Status and developments of GENIE

John Plows
On behalf of the GENIE collaboration

vSTEP 2025 - Neutrino Scattering: Theory, Experiment, Phenomenology

26/Oct/2025

Who we are

- Body of active core members (shown in this slide)
- Many, many individual contributors beyond this!
 - Incubator process for contributions to GENIE
 - Please do get in touch if you are interested in contributing!
- We maintain a GENIE Slack channel for discussions

```
Ndvoovm
         Nds//+sdmov
                        d+m
        Nh+//ohN m+s
                       N//syyN
                        0///+
                       o///s
                      m///h
                                                          NEUTRINO MONTE CARLO GENERATOR
    d+//+d my+/smmyhN
  Ns///yN NdyoshNNs///d
                     d//////oyhmN
                                                                  Version 999.999.999
                     h//////////oym
         ho/+///sN
                                                               http://www.genie-mc.org
s//h
                     N/////////od
       my++yh+//y
                     s////////////oN
Ns/m Nmy++ymNh//+d
                     s////////+m
NhssoshN Ny//sN
                     m//////////////////
       Nmo/+ohdmN
                     mo//////////////h
   ms/+s//o/---:+sdN
  N+-/o+/o+----/shN
 Noo++o+:----:/+osyso/:--
                       ----::///////:---::////+ossyso/-
                ---:/::------:://///:-:://////oosyo+:--
            -----:////:::-----::///////////+0+++/:----
             ----::///////////+shs/----
              ----:::////ovhvo:----
         mhso+/:----:/+oyhyo/----:/+syhm
              NmddhyyyssssyyyhdmmNNNmhhhyyyyhhddmN
                                          Copyright (c) 2003-2024, The GENIE Collaboration
```



```
Luis Alvarez-Ruso (IFIC), Costas Andreopoulos (Liverpool), Adi Ashkenazi (Tel Aviv), *

Joshua Barrow (MIT, Tel Aviv), Steve Dytman (Pittsburgh), Hugh Gallagher (Tufts), *

Alfonso Andres Garcia Soto (Harvard, IFIC), Steven Gardiner (FNAL), Matan Goldenberg (Tel Aviv), *

Robert Hatcher (FNAL), Or Hen (MIT), Igor Kakorin (JINR), Konstantin Kuzmin (ITEP, JINR), *

Weijun Li (Oxford), Xianguo Lu (Warwick), Anselmo Meregaglia (CENBG Bordeaux), Vadim Naumov (JINR), *

Afroditi Papadopoulou (ANL), Gabriel Perdue (FNAL), Komninos-John Plows (Liverpool), *

Marco Roda (Liverpool), Beth Slater (Liverpool), Alon Sportes (Tel Aviv), Noah Steinberg (FNAL), *

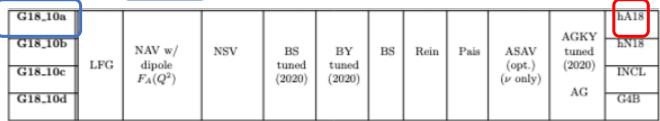
Vladyslav Syrotenko (Tufts), Julia Tena Vidal (Tel Aviv), Jeremy Wolcott (Tufts), Qiyu Yan (UCAS, Warwick) *

(The GENIE Collaboration)
```


What do we strive to do?

We have a **core mission** reflecting our **role** in the community!

- 1. Universal, self-consistent generator: **from MeV to PeV energy scales**.
- 2. Fundamental framework: modern event generation platform, standardised applications for major experiments
 - **specialised software** for electron-nucleus, hadron-nucleus, BSM applications
- 3. Global analyses: Using scattering data, GENIE provides interaction model tunes as well as estimates of generator-level systematic uncertainties.


But also:

- Provide many alternative comprehensive model configurations
- Provide support for interfaces with experiments, tools for simulation (especially with flux predictions and detailed geometries, as well as a dedicated reweighting infrastructure)
- Provide a platform for community discussions

GENIE Tunes

- Main difference between GENIE v2 and GENIE v3: TUNES!
 - There are so many different models in GENIE the combinations are.. A Lot.
 - Instead, combinations of models that make sense together are used.
 - Users can still make own configurations
- Each tune is attached to a specific <u>name</u>:

• e.g. G18_10a_02_11b string defining tuning set

Please reach out if you feel a new dedicated tune would be desirable!

What does GENIE cover?

- Covers physics from low-energy CEvNS to ultrahigh energy DIS + large coverage in GeV region
 - Nuclear initial states (including new correlated Fermi gas!)
 - 2 "internal" (hA, hN) and two "external" (INCL++, G4 Bertini)
 FSI models
 - Some BSM processes
 - "Dark neutrino" scattering
 - HNL decay
 - Nucleon decay
 - n-nbar oscillations
- Comprehensive model configurations (tunes) group consistent choices of models
 - User can request specific tune at runtime
 - Room for user-created tunes!

