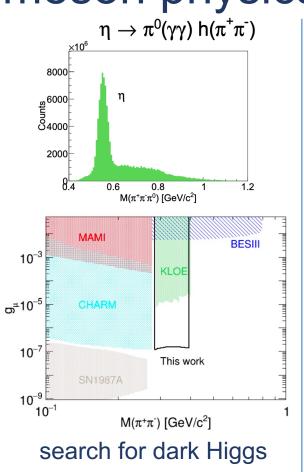

Expected performance – good PID ability

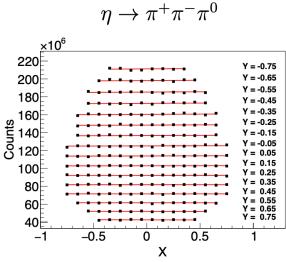
EM vs. hadron shower identification

event rate	~100 MHz (p beam), ~1 MHz (HI beam)
angle coverage	θ: 10°~100°; φ: 0~2π
charged particle p _⊤ range	p _T > 50 MeV (B=1.5 T)
γ energy range	E > 50 MeV
typical p _⊤ resolution	~3% (B = 1.5 T); ~1% (B = 4 T)
EM energy resolution	~3% @ 1GeV
typical track pointing resolution	~0.9 mm (p @ 500 MeV/c)
identified particles	e ⁺⁻ , γ, π ⁺⁻ , K ⁺⁻ , p, d, t, ³ He, ⁴ He

Radiation hardness

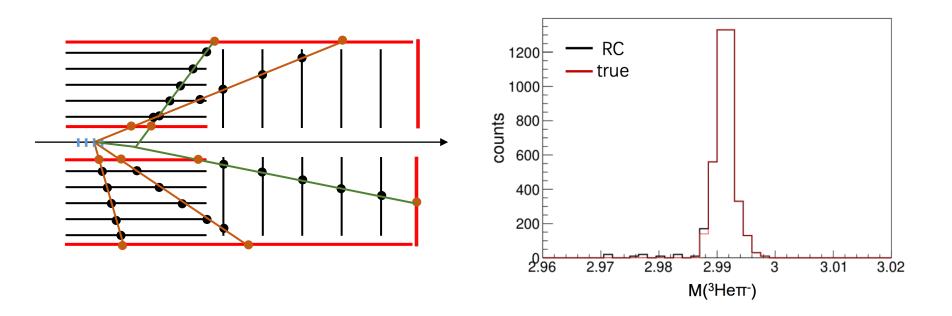

	simulation with FLUKA		reference radiation hardness		
	Dose (Gy)	Si1MeV fluence (neq/cm2)	detector/material	Dose (Gy)	Si1MeV fluence (neq/cm2)
innermost Si	3000	3×10 ¹²	pixel	2×10 ⁴	1.7×10^{13}
iiiieiiiiost 3i	3000	3 × 10	LGAD		1×10 ¹⁵
innermost	F.O.	3×10 ¹¹	lead glass	20	
EMC 50	3 ^ 10**	SiPM		1×10^{14}	


- Most detector components can sustain the radiation
- Lead glass will receive a dose that is close to its limit (TF101: 1% transmittance loss after 20-Gy radiation dose) ⇒ Need to test and select a good type of lead glass


Data rate

- pixel tracker:
 - 100 MHz * 4 track / event * 4 hits / track * 2 pixel / hit * 8 Byte / pixel = 26 GB/s
- LGAD TOF:
 - 100 MHz * 4 track / event * 2 hits / track * 2 strip / hit * 6 Byte / strip = 10 GB/s
- EMC:
 - 100 MHz * 0.4 γ / event * 9 towers / γ * 8 Byte / tower = 3 GB/s
- 39 GB/s in total
- For reference, CEE design data bandwidth 5 GB/s

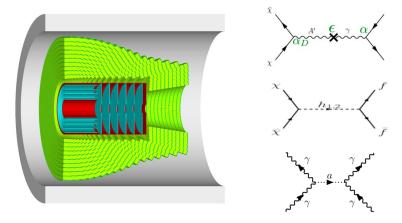
η meson physics

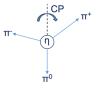

- CP symmetry test
- $\Delta c \sim 5 \times 10^{-5}$
- ~2 orders of magnitude more precise than
 COSY & KLOE-II results

