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QCD on the lattice

In QCD, the structure of hadrons and their interactions at low energies cannot be
studied in perturbation theory → QCD on the lattice.

µU(x,  )

ψ (x)

a
a

a
L

Fermion fields ψ̄(x), ψ(x), gluon field U(x , µ) are
defined on an Euclidean lattice.

The QCD action is discretized.

The path integral for a finite number of the degrees of
freedom reduces to the ordinary integral, is calculated by
using the Monte-Carlo technique.

The continuum limit a → 0 and the infinite-volume limit
L → ∞ have to be performed.
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Calculation of the spectrum of stable particles

The Euclidean path integral

D(t) =
∑
x
⟨0|TΦ(t, x)Φ†(0, 0)|0⟩ =

∫
DUDψDψ̄e−S

∑
x
Φ(t, x)Φ†(0)∫

DUDψDψ̄e−S

If t → ∞, then

D(t) → |⟨0|Φ(0)|n⟩|2e−Ent + · · ·

Meff(t) = ln
D(t)

D(t + a)
→ aEn + · · ·

4 8 12

t/a

0

0.5

1

1.5

2

2.5

a
M
pe
ff

Point-Point

Gaussian-Gaussian

S. Dürr et al., Science 322 (2008) 1224
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“Scattering” in a finite volume

a

a

L

a

No-go theorem: The scattering S-matrix elements cannot be directly extracted
from the amplitudes in the Euclidean theory (Maiani and Testa, 1990)

Impose (periodic) boundary conditions

The spatial size of the box, L, is finite

Assume the temporal size Lt ≫ L, Lt → ∞
Three-momenta are quantized p =

2π

L
n , n ∈ Z3

Discrete energy levels: En+1 − En = O(L−2)

In a finite volume, the three-momentum is quantized

↪→ states lying above threshold can be reached
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There is no free lunch. . .

The structure of spectrum is different in a finite and infinite volume:

2
L

1

E E

infinite L: cut

No asymptotic scattering states in a finite volume

No regular infinite-volume limit at fixed energy for the calculated matrix elements

How does one extract the scattering observables:
phase shifts, cross sections, resonance poles,. . .
from the measured quantities on the lattice?
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The place where lattice meets NREFT

Ψ
in

Ψ
out

R

L

Scale separation: use EFT to describe the large-distance behavior of hadrons:

When R ≪ L, well-separated hadrons can be formed, Ψin/out are close to
asymptotic states

Justifying the use of the non-relativistic EFT: since p ∼ 1/L and R ∼ 1/m, then
p ≪ m

Polarization effects, caused by creation/annihilation of the particles, are
exponentially small and can be neglected
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Non-relativistic EFT: essentials

Propagator:

1

m2 − p2
=

1

2w(p)(w(p)− p0 − iε)︸ ︷︷ ︸
particle

+
1

2w(p)(w(p) + p0 − iε)︸ ︷︷ ︸
anti-particle, integrated out

The vertices in the Lagrangian conserve particle number:

L = ϕ†(i∂t − w)(2w)ϕ+
C0

4
ϕ†ϕ†ϕϕ+

D0

36
ϕ†ϕ†ϕ†ϕϕϕ+ · · ·︸ ︷︷ ︸

relativistic-invariant

Only bubble diagrams: T = + + · · ·

K-matrix
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Matching of the EFT couplings

Couplings C0,D0, . . . describe the short-range physics in the two- and
three-particle sectors.

Matching: using dimensional regularization and a particular renormalization
prescription (threshold expansion), EFT couplings in the two-body sector can be
matched to the scattering phase or effective range expansion parameters:

K−1(p) = p cot δ(p) = −1

a
+

1

2
rp2 + O(p4) , C0 ↔ a , . . .