CMC	0	Cross-section									
	Ground state	quasi-elastic	2p2h	resonance	shallow and deep inelastic	coherent π	diffractive π	ΔS =1 quasi-elastic	$\Delta S=1$ inelastic	Hadronization	FSI
					•						
G18_02a		LS w/ dipole $F_A(Q^2)$	Dytman	BS tuned (2020)	BY tuned (2020)	BS	Rein	Pais	ASAV (opt.) (ν only)	AGKY tuned (2020)	hA18
G18_02b	RFG w/										hN18
G18_02c	NN										INCL
G18_02d	tail										G4B
G18_10a		NAV w/ dipole $F_A(Q^2)$	NSV	BS tuned (2020)	BY tuned (2020)	BS	Rein	Pais	ASAV (opt.) (ν only)	AGKY tuned (2020)	hA18
G18_10b											hN18
G18_10c	LFG										INCL
G18_10d											G4B
G18_10i		NAV w/ $F_A(Q^2)$ from z-exp	NSV	BS tuned (2020)	BY tuned (2020)	BS	Rein	Pais	ASAV (opt.) (ν only)	AGKY tuned (2020)	hA18
G18_10j											hN18
G18_10k	LFG										INCL
G18_10l											G4B
G21_11a		SuSAv2 w/ dipole $F_A(Q^2)$	SuSAv2	BS tuned (2020)	BY tuned (2020)	BS	Rein	Pais	ASAV (opt.) (ν only)	AGKY tuned (2020)	hA18
G21_11b	LFG										hN18
G21_11c											INCL
G21_11d											G4B

Non exhaustive list at tunes.genie-mc.org

What does GENIE cover?

- Covers physics from low-energy CEvNS to ultrahigh energy DIS + large coverage in GeV region
 - Nuclear initial states (including new correlated Fermi gas!)
 - 2 "internal" (hA, hN) and two "external" (INCL++, G4 Bertini)
 FSI models
 - Some BSM processes
 - "Dark neutrino" scattering
 - HNL decay
 - Nucleon decay
 - n-nbar oscillations
- Comprehensive model configurations (tunes) group consistent choices of models
 - User can request specific tune at runtime
 - Room for user-created tunes!

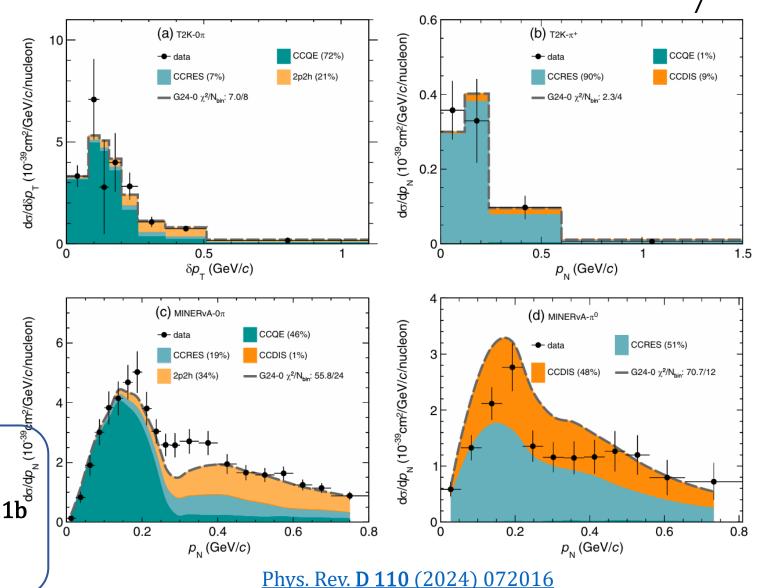
+ Tools: Geometry and flux support via
 dedicated drivers, Event Library interface
 + A Reweight repository for propagating model uncertainties

fodelling	Ground state	Cross-section								g	15
CME		quasi-elastic	2p2h	resonance	shallow and deep inelastic	coherent π	diffractive π	ΔS=1 quasi-elastic	$\Delta S=1$ inelastic	Hadronization	FSI
					•						
G18_02a										AGKY	hA18
G18_02b	RFG w/	LS w/ dipole	Dytman	BS tuned	BY tuned	BS	Rein	Pais	ASAV (opt.)	tuned (2020)	hN18
G18_02c	NN tail	$F_A(Q^2)$		(2020)	(2020)				(opt.) (ν only)	(2020) AG	INCL
G18_02d										AG	G4B
G18_10a											hA18
G18_10b		NAV w/	NSV	BS	BY	BS	Rein	Pais	ASAV	AGKY tuned	hN18
G18_10c	LFG	dipole $F_A(Q^2)$		tuned (2020)	tuned (2020)				(opt.) $(\nu \text{ only})$	(2020)	INCL
G18_10d										AG	G4B
G18_10i											hA18
G18_10j		$NAV w/F_A(Q^2)$	NSV	BS	BY	BS	Rein	Pais	ASAV	AGKY tuned	hN18
G18_10k	LFG	from		tuned (2020)	tuned (2020)				(opt.) $(\nu \text{ only})$	(2020)	INCL
G18_10l		z-exp								AG	G4B
G21_11a											hA18
G21_11b		SuSAv2 w/	SuSAv2	BS	BY	BS	Rein	Pais	ASAV	AGKY tuned	hN18
G21_11c	LFG	dipole $F_A(Q^2)$		tuned (2020)	tuned (2020)				(opt.) $(\nu \text{ only})$	(2020)	INCL
G21_11d										AG	G4B

•

Non exhaustive list at <u>tunes.genie-mc.org</u>

Where are we at?


