

The neutron and the Universe History of a Relationship

Stephan Paul TU-München

and

Exzellenzcluster ORIGINS

From the origin of the Universe to the first building blocks of life,

The Neutron

weight: 53 kg

The Neutron and its surrounding

"practical" neutrons and their energy range

Interaction	Potential	Typical numbers
Nuclear (optical)	$2\pi\hbar^2b_c\delta(r)/m_n$	$V_{Si} \sim 50 neV$
Gravitational	$m_n g \cdot r$	~100 neV per m
Magnetic	$-\mu \cdot B(r,t)$	~60 neV per T

The Universe

10-43 Sec. past Big-Bang: How it all began

10-43 Sek. nach Big Bang: Neutronen testen den Raum

Gravitation – Quantisation in Earth Gravitational field

Gravitation – Quantisation in Earth Gravitational field

Gravitation – Quantisation in Earth Gravitational field

Sensitivity: peV

Sensitivity: peV

Gravitation – Quantization in Earth Field II

Yukawa coupling:

- strength α
- range λ

Until now:

Atomic force microscope:

• Newton $r > 10 \mu m$

Problem: Casimir effect ("falsch"-effect)

Neutrons:

- limits for Newton: r < 10μm
- range: $1 \text{ nm} < \lambda < 100 \mu \text{m}$
- strength: $\alpha \sim 10^8$

•

Gravitation: Q-Bounce

Abele et al.: arXiv:1510.03078v1

H. Abele et al.

Gravitation: Q-Bounce

Abele et al.: arXiv:1510.03078v1

H. Abele et al.

Gravitation: Q-Bounce

Abele et al.: arXiv:1510.03078v1

Gravitation: New Generation Measurements (measure time/frequency)

Level scale

- Determine level distance via induction of transitions
 - Mechanical excitation
- Magnetic excitations(Granit)-Exp
- Energy resolution
 - Rabi method
 - use 2-level system with transition frequency– " ω_{Lamor} "
 - Induce mechanical transitions (replace RF field)
 - Phase comparison with external mechanical oscillator (kHz)
- Energy change of UCN (Granit-Exp)

Gravitation: New Generation Measurements (measure time/frequency)

Level scale

- Determine level distance via induction of transitions
 - Mechanical excitation
 - Magnetic excitations(Granit)-Exp
- Energy resolution
 - Rabi method
 - use 2-level system with transition frequency– " ω_{Lamor} "
 - Induce mechanical transitions (replace RF field)
 - Phase comparison with external mechanical oscillator (kHz)
- Energy change of UCN (Granit-Exp)
- Sensitivity $V_{\rm F}\Theta(z-z_{\rm m})$ $V(z) = m_{\rm n}gz(t) +$ Gravity Fermi-pseudopotential hypothetical potential

Models, Sensitivity and distance scales

- Yukawa type force $V(r) = -G \frac{m_i \cdot m_j}{r} (1 - \alpha \cdot e^{-r/\lambda})$

- Extra dimensions:

$$V(r) \propto \frac{1}{r^{1+n}}$$

- Symmetrons dark energy with new scalar field

$$V(z) = mgz + \frac{mc^2}{2M^2}\varphi^2(z)$$

Which distance scale?

dark matter density: $\rho_d \approx 3.8 \text{ keV/cm}^3$ corresponds to a distance scale $\lambda_d \approx \sqrt[4]{\hbar c/\rho_d} \approx 85 \ \mu m$

Experiment Sensitivity

- Limits for Newtons law: about 1μm
- Sensitivity for Yukawa contribution:
 - Strength $\alpha \sim 10^8$
 - Range λ ~ 20μm

Using observed transitions

Precision Energy Measurements – Ramsey method

Clock comparison

 $2nd\pi/2$ spin flip pulse.

Precision Energy Measurements – Ramsey method

"Spin up" neutron...

1st π/2 spin flip pulse...

free precession for a time T

 $2nd\pi/2$ spin flip pulse.