Matching can be performed in a relativistic-invariant manner, despite integrating
out antiparticles

Crucial point: R ≪ L, the energy spectrum can be calculated by using the same
EFT in a finite volume (decoupling theorem)
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A loop in a finite volume

The energy spectrum is given by the poles of the T -matrix in a finite volume

∫
d3k
(2π)3

→ 1

L3

∑
k

, kn =
2π

L
n, n ∈ Z3

Loop diagram in a finite volume

ip0 →
2√
πLγ

ZP
00(1; q

2
0) , q0 =

p0L

2π

(Z00 is an irregular function, poles at free two-particle energies)
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The Lüscher equation (Lüscher, 1991)

The Lüscher equation (in the absence of partial-wave mixing):

T ∝ 1

p cot δ(p)− ip
→ 1

p cot δ(p)− 2√
πLγ

ZP
00(1; q

2
0)

↪→ p cot δ(p)︸ ︷︷ ︸
short-range

=
2√
πLγ

ZP
00(1; q

2
0)︸ ︷︷ ︸

geometry of a box

↪→ measuring energy levels, one extracts phase shift at the same energy

Relativistic-invariant: can be used in moving frames P ̸= 0

Resonances: analytic continuation into the complex plane

NREFT serves as a bridge between finite and infinite volume
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From two to three particles

Why three particles on the lattice?

Three-pion decays of K , η, ω

a1(1260) → ρπ → 3π and a1(1420) → f0(980)π → 3π

Properties of exotica: T+
cc(3875) (DD

∗ scattering), X (3872) (DD̄∗ scattering),
. . .

Roper resonance: πN and ππN final states

Few-body physics: reactions with the light nuclei
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Lattice vs. continuum: observables

Infinite volume:

Three-particle bound states

Elastic scattering

Rearrangement reactions, breakup

The mass and width of the three-particle resonances

Finite volume:

Two- and three-particle energy levels

How does one connect these two sets? EFT serves as a bridge!
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Three-particle quantization condition

Three different but equivalent formulations of the three-particle quantization
condition are available

RFT (Relativistic Field Theory): Hansen & Sharpe, 2014

NREFT (Non-Relativistic Effective Field Theory): Hammer, Pang & AR, 2017,
see also K. Polejaeva and AR, 2012

FVU (Finite-Volume Unitarity): Mai & Döring, 2017

Enables one to extract scattering observables in the three-body sector from the
measured finite-volume spectrum
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The scattering equation in the infinite volume (CM frame)

= + + +

Bethe-Salpeter equation

M(p,q;E ) = Z (p,q;E ) + 8π

∫ Λ d3k
(2π)32w(k)

Z (p, k ;E )τ(k ;E )M(k ,q;E )

Z (p,q;E ) =
1

2w(p + q)(w(p) + w(q) + w(p + q)− E )
+ H̃0 + · · ·

2-body amplitude (dimer): 4w(k∗)τ−1(k ;E ) = k∗ cot δ(k∗) +

√
s2
4
−m2︸ ︷︷ ︸

=k∗
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Finite volume

ML(p,q;E ) = Z (p,q;E ) +
8π

L3

Λ∑
k

Z (p,q;E )τL(k ;E )ML(k ,q;E )

τ−1
L (k ;E ) = k∗ cot δ(k∗)− 4π

L3

∑
l

1

k2 + l 2 + kl −mE

Poles in the amplitude → finite-volume energy spectrum

Quantization condition: det(τ−1
L − Z ) = 0

Workflow:

Two-body interactions as an input: k∗ cot δ(k∗) fitted in the two-particle sector

Extracting short-range quantities encoded in the three-body couplings H̃0, . . .
– should be fitted to the three-particle energies

Finally, solve the equations in the infinite volume to arrive at the S-matrix
elements!
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Relativistic invariance in the three-particle sector

↪→ Three-dimensional formalism, manifest Lorentz invariance is lost, even in the
infinite volume!

↪→ Only Lorentz-invariant operators in the Lagrangian?

↪→ Proliferation of the independent couplings that should be extracted from lattice
data in different moving frames?

In two-particle sector, the problem is solved by dim.reg.+threshold expansion.
Sectors with more particles?

A manifestly Lorentz-invariant formulation of the three-particle scattering
equations can be found even in the absence of anti-particles:

F. Müller, J.-Y. Pang, AR and J.-J. Wu JHEP 02 (2022) 158
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Two-particle decays: the Lellouch-Lüscher formula (Lellouch & Lüscher, 2001)

Final-state interactions lead to an irregular L-dependence of the matrix element

K π

π
+ + · · ·

K

π

π

The non-relativistic Lagrangian

L = ϕ†(i∂t − w)(2w)ϕ+
C0

4
ϕ†ϕ†ϕϕ+ · · ·+ K †(i∂t − wK )(2wK )K

+ g(K †ϕϕ+ h.c.)