- Latest release: v **3.6.2** (v 3.8.0 in development)
- Available as of v 3.6.2:
 - MK Single pion production cross-section model (M. Kabirnezhad)
 - z-expansion treatment of nucleon vector form factors (including uncertainty calculations in Reweight product) (L. Liu, K. Borah)
 - Introduction of self-contained Pythia8 simulation chain
 - NB: Releases post v3.6.2 will drop Pythia6

New tunes:

Based on AR23_20i_00_000, by request from NOvA: N24_20i_02_11b

Including tuning to TKI

measurements: G24_20{a,b,c,d}

enie

Where are we at?

Latest release: v 3.6.2
 v 3.8.0 in development

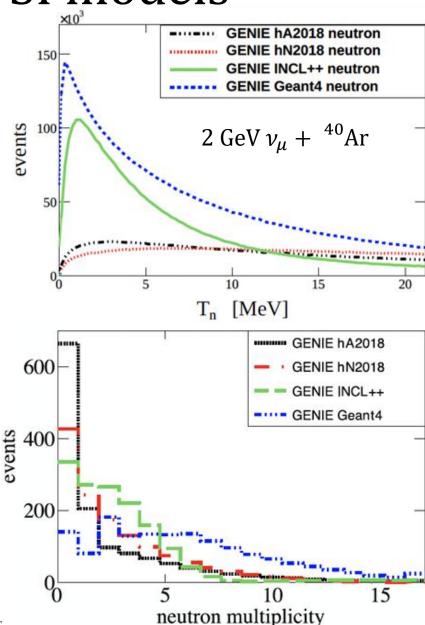
For more information on our release schedule please visit

genie-mc.github.io

- Upcoming/planned:
 - Migration from PYTHIA6 → PYTHIA8 (Robert Hatcher et al)
 - Professor based reweight tool (Qiyu Yan)
 - Spectral function nuclear model for 40Ar (Steven Gardiner et al)
 - Updates to Bodek-Yang structure function (Julia Tena-Vidal)
 - Extension to the Heavy Neutral Lepton module (John Plows)
 - ... Plus many bugfixes and upgrades.

Where are we at?

- Our list of recent publications:
 - W. Li et al, First combined tuning on transverse kinematic imbalance data with and without pion production constraints, <u>Phys. Rev. D 110</u> (2024) 072016
 - J. Tena-Vidal et al, Neutrino-nucleus CC0π cross-section tuning in GENIE v3, Phys. Rev. D 106 (2022) 112001
 - J. Tena-Vidal, AGKY Hadronization Model Tuning in GENIE 3, PoS 2022 078
 - L. Alvarez-Ruso et al, Recent highlights from GENIE v3, <u>Eur. Phys. J. ST</u>
 230 (2021) 4449-4467
 - J. Tena-Vidal et al, Hadronization model tuning in GENIE v3, Phys. Rev. D 105 (2022) 012009
 - J. Tena-Vidal et al, Neutrino-nucleon cross-section model tuning in GENIE v3, Phys. Rev. D 104 (2021) 072009

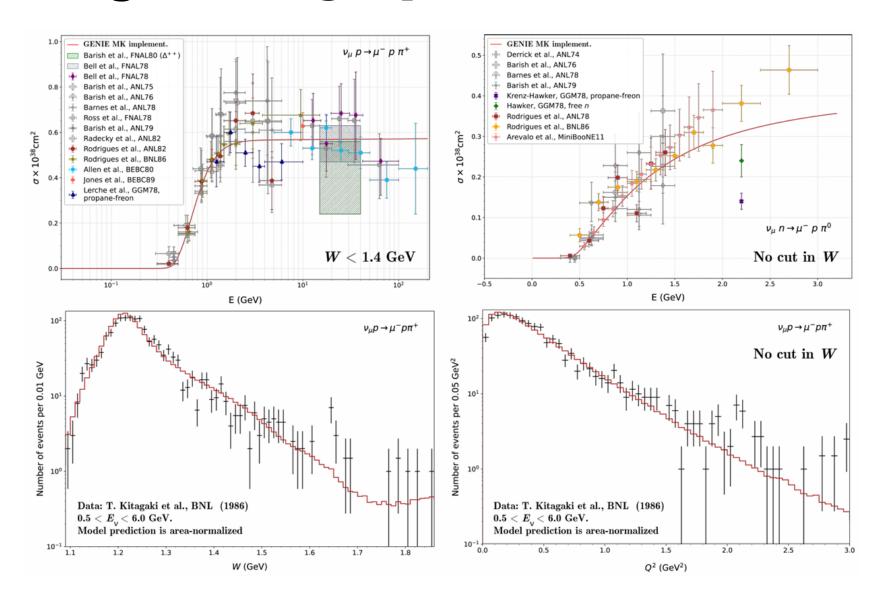


Modelling: New external FSI models

- In addition to the INTRANUKE models
 - hA: effective model based on empirical data
 - hN: full intranuclear cascade
- Now have external dependencies for Liège (INCL++) and Bertini cascade (via G4)
 - Contributions by D. Wright and M. Asai
 - INCL++: almost parameter-free quasi-classical treatment of particle fates
 - Bertini: G4 re-engineering of INUCL code. Various models for fast and slow phases of collisions in nucleus
 - New feature: de-excitation photons!
- Significant differences between models in nucleon multiplicity + kinetic energy
 - New model uncertainties to consider
 - New tuning opportunity