29.9

Applied Frequency (Hz)

29.7

29.8

x = working points

30.1

30.0

detuning Δ velocity v

Precision Energy Measurements – Ramsey method

"Spin up" neutron...

exploit $\Delta E \cdot \Delta t \leq \hbar$ make $\Delta t = T$ large (observation time)

Ramsey Separated Oscillatory field method - qBounce Expt (CORNEL)

prepare ground state

induce $\pi/2$ flip (energy transfer)

create coherent superposition of two states

free propagation

wave functions propagate in time adjust to the gravity potential possible phase shift between states develops

induce $\pi/2$ flip (energy transfer)

test resulting superposition

2 modes:

flip $+ \pi/2$ (remove ground state)

flip $-\pi/2$ (repopulate ground state)

analyse intensity of ground state

Ramsey Separated Oscillatory

oscillator

induce $\pi/2$ flip (energy transfer)

create coherent superposition of two states

free propagation

wave functions propagate in time adjust to the gravity potential possible phase shift between states develops

induce $\pi/2$ flip (energy transfer)

test resulting superposition

2 modes:

flip $+ \pi/2$ (remove ground state)

flip $-\pi/2$ (repopulate ground state)

analyse intensity of ground state

oscillator

Stephan

Ramsey Spectroscopy, qBounce Experiment

Ramsey Spectroscopy, qBounce Experiment

A neutron walks into a bar...

Use Ramseys method

- Sensitivity
- Superimpose an electric potential on the gravitational potential

Use Ramseys method

- Sensitivity
- Superimpose an electric potential on the gravitational potential

Use Ramseys method

H. Abele et al. 2023

- Sensitivity
 - Superimpose an electric potential on the gravitational potential
 - Search for frequency shift : $\Delta E = q \cdot E = h \Delta \nu$
 - prototype measurement: $q_n < 10^{-17} \cdot e$

• future: $q_n < 10^{-21} \cdot e$ (best present limit)

10-35 bis 10-32 sec. Past Big Bang

10-34 bis 10-33 Seconds after Big Bang

10-34 bis 10-33 Seconds after Big Bang

10-34 bis 10-33 Sekunden nach dem Big Bang

Symmetries

EDM and CP-Violation

- P mirror operation $(x \rightarrow -x)$
- C charge conjugation $(q \rightarrow -q)$
- $T-time\ reversal\ (t\rightarrow -t)$

$$H = -\mu \mathbf{B} \cdot \frac{\mathbf{S}}{S} + d\mathbf{E} \cdot \frac{\mathbf{S}}{S}$$

CPT must be conserved!

The role of an n-EDM

EDM is test for flavour diagonal CP

- Test of vacuum structure at small distances
- Background free probe for 'new physics' (on contrast to CKM ind.. CP)

CP violation in nucleon (neutron) needed for

- Baryogenesis Problem (matter vs antimatter in universe)
 cosmological necessity (Sakharov criteria)
- Test CP violating part in QCD (θ -term)

 Magic fine tuning to zero (θ < 10-9)

EDM is studied in

- Diamagnetic atoms (strong CP problem)
- Paramagnetic atoms, molecules, (CP inducing electron-EDM d_e)
- Neutron (CP in quark-sector)

Neutron EDM

strong interaction

$$d_n \equiv D_n(k^2 = 0) = \frac{g_{\pi NN}\overline{g_{\pi NN}}}{4\pi^2 M_N} \ln\left(\frac{M_N}{m_\pi}\right)$$
$$\sim \overline{\theta} \times 2 \times 10^{-16} e - cm$$

Neutron EDM

electroweak interaction

Standard Model EDM

$$d_{\rm n}^{SM} \approx 10^{-32} \text{ e cm}$$

Neutron EDM

Supersymmetry creates many CP violating phases

New Physics at the TEV scale

How to measure an EDM?

EDM-Measurement

$$\mathcal{M} = \alpha ET \sqrt{N}$$

Figure of Merit

- lpha visibility of Ramsey pattern
- E electric field strength
- T time of free precession
- N number of neutrons observed

Ultra cold Neutrons (UCN)

Source @ ILL Grenoble

- Kinetic energy < 250 neV (< 7 m/s velocity)
- Gravitational potential 100 neV/m (< 2.5m against gravity)
- magnetic level splitting ~ 60 neV/T
- Strong interaction: n reflect from many surfaces

Fermi-potential < 340 neV

UCN storage for ~ 885 s (β -decay time)

Ultra cold Neutrons (UCN)

Source @ ILL Grenoble

- Kinetic energy
- Gravitational potential
- magnetic level splitting
- Strong interaction: Fermi-potential
- < 250 neV (< 7 m/s velocity)
- 100 neV/m (< 2.5m against gravity)
- ~ 60 neV/T
- n reflect from many surfaces
- < 340 neV

UCN storage for ~ 885 s (β -decay time)

How accurately do we have to measure?

Neutron(spin) precession of 30 Hz

Present sensitivity:

one spin-rotation in 180 days

energy resolution: $E_{EDM} = 3 \cdot 10^{-22} \text{ eV}$

$$|d_n| < 3.10^{-26} e \cdot cm$$

How accurately do we have to measure?