Nuclear Science and Techniques (2025) 36:137

- 1.8 GeV p + ⁷Li, 1 month, 100MHz, average / peak beam intensity = 30%
- 6×10^{11} n produced

1000 times of current world η meson data

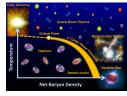

Hypernucleus reconstruction

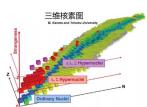


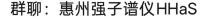
- ~mm level pointing resolution
 - ⇒ background-free hypernucleus reconstruction with decay topology information

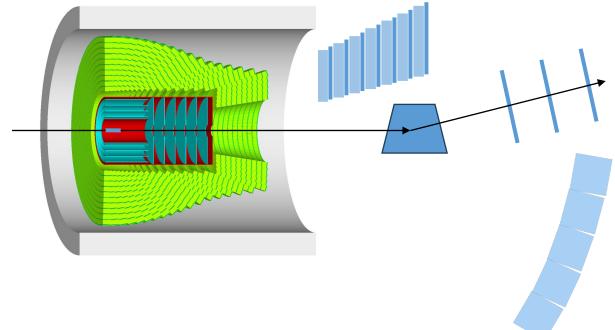
Summary


- Huizhou Hadron Spectrometer (HHaS)
 - sate-of-the-art detectors
 - 5-D pixel tracking
 - LGAD TOF detector
 - ADRIANO-II type calorimeter
 - good expected performance
 - event rate > 100 MHz (p beam)
 - large acceptance
 - comprehensive PID
 - e⁺⁻, γ, π⁺⁻, K⁺⁻, p, d, t, ³He, ⁴He
 - Compact size ⇒ moderate cost
 - Wide range of physics








P.S.: future's future

polarized beam & target?

muon detector: plastic dead layer + MRPC?

spin physics

+2 times of decay channels for η meson physics

projectile endoscope?

- projectile-like hypernuclei
- short-range correlation

π & K beam?

- cleaner n meson physics
- light hadron & hypernuclear physics

neutron wall: liquid scintillator?

- light hadron physics
- short-range correlation

ideas welcome Thanks ©

Back-up

P.S. I: versatile, too good to be true?

STAR – glowing for 25 years

vertex detector

good tracking with large acceptance

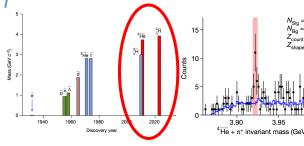
EM calorimeter

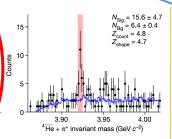
muon **TOF** detector

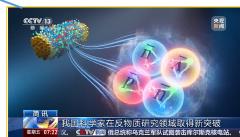
inner + **TPC**

forward tracking & calorimeter

discovery & properties of QGP


proton spin


phase transition antimatter & critical point


ultra-peripheral collisions



P.S. I: versatile, too good to be true?

- A specific experiment for one goal may work; a versatile experiment may also work
- Serious considerations, simulations, discussions & hardware R+D are needed
 - ideas & contributions always welcome
- When considering HIAF's 1st high-energy experiment, it does not hurt to be openminded at first – if some goals do conflict, we can discuss and give up some aspects