Modelling: MK single-pion model

Contribution by GENIE Dubna group


Combines resonant pion production and nonresonant background

Differential cross section in Q^2 , W, θ_{π} , ϕ_{π}

Is accessed via its own tune-config, MK19_00a


Modelling: Nucleon vector form factors

 Uses the z-expansion formalism for nucleon vector electric and magnetic form factors:

$$G_E^N(Q^2) = \sum_{k=0}^{k_{\text{max}}} a_k \cdot z(Q^2)^k,$$

$$G_M^N(Q^2) = G_M^N(0) \sum_{k=0}^{k} b_k \cdot z(Q^2)^k.$$

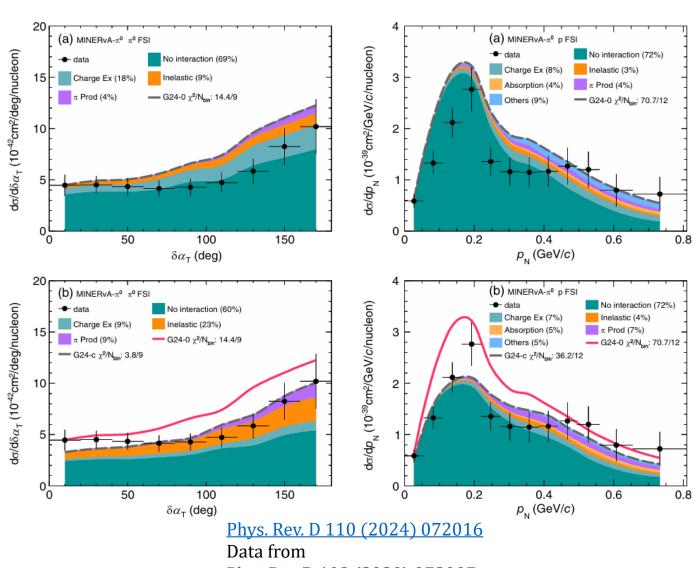
- Based on the work of K. Borah, R. Hill, G. Lee, and O. Tomalak
- Includes reweighting calculators for propagating uncertainties for axial and vector form factors simultaneously
 - As more data become available, a re-evaluation of the axial form factors using correlated vector and axial form factors will become possible!

Phys. Rev. **D 102** (2020) 074012

Tuning: The general strategy

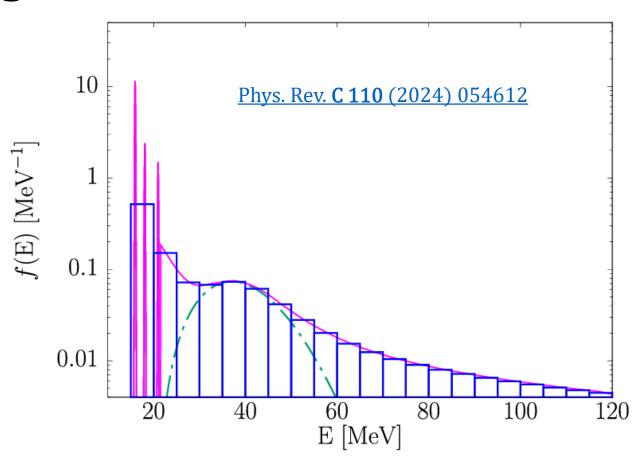
- Empirical approaches necessitate ~free parameters to control them!
 - Complicates predictions further (What models did one use? Which kinematic region are they looking at? What phase space do they have access to?)
 - **Not all things are reweightable** (how does one access phase space that wasn't simulated in the first place?)
- Tuning: parametrisation based on brute-force scans of the parameter space
 - Multi-dimensional polynomials used to interpolate to different regions of space
 - Based on the Professor (Eur. Phys. J C 65 (2010) 331-357) toolkit
- GENIE is running a **global analysis effort** using tuning to different datasets incorporating priors on parameters & correlations between datasets!