Neutron(spin) precession of 30 Hz

Present sensitivity:

one spin-rotation in 180 days

energy resolution: $E_{EDM} = 3 \cdot 10^{-22} \text{ eV}$

 $|d_n| < 3.10^{-26} e \cdot cm$

planned sensitivity:

one spin rotation in 50 years

energy resolution: $E_{EDM} = 3 \cdot 10^{-24} \text{ eV}$

$$|d_n| < 3.10^{-28} e \cdot cm$$

How accurately do we have to measure?

Neutron EDM searches and friends

Neutron EDM is purest system

Closed shell systems probe variety of underlying CP violating effects

Requires theory to

- extract signal strength
- interpretation (static: electron, nucleon, quark, dynamic: e-N interaction)

Closed Shell Systems (no direct d_e)

Neutron EDM searches and friends

New/planned activities

Collaboration	Species	Method	Sensitivity	Status
			$(10^{-29} ecm)$	
PanEDM I	n	UCN	380	Commissioning
PanEDM II	\mathbf{n}	UCN	79	Commissioning
Beam EDM	\mathbf{n}	beam	500	proof-of-principle
n2EDM	\mathbf{n}	UCN	110	Start data-taking
n2EDMagic	\mathbf{n}	UCN	50	Construction
nEDMsf	n	UCN	20	Development

time scale: 5-15 years

aim: $d_n < 10^{-27} \ e \cdot cm$

Closed Shell Systems (no direct d_e)

The Real Setup

Fierlinger et al.

The Real Setup

Fierlinger et al.

The Real Setup

Key: avoid magnetic false effects

"perfect" magnetic shielding - best room worldwide (remaining field few fT)

Fierlinger et al.

- "Perfect" control over non-magnetic material
- Frequent and rapid demagnetization
- Co-magnetometry (199Hg)
- nEDM < 10⁻²⁸ e cm in reach
- missing: UCN!!

The new EDM apparatus PanEDM

Goal: $\sigma(d_n) < 5.10^{-28}$ ecm (3 σ) with 200 days data, stat.+syst.

The new EDM apparatus PanEDM

External Magnetic Shielding

Fierlinger et al.

External Magnetic Shielding

- The 'best performing' shield
 - SF 106 @ 1mHz (w/o ext. comp. coil)
- Degaussing in 30 s
- Technology understood and available
- Further improvements possible
- Measured field in outer shield:
 - < 3 nT in 5 cm distance from shield walls
 - < 0.5 nT in 1 m³ volume
 - < 150 pT in EDM cell volume
 - < 1 pT/cm gradient in 0.5 m diameter

Key issue: magnetometry

Cs magnetometers and Hg co-magnetometer

Until 10-6 Seconds past Big Bang

A modern Goldhaber experiment

Helicity of Neutrinos*

M. Goldhaber, L. Grodzins, and A. W. Sunyar

Brookhaven National Laboratory, Upton, New York

(Received December 11, 1957)

A COMBINED analysis of circular polarization and resonant scattering of γ rays following orbital electron capture measures the helicity of the neutrino. We have carried out such a measurement with Eu^{152m} , which decays by orbital electron capture. If we assume the most plausible spin-parity assignment for this isomer compatible with its decay scheme, $^10-$, we find that the neutrino is "left-handed," i.e., $\sigma_{\nu} \cdot \hat{p}_{\nu} = -1$ (negative helicity).

A Modern Goldhaber Experiment

Observe neutron decay:

$$n \to pe\overline{v}_e \to H\overline{v}_e$$

2-body decay: properties of the H are a mirror of the v_e properties

$$H_{H} = \frac{\vec{\sigma} \cdot \vec{p}}{|\vec{\sigma}| \cdot |\vec{p}|} = 0, H_{\overline{\nu}_{e}} \qquad \vec{p}_{H} = -\vec{p}_{\overline{\nu}_{e}}$$

with HFS analysis:

$$\vec{\sigma}_p \cdot \vec{\sigma}_e$$
 and $(\vec{\sigma}_p + \vec{\sigma}_e) \cdot \vec{\sigma}_{v_e}$

Small decay width (BR=4 · 10-6) (83% 1s, 10% 2s)

Measurement technique

Unpolarised n decays in the magnetic field in a reactor tube

Selection: F, m_F of hydrogen atom with spin filter method Identify: Hydrogen from n-decay via

- Doppler shift Laser ionisation process
- Ar charge exchange ionisation in H⁻ (1S-2S state selectivity ~1:100)
- Magnetic spectroscopy

Rate: 0.3 H atoms/s in the 2S state

Physics:

- Relative rates F=0.1, $m_F=0.1$ Signature of g_S and g_T
- Rate of F=1, $m_F = -1$ shows (V+A)