e & muon

C, T, CP-violation

- **\Box***CP Violation via Dalitz plot mirror asymmetry:* $\eta \to \pi^{\circ} \pi^{\dagger} \pi$
- □*CP Violation (Type I P and T odd , C even):* η -> 4π ° \rightarrow 8γ
- **\Box***CP Violation (Type II C and T odd , P even):* $\eta \to \pi^{\circ} \ell^{+} \ell$ *and* $\eta \to 3\gamma$
- □ Test of CP invariance via μ longitudinal polarization: $\eta \to \mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$
- □*CP inv. via* $\gamma*$ *polarization studies:* $\eta \to \pi^+\pi^-e^+e^-$ & $\eta \to \pi^+\pi^-\mu^+\mu^-$
- □*CP invariance in angular correlation studies:* $η → μ^+μ^-e^+e^-$
- □*CP* invariance in angular correlation studies: $\eta \rightarrow \mu^{+}\mu^{-}\pi^{+}\pi^{-}$
- □*CP invariance in* μ *polar. in studies:* $η → π^o μ^+μ^-$
- \Box T invar. via μ transverse polarization: $\eta \to \pi^{\circ} \mu^{+} \mu^{-}$ and $\eta \to \gamma \mu^{+} \mu^{-}$
- □CPT violation: μ polar. in $\eta \to \pi^+ \mu \nu vs \eta \to \pi \mu^+ \nu \gamma$ polar. in $\eta \to \gamma \gamma$

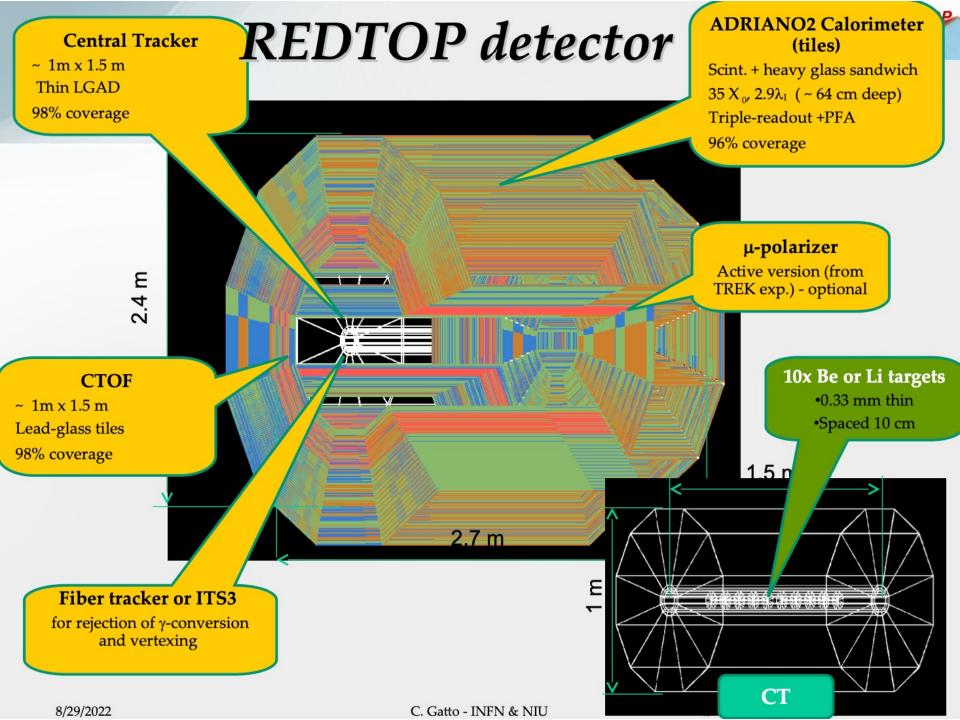
Other discrete symmetry violations

- □ Lepton Flavor Violation: $η \rightarrow μ^+e^- + c.c.$
- □ Radiative Lepton Flavor Violation: $\eta \rightarrow \gamma(\mu^+e^- + c.c.)$
- □ Double lepton Flavor Violation: $\eta \rightarrow \mu^{+}\mu^{+}e^{-}e^{-} + c.c.$