For GENIE v4, we will need parameter sets + their covariance matrices + systematics for a sequence of curated tunes, which we then plan to publish and support



Tuning: Global fit to TKI data

- First combined tuning on both nonzero- and zero-pion channels simultaneously
 - Four TKI data sets: T2K 1 μ Np (0 π , 1 π ⁺), MINERVA 1µNp $(0\pi, M\pi^0)$, N,M > 0
 - Simultaneous fit using random sampling of high-dimensional parameter space
- **Alleviates tension** of G24_20i_00_000 tune with MINER ν A- π ⁰ while maintaining **good** agreement with the rest of the data
 - Generated a **new tune**, G24_20i_06_22c, available in master branch of Generator
 - Major contribution by W. Li et al


Phys Rev **D 102** (2020) 072007

Tuning: NOvA tune

- Restores the correlated highmomentum tail to the spectralfunction like local Fermi gas model used in AR23_20i_00_000 with a SRC fraction of 20%
- Pion production parameters are taken from G18_10a_02_11b tune
- Otherwise, physics content similar to AR23_20i

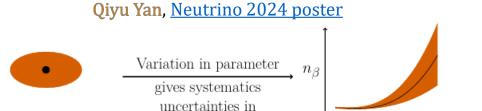
(see <u>GENIE-MC/Generator/#421</u>)

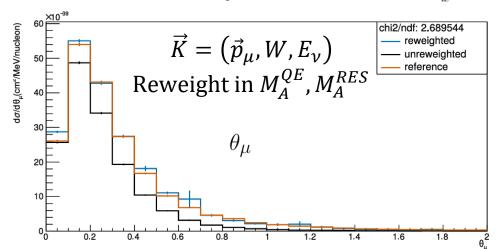
 Contributions by S.Gardiner and J.Wolcott

Removal energy in a local fermi gas with short-range correlations is resampled from a Maxwell-Boltzmann distribution (dash-dotted line) in N24_20i_02_11b

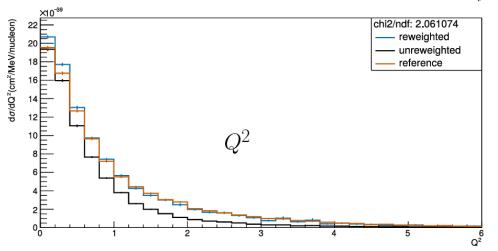
Reweight: The professor strikes back

- Predictions are heavily dependent on initial choices of relatively free parameter values
 - Parameter variations yield systematic uncertainties! Need to propagate them somehow
- Use the sampling methods of Professor to extract a parametrisation for differential cross-section


- Planned as next major upgrade to GENIE Reweight
- Workflow: Experiments can run their own brute force scans (with all experimental inputs)
 - No dependence on internal model specifics (no code overhead, less maintenance!)
 - Ability to design own phase space and get sensible distributions to use for reweighting



Paper in preparation!


Main contributor: Qiyu Yan (Warwick / UCAS)

prediction

The GENIE Incubator

- If you have an idea for a project and would like to see it included in GENIE / contribute to the generator, please get in touch with us for an Incubator project
- With the Incubator, you benefit from GENIE expertise, and we can coordinate development efforts!
- How it works:
 - Identify a development need
 - Consult with GENIE leadership to address the need
 - Set scope, deliverables, validation plans, software engineering, review schedule etc.
 - Each project is considered on its own merits! Depending on integration with other GENIE modules, scope, and output

For example, one may:

- Develop a new physics model / improve an existing one / add an entire new module
- Improve numerical procedures / upgrade tools / drivers / framework elements
- Perform systematic studies / tune physics components

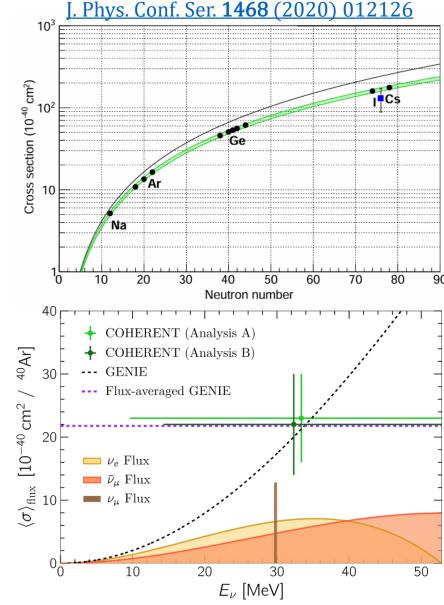
Useful links

- Our website: genie-mc.github.io
- The GENIE releases: Releases
- The GENIE tunes: <u>Tunes</u>
- The **GENIE Incubator** (especially for new projects/ideas)!

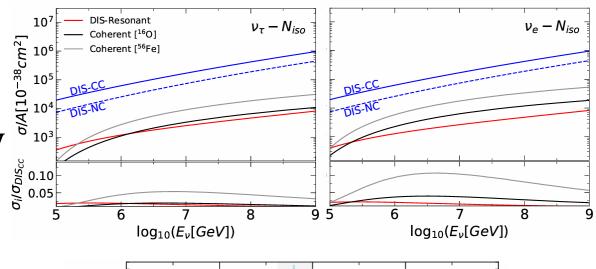
• Our GitHub: github.com/GENIE-MC

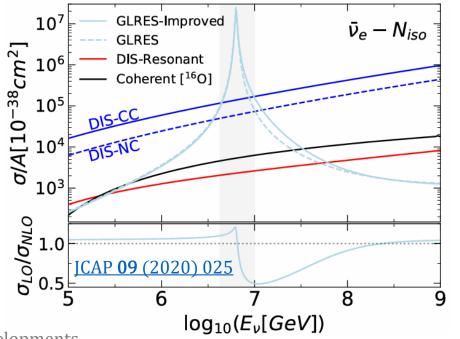
• The GENIE Slack: geniemc.slack.com

As always, huge thanks to all developers and contributors! Please join us! We always welcome your ideas and support! ©