Calculate the decay matrix element in a finite and in the infinite volume, extract g
Matrix elements are related through

⟨n|HW |K ⟩L = Φ2(L)︸ ︷︷ ︸
depends on phase shift

⟨ππ; out|HW |K ⟩∞
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Three-particle decays
(F. Müller and AR, JHEP 03 (2021) 152, F. Müller, J.-Y. Pang, AR and J.-J.Wu, JHEP 02 (2023) 214)

a) Decays through the weak or electromagnetic interactions; isospin-breaking decays:
pole on the real axis

Example: K → 3π

b) Decays through strong interactions, the pole moves into the complex plane
Example: N(1440) → ππN

Final-state interactions lead to the irregular volume-dependence in the matrix
element

π
+ · · ·

K π

π
π +

K π

π

+
K

π

π

π

An analog of the LL formula in the three-particle sector?
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The 3-particle LL factor

⟨π(k1)π(k2)π(k3); out|HW |K ⟩∞ = Φ3({k})L3/2⟨n|HW |K ⟩L

The factor Φ3({k}) depends on the ππ, πππ interactions and on L, but
not on the coupling g0 that describes the short-range part of the K → 3π
amplitude!

The derivative couplings emerge at higher orders. The three-particle LL factor
becomes a matrix

Higher partial waves, derivative couplings, isospin, . . . can be systematically taken
into account
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K → 3π decays (J.-Y. Pang, R. Bubna, F. Müller, AR and J.-J.Wu, JHEP 05 (2024) 269)

K → 3π decays: important source of information about CP violation

Three pion final state: challenging but realistic

The crucial question: how big is the contribution of the three-body force?

Contribution of the (unknown) three-body force to the
LL factor is very small. A crude estimate suffices to reliable

extract the K → 3π amplitude from lattice data!
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Inclusion of the long-range forces: change of the paradigm?

π

N

N

NN scattering

π

D∗

D D∗

D

T+
cc (3875)

Scale separation upset!

Left hand cut close to threshold: the energy levels below the left-hand branch
point cannot be used

Slowly converging partial-wave expansion: expecting strong admixture of higher
partial waves in the quantization condition

Exponentially suppressed corrections still sizable
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Left-hand cut: case of NN scattering
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J.R. Green et al., PRL 127(24) (2021) 242003

V =
1

2

∫ 1

−1
d cos θ

g2

M2
π + (p − q)2

Left-hand cut: −∞ < s ≤ (2mN)
2 −M2

π︸ ︷︷ ︸
=(1875MeV)2

; right-hand cut: (2mN)
2︸ ︷︷ ︸

=(1880MeV)2

≤ s < +∞

Phase shift real below the left-hand branch point?
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Plane-wave basis (Meng & Epelbaum, 2021)

Describe the system in terms of the parameters of the effective Lagrangian which,
by definition, encode only faraway singularities

Work in the plane wave basis; do not resort to the partial-wave expansion

For the NN scattering, it was shown that, at the physical quark masses, the
partial-wave mixing is sizable (Meng & Epelbaum, 2021)

A consistent fit of the DD∗ scattering phases to lattice data in the left-hand cut
region has been performed (Meng et al., 2023)
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Alternative approaches

Splitting long- and short-range interactions (Hansen & Raposo, 2023)

Fit short-range part to the scattering data, get full amplitude through solving
integral equations
Quantization condition is written down both in the plane-wave basis and the
partial-wave basis

Applying three-particle formalism to the DDπ system
(Hansen, Romero-Lopez and Sharpe, 2024)

Two-particle quantization condition for a stable D∗

Plane wave basis is used

Using Lüscher equation plus EFT with long-range force in the infinite volume
above the left-hand cut (Collins et al., 2024)

Using N/D method (Du, Guo & Wu, 2024; S. Dawid et al., 2025)

HAL QCD approach (Lyu et al., 2023)
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Modified Lüscher equation in the presence of a long-range force

R. Bubna, H.-W. Hammer, F. Müller, J.-Y. Pang, AR & J.-J. Wu, JHEP 05 (2024) 168

Splitting of the potential

V (r) = VL(r)︸ ︷︷ ︸
known, local

+ VS(r)︸ ︷︷ ︸
unknown

⟨p|VS |q⟩ = C 00
0 + 3C 00

1 pq + C 10
0 (p2 + q2) + · · ·

Modified Lüscher equation: finite-volume version of the modified effective range
expansion (van Haeringen & Kok, 1982)
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Modified effective range expansion (van Haeringen & Kok, 1982)

Standard effective-range expansion: very small radius of convergence. . .