Measurement technique

Principle of set-up

How to Detect 2-body Neutron Decay (nBOB)

- Use neutron source FRMII (cold beam, core), ILL, CSNS
- Define decay volume
- Detect hydrogen atoms microcalorimeter*
 - Measure their energy 326 eV with $\Delta E \approx 1~{
 m eV}$

Precision and competition of BoB

Expected precision:

- Improvement of g_S (upper limit): Factor 10 in 4 $\delta\alpha\psi\sigma/\epsilon$ ($\epsilon=\epsilon\phi\phi\iota\iota\epsilon\nu\chi\psi$)
- Previously: Ig /g_{sV} I< 0.067*
- Improvement of g_T (upper limit): Factor 20 in 4 days/e
 - Previously: Ig /g_{TA} I<0.09 *
- Improvement of H_{ν} : factor 100 in 60 $\delta \alpha \psi \sigma / \epsilon$ (statistically)
- Previous realisation: 15% from μ,τ decays

Competition

- Neutron decay correlations
- Direct search of W_R at the LHC
- Muon and tau decays (Michel parameter) presently best limits

At ILL: decay rates 10 times higher than in Munich

*Severijns et al. 2006: global fit with/without τ_n new

Structure of the Weak Interaction

- Right-handed currents (left-right symmetrical models)
 - W_R , v_R
 - Measure left-handedness of the ν
- Tensor or scalar forces
 - g_T, g_S
 - Measure ratio of (V-A) coupling and total coupling

Structure of the Weak Interaction

- Right-handed currents (left-right symmetrical models)
 - W_R , V_R
 - Measure left-handedness of the v
- Tensor or scalar forces
 - g_T, g_S
 - Measure ratio of (V-A) coupling and total coupling
- Use neutron decay: observe
 - $-n \rightarrow pe\overline{v}_e \rightarrow H\overline{v}_e$ with HFS analysis
 - Small branching ratio (BR=4·10⁻⁶) (83% 1s, 10% 2s) $\vec{\sigma}_p \cdot \vec{\sigma}_e$ and $(\vec{\sigma}_p + \vec{\sigma}_e) \cdot \vec{p}_{\bar{\nu}_e}$
 - Rate: 0.3 H atoms/s in 2s state

Structure of the Weak Interaction

- Right-handed currents (left-right symmetrical models)
 - W_R , V_R
 - Measure left-handedness of the v
- Tensor or scalar forces
 - g_T, g_S
 - Measure ratio of (V-A) coupling and total coupling
- Use neutron decay: observe
 - $-n \rightarrow pe\overline{v}_e \rightarrow H\overline{v}_e$ with HFS analysis
 - Small branching ratio (BR=4·10⁻⁶) (83% 1s, 10% 2s) $\vec{\sigma}_p \cdot \vec{\sigma}_e$ and $(\vec{\sigma}_p + \vec{\sigma}_e) \cdot \vec{p}_{\bar{\nu}_e}$
 - Rate: 0.3 H atoms/s in 2s state
- Physics:
 - Relative rates of F=0.1, $m_F=0.1$ give signature of g_S and g_T
 - Rate of F=1, $m_F = -1$ shows (V+A)

10⁻² – 10³ Seconds after Big Bang

Primordial Nucleosynthesis

 $t < 1 \text{ s}, kT > 1.3 \text{ MeV } (15 \text{ billion } ^{\circ}\text{C})^*$ thermal equilibrium

$$p + e^- \implies n + \nu$$
 $n + e^+ \implies p + \overline{\nu}$

1 s < t < 100 s, 0.1 MeV < kT < 1.3 MeV neutron decay $n \rightarrow p + e^- + \overline{\nu}$ n/p: $1/6 \gg 1/7$

 $t > 100 \, \mathrm{s}, kT < 0.1 \, \mathrm{MeV, bec. of } \, \gamma/\mathrm{B}$ deuterium fusion $n + p \longrightarrow d + \gamma$

Dark Energy

Development of

Primordial Nucleosynthesis

t < 1 s, kT > 1.3 MeV (15 billion ∘C)* thermal equilibrium

$$p + e^- \implies n + \nu$$
 $n + e^+ \implies p + \overline{\nu}$

$$t > 100 \text{ s, } kT < 0.1 \text{ MeV } (1.2 \text{ billion } \circ \text{C})$$

$$nucleosynthesis$$

$$d + p \rightarrow {}^{3}\text{He} + \gamma \qquad {}^{3}\text{He} + n \rightarrow {}^{3}\text{H} + p$$

$$d + d \rightarrow {}^{3}\text{H} + p \qquad {}^{7}\text{Li} + p \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$$