Backup

Low-energy: CEvNS

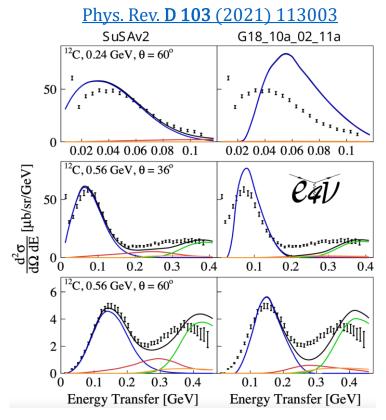

- CEvNS: coherent elastic neutrino-nucleus scattering (NC interaction) that leaves nucleus in its ground state
 - Coherence condition (ground state nucleus) valid for $E_{\nu} \leq 50 \text{ MeV}$
 - Cross section scales as N^2 with N the number of n
- Event generator with dedicated "VLE" tune GVLE18_01a including CEvNS, neutrino-electron scattering, and inverse beta decay
 - Not in standard tunes, since the final-state channel (recoil nucleus) is almost invisible
- Based on the Patton et al. cross section,
 Phys. Rev. C 86 (2012) 024612

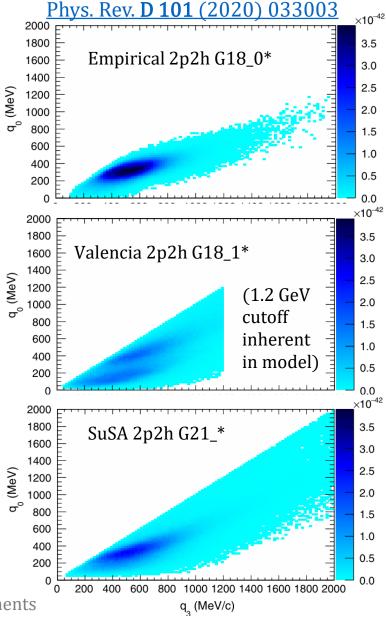


High-energy: PeV scale extension

- Part of the HEDIS module (external contributors A. Garcia, R. Gauld, A. Heijboer and J. Rojo)
- Extends the validity of GENIE to 10¹⁰ GeV (10⁴ PeV)
 - PoS ICRC2019 895, JCAP 09 (2020) 025
- Dedicated high-energy physics tunes GHE19_00*
- NLO DIS cross-sections and event generation based on APFEL code
- Coherent W production with NLO corrections

SuSAv2: superscaling approach


- External contributors: S. Dolan, G. Megias, S. Bolognesi (Phys. Rev. D 101 (2020) 033003)
- Superscaling: cross section scales as

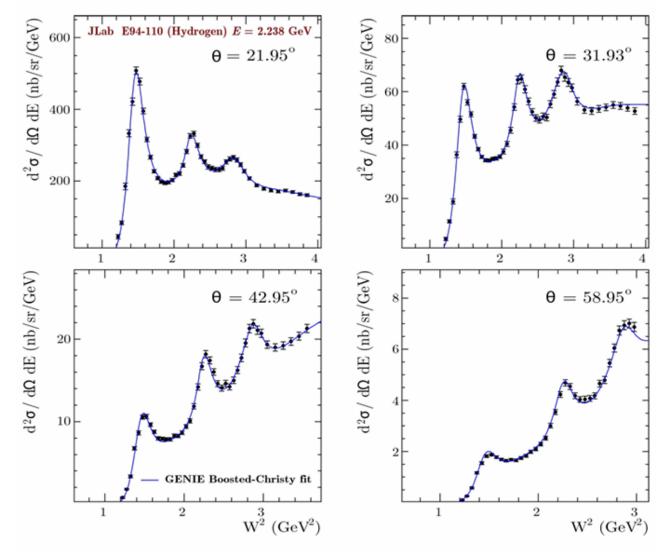

 $f(\psi) \cdot \sigma_{1-nucleon}$,

where *f* depends neither on q nor on nuclear species

(AIP Conf Proc 1382 (2011) 167-169)

- Part of the G21_11* tunes for QE and 2p2h scattering
- Also describes electron scattering
 - Benchmarked against inclusive electron-scattering data by e4v collaboration (Phys. Rev. D 103 (2021) 113003)