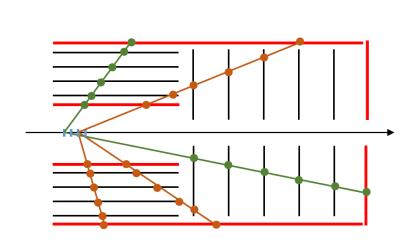
Non- η/η' based BSM Physics

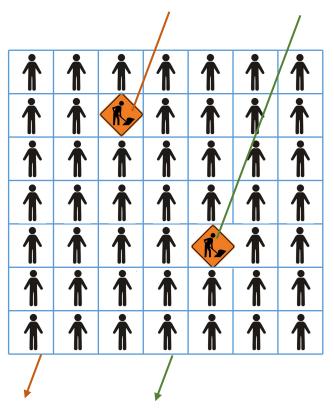
- □*Neutral pion decay:* $\pi^{\circ} \rightarrow \gamma A' \rightarrow \gamma e^{+}e^{-}$
- \square ALP's searches in Primakoff processes: $p Z \rightarrow p Z a \rightarrow l^+l^-$ (F. Kahlhoefer)
- □ Charged pion and kaon decays: $\pi^+ \to \mu^+ v A' \to \mu^+ v e^+ e^-$ and $K^+ \to \mu^+ v A' \to \mu^+ v e^+ e^-$
- □ Dark photon and ALP searches in Drell-Yan processes: $qqbar \rightarrow A'/a \rightarrow l^+l^-$

New particles and forces searches

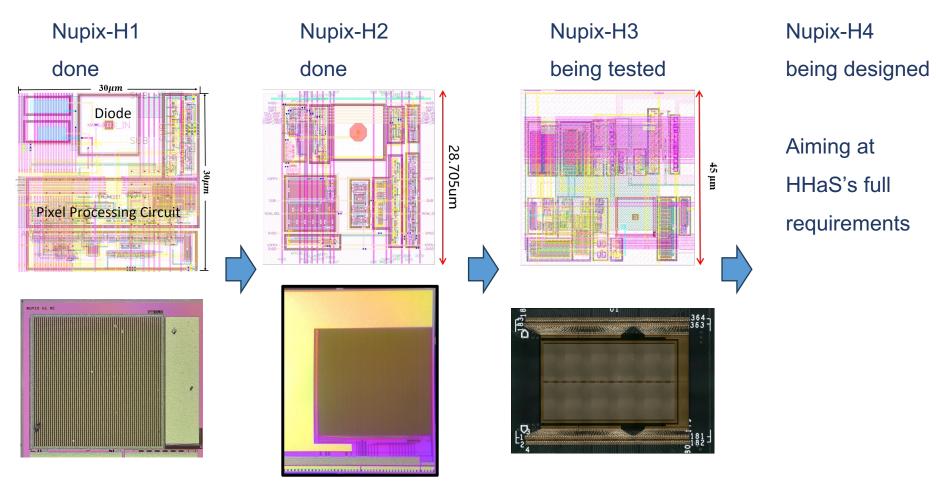

- Scalar meson searches (charged channel): $\eta \to \pi^{\circ} H$ with $H \to e^+e^-$ and $H \to \mu^+\mu$
- □ Dark photon searches: $\eta \rightarrow \gamma A'$ with $A' \rightarrow \ell' \ell'$
- □ Protophobic fifth force searches : $\eta \to \gamma X_{17}$ with $X_{17} \to \pi^+\pi^-$
- □QCD axion searches : $\eta \rightarrow \pi\pi a_{17}$ with $a_{17} \rightarrow e^+e^-$
- □*New leptophobic baryonic force searches* : $\eta \rightarrow \gamma B$ *with* $B \rightarrow e^+e^-$ *or* $B \rightarrow \gamma \pi^\circ$
- □ Indirect searches for dark photons new gauge bosons and leptoquark: $\eta \to \mu^+\mu$ and $\eta \to e^+e^-$
- □ Search for true muonium: $\eta \rightarrow \gamma(\mu^+\mu^-)|_{2M_{H}} \rightarrow \gamma e^+e^-$
- □ *Lepton Universality*
- $\square \eta \rightarrow \pi^{\circ} H \text{ with } H \rightarrow \nu N_2 \text{ , } N_2 \rightarrow h' N_1 \text{ , } h' \rightarrow e^+ e^-$