The long-range Jost function: fℓ(q) =
qℓe−iℓπ/2(2ℓ+ 1)

(2ℓ+ 1)!!
lim
r→0

r ℓfℓ(q, r)

The loop function: Mℓ(q) =
1

ℓ!

(
− iq

2

)ℓ

lim
r→0

d2ℓ+1

dr2ℓ+1

fℓ(q, r)

fℓ(q)

Larger radius of convergence for the modified effective-range function:

KM
ℓ (q2) = Mℓ(q) +

q2ℓ+1

|fℓ(q)|2
(cot(δℓ(q)− σℓ(q))− i) = − 1

ãℓ
+

1

2
r̃ℓq

2 + O(q4)

Relation between KM
ℓ (q2) and the full phase δℓ(q) is algebraic!
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Scattering on two potentials: the EFT framework

T = TL + (1 + TLG0)TS(1 + G0TL)

TS = VS + VSGLTS

The Green function with the long-range potential only: GL = G0 + G0VLGL
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Modified Lüscher zeta-function

+ + + · · ·

Sums up all insertions of the long-range potential in a finite volume

Modified Lüscher equation:

det Aℓm,ℓ′m′ = 0 , Aℓm,ℓ′m′ = δℓℓ′δmm′KM
ℓ (q20)− Hℓm,ℓ′m′(q0)
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Implementation of the modified Lüscher formalism

R. Bubna, H.-W. Hammer, B.-L. Hoid, J.-Y. Pang, AR & J.-J. Wu, arXiv:2507.18399

The model: the potential is a sum of long- and short-range parts:

V =
4πg

M2 + (p − q)2
+

4πgS
M2

S + (p − q)2
, MS = 2M or MS = 10M

Dimensional regularization vs. cutoff regularization: renormalization constants of
natural size, numerically stable results for higher partial waves.

Perturbative apprroach for divergent loop integrals, resumming all convergent
integrals via the Lippmann-Schwinger equation.
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Implementation of the modified Lüscher formalism

The modified Lüscher zeta-function:
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The modified vs. standard Lüscher approach

The ground-state energy:
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↪→ Practically no partial-wave mixing in the modified approach!
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The modified vs. standard Lüscher approach

The first excited level:
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↪→ Practically no partial-wave mixing in the modified approach!
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Infinite-volume loop with any number of long-range insertions

0.5 0.0 0.5 1.0 1.5
q2

0/M2

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

1.0000 1.0025 1.0050

0.0475

0.0470

0.0465

loop1
loop2
loop3
loop4
loop5
loop6
loop7
full

0.0 0.5 1.0 1.5
q2

0/M2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1.0000 1.0025 1.0050
0.2545

0.2550

0.2555

loop1
loop2
loop3
loop4
loop5
loop6
loop7
full

Perturbative apprroach for divergent loop integrals, resumming all convergent
integrals via the Lippmann-Schwinger equation.

Using VEGAS routine to perform integrals over Feynman parameters.
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The modified vs. standard Lüscher approach
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The effective-range function in the standard approach is singular at the beginning
of the left-hand cut, develops the imaginary part.
On the contrary, the effective-range function in the modified Lüscher approach is
real and regular across the left-hand cut.
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Conclusions & outlook

In the analysis of lattice data, EFT can be used to systematically relate the finite-
and infinite-volume observables. This facilitates the extraction of scattering
observables from lattice data in the two- and three-particle sectors

The crucial point: decoupling of short- and long-range physics

Explicitly Lorentz-invariant formalism in the two- and three-body sector: spectrum
and decays ✓

Including long-range forces in a finite volume, two-body sector ✓

Outlook:

Long-range forces in the two-particle sector: Coulomb force, C∗ boundary conditions
Long-range forces in the three-particle sector
The Roper resonance
Boxed exotica: analysis of data for the T+

cc(3875). . .
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