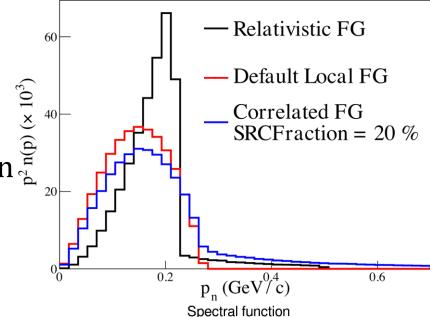
Electron data: Bosted-Christy fit

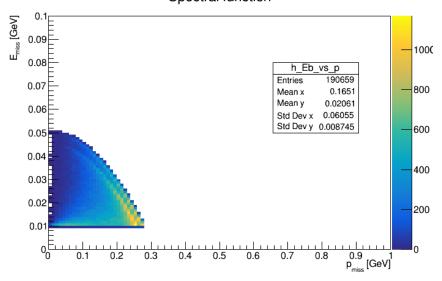

- Implementation by the GENIE Dubna group
- 2-fold cross section valid at $0 < Q^2 < 10 \text{ GeV}^2$, 0 < W < 3 GeV
- Inclusive model → modifies overall cross section and not the kinematics

Phys. Rev. C 77 (2008) 065206

Phys. Rev. C 81 (2010) 055213

1203.2262 (nucl-th)





Correlated Fermi Gas implementation

- Implementation inspired by <u>Phys. Lett. B</u> 785 (2018) 304-308
- Contributors: A. Papadopoulou, S. Dolan, L. Munteanu
 Model high-energy tail of initial state for nucleon in nuclear potential
- Extends the local Fermi Gas to higher nucleon energies
- As of v 3.4.0:
- Spectral function-like approach where nuclear Genie binding energy is function of nucleon momentum
 - Not a full Spectral Function! Just populates the phase space
 - Can be reweighted to a SF distribution by a reweighter