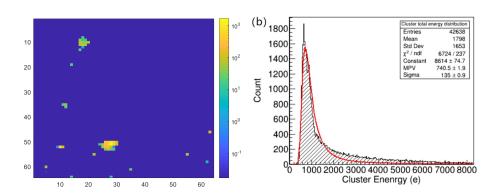
Other Precision Physics measurements

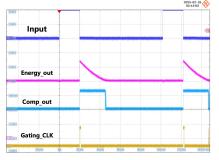

- □ Proton radius anomaly: $\eta \rightarrow \gamma \mu^+\mu^- vs \quad \eta \rightarrow \gamma e^+e^-$
- \square All unseen leptonic decay mode of η / η' (SM predicts 10^{-6} - 10^{-9})


High precision studies on medium energy physics

- □Nuclear models
- □Chiral perturbation theory
- □Non-perturbative QCD
- □ Isospin breaking due to the u-d quark mass difference
- □Octet-singlet mixing angle
- □Electromagnetic transition form-factors (important input for g-2)

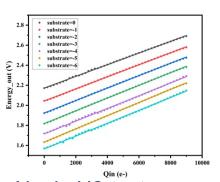

Ultra-high event rate – how?


- Each pixel (strip / tower) record time information
 - used to distinguish signals from different collisions
- Pixels work parallelly to record hits from different collisions
 - like GPU: large amount of pixels ⇒ ultra high event rate

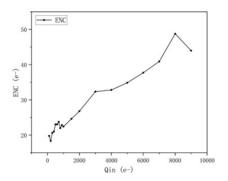

5D pixel tracker

- 3 tape-outs of Nupix-H sensor chips have been designed and produced
- Gradually approaching HHaS's requirements

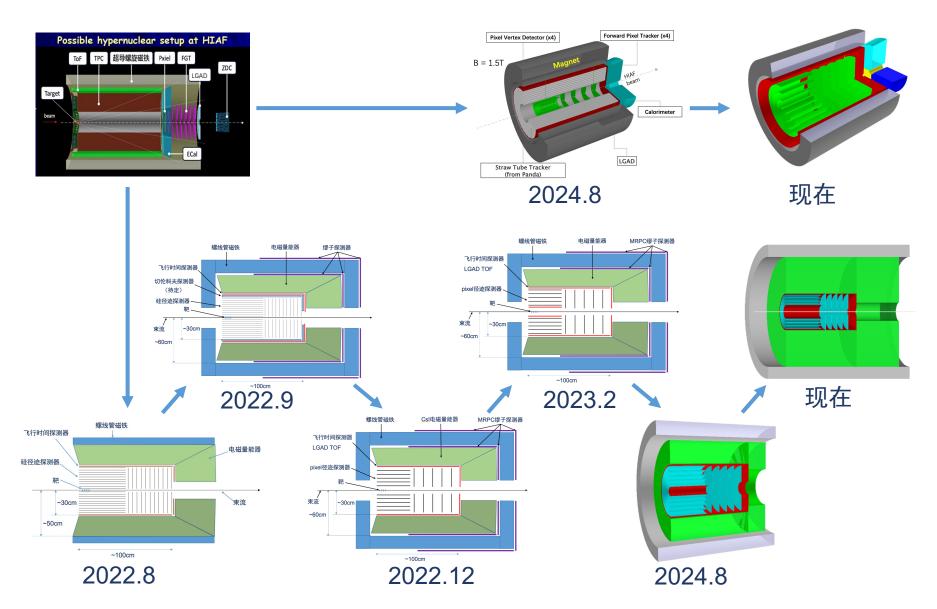
5D pixel tracker



Nupix-H2-test electronics test result


Nupix-H1 ⁹⁰Sr β cluster and energy spectrum

parameter	HHaS requirement	Nupix-H2- test result	status
pixel size	~100 um	28.705 um	meet requirement
energy dynamic range	≥ 16 MIPs (~ 12 ke ⁻)	9 ke-	close to requirement
noise	≤1/5 MIPs (~ 150 e ⁻)	≤ 48.75 e ⁻	meet requirement
time resolution	≤10 ns	25.88 ns	same order of magnitude as requirement
power consumption	≤ 200 mW/cm2	1	not required for now
dead time	≤ 10 µs	\	not required for now



Nupix-H2-test energy dynamic range measurement

Nupix-H2-test equivalent noise count vs. charge