$$d + d \rightarrow {}^{3}\text{He} + n \qquad {}^{7}\text{Be} + n \rightarrow {}^{7}\text{Li} + p$$

$${}^{3}\text{He} + {}^{4}\text{He} \rightarrow {}^{7}\text{Be} + \gamma \qquad {}^{3}\text{He} + {}^{4}\text{He} \rightarrow {}^{7}\text{Be} + \gamma$$

$${}^{3}\text{He} + d \rightarrow {}^{4}\text{He} + p$$

1 s < t < 100 s, 0.1 MeV < kT < 1.3 MeV neutron decay $n \rightarrow p + e^- + \overline{\nu}$ n/p: $1/6 \gg 1/7$

t> 100 s, kT< 0.1 MeV, bec. of γ/B deuterium fusion $n+p \longrightarrow d+\gamma$

10⁻² – 10³ Seconds past Big Bang

10⁻² – 10³ Seconds past Big Bang

Neutron Lifetime and Nucleosynthesis

Three parameters:

$$\eta_{10} = (n_B/n_\gamma) * 10^{10}$$

CMB (WMAP-Satellit)

$$Y_p = 4 \text{ He} / (p + 4 \text{ He})$$

Low metallicity (early) stars/galaxies

τ_n

Experiments

Knowledge of weak and nuclear force:

- Helium abundance*
- Deuteron abundance(small)**
- Lithium abundance(small)**

Neutron Lifetime and Nucleosynthesis

Neutron Lifetime and Nucleosynthesis

Three parameters:

$$\eta_{10} = (n_B / n_y) * 10^{10}$$

CMB (WMAP-Satellit)

$$Y_p = 4 \text{ He} / (p + 4 \text{ He})$$

Low metallicity (early) stars/galaxies

τ_n

Experiments

Knowledge of weak and nuclear force:

- Helium abundance*
- Deuteron abundance(small)**
- Lithium abundance(small)**

Lifetime - Overview

Measurements

Plagued by

- systematic effects
- personal bias
- competition for smallest quoted uncertainties

Lifetime - Overview

Measurements

Plagued by

- systematic effects
- personal bias
- competition for smallest quoted uncertainties

© Cartoonbank.com

Measurement of n-Lifetime with PENeLOPE

Measurement of n-Lifetime with PENeLOPE

Measurement of n-Lifetime with PENeLOPE

Detect protons online

- Each measuring cycle gives expontential
- Post accelerate protons onto detector

Detect neutrons past storage time t

Many cycles to get exponential

Assumption:

- new intense UCN source(FRMII, TRIUMF)
- UCN (gas-) density: $\rho = 10^3 10^4$ cm⁻³
- $B_{max} = 2 T$ $B_{min} = 10^{-3} T$
- Volume: 700 I
- $N_{\text{storage}} = 10^7 10^8$
- Real time detection of p,e

Statistical accuracy:

- $\Delta t \sim 1s$ per measuring cycle (30 min):
- $\Delta t \sim 0.1s$ in 2-4 days

Magnetic trap with online p-detection

Magnet/Coil Production - Setup at TRIUMF

Source for ultra cold Neutrons

FRM II of TUM

Source for ultra cold Neutrons

UCN Sources

best source: SuperSun@ILL 235 UCN/cm³ with 3.6 · 106 total (new) (SFHe)

planned source: TUCAN@TRIUMF $1.6 \cdot 10^7/s$ - steady source (SFHe)

operating source: UCN@PSI 12 UCN/cm 3 with $4 \cdot 10^5$ total (since 2011)

upgraded source: UCN@LANL 180 UCN/cm³ - pulsed

planned source*: UCN@FRMII 5000 UCN/cm3 - steady state source

use solid deuterium @ 5K

^{*} a similar source planned at CSNS

UCN Source: Generating Ultra Cold Neutrons

decelerating neutrons:

moderation:

- water (heavy water)
- liquid deuterium

cooling - superthermal source

- solid deuterium (5K)
- superfluid helium

UCN Source: Generating Ultra Cold Neutrons

strong new UCN source: superthermal D₂-source at FRM-II

Summary

- Particle physics with neutrons adresses the early Universe
- Precision experiments test model of particle physics
 - Sensitivity beyond TeV scale
 - Limit for mass scales given by precision alone
 - No limit by particle energies
 - Interpretation of deviations not unique
 - need several complementary measurements
- Precision experiments test gravitation
 - Complementary to ,classical methods'
 - No principle limit (background free measurement)
- New neutron sources (UCN-source, cold beams) erected (ILL) or in construction (FRMII, TRIUMF, CSNS)
- Internationally active field of science