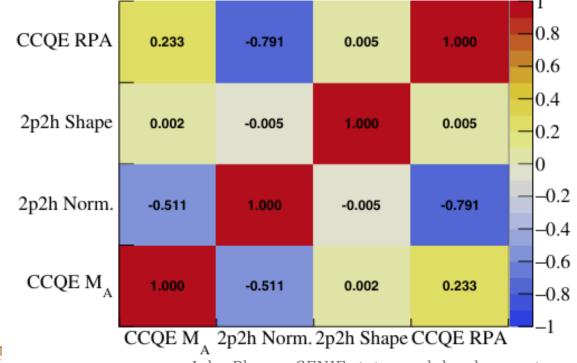
-500

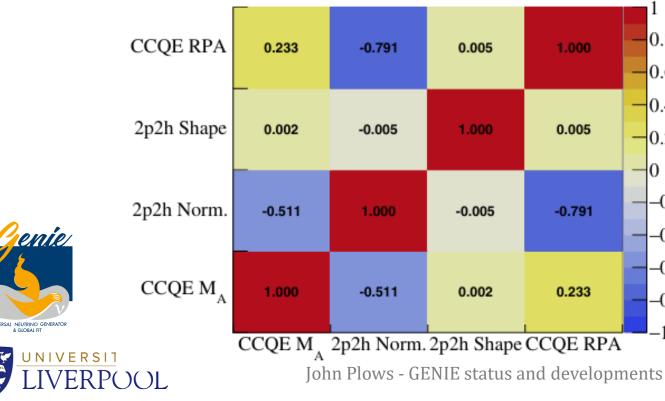
400

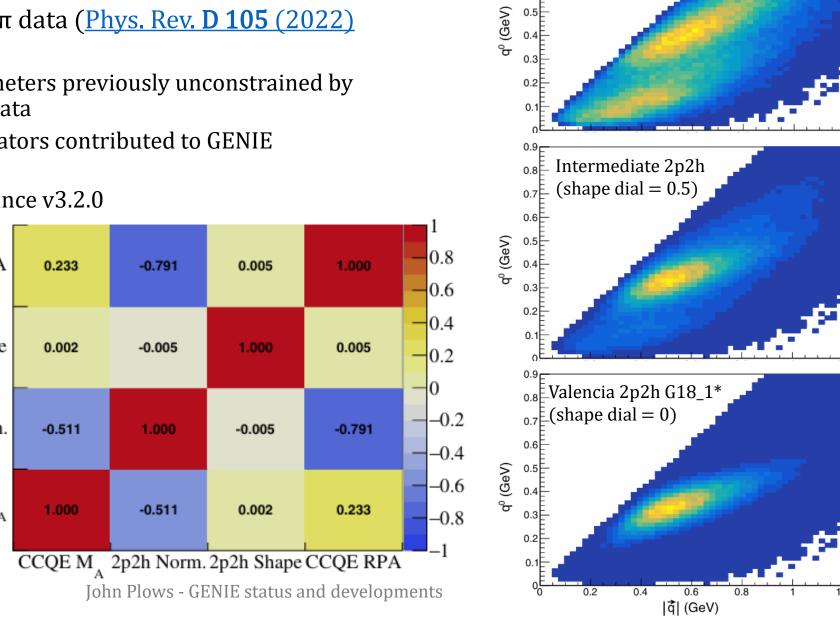
300

200

1.2

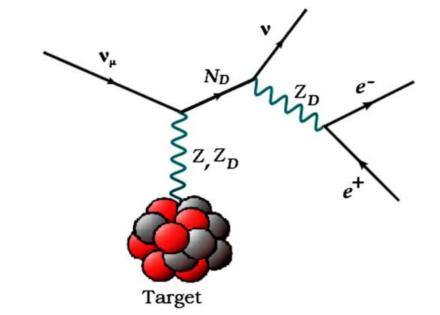

0.8

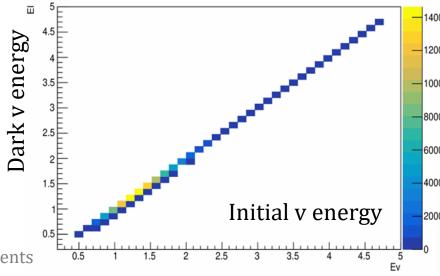

0.6


0.4

User-motivated tune: AR23_20i

- Fit T2K CC0π data (Phys. Rev. D 105 (2022) 072001)
 - Four parameters previously unconstrained by theory or data
 - New calculators contributed to GENIE Reweight
 - Available since v3.2.0

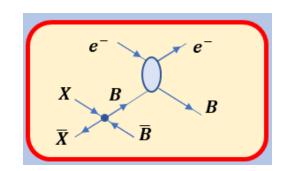


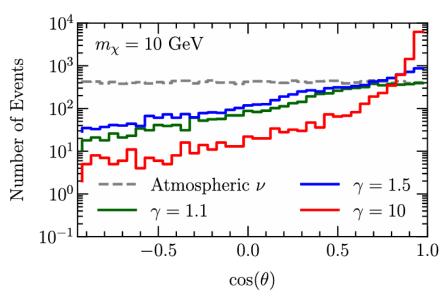

_{0.8} Empirical 2p2h G18_0*

 $_{0.7}$ (shape dial = 1)

Dark neutrino scattering

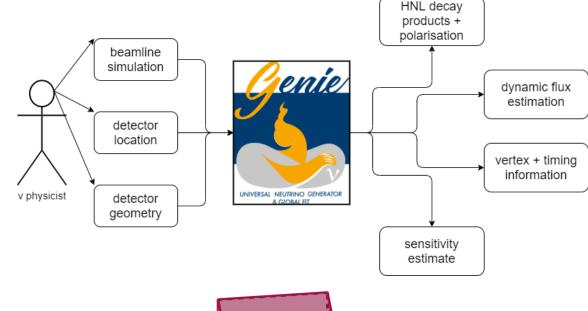
- Grew out of the MiniBooNE low-energy excess (Phys. Rev. Lett. 121 (2018) 241801)
 - BSM explanation could be an HNL with a **transition** magnetic moment (couples to "dark photon" Z_D)
 - $\mathcal{L} \supset e \epsilon Z_D^{\mu} J_{\mu}^{\text{em}} + \frac{g}{c_W} \epsilon' Z_D^{\mu} J_{\mu}^Z + g_D Z_D^{\mu} \bar{\nu}_D \gamma_{\mu} \nu_D$
 - Similar to "simple" HNL but with additional coupling g_D
 - Dark photon is light compared to Z, $W \Rightarrow \epsilon'$ negligible
- Contribution by I. de Ikaza and P. Machado
- Extensively stress tested against target isotopes, neutrino flavours, and $E_{\nu} \leq 1 \text{PeV}$ (see more in this NuSTEC workshop talk)

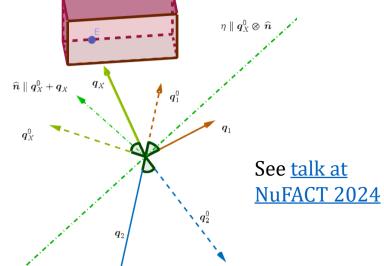




Boosted dark matter scattering

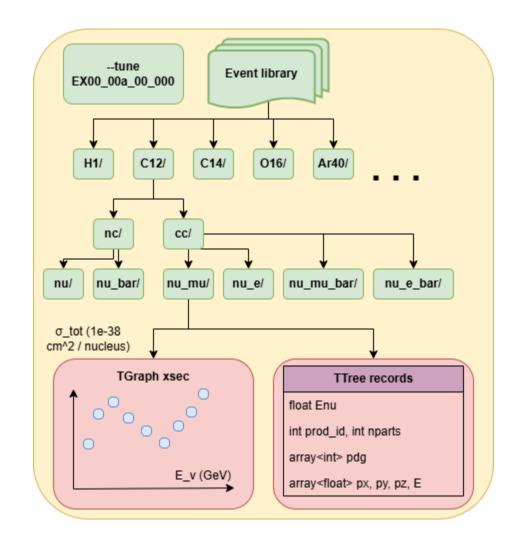
- Substantial improvement over v3.00.00 into v3.02.00
- Contribution by J. Berger [1812.05616]
- Scalar or fermionic BDM
- Vector and axial couplings
- Improved modelling of elastic scattering + pseudoscalar form factor
- B-electron scattering
- B-bar scattering




Expected BDM hadron-producing signal from the Sun at DUNE FD (Phys. Rev. D 103 (2021) 095012)

Modelling: Exotic long-lived particles (LLPs)

- In v 3.04.00 we introduced a Heavy Neutral Lepton (HNL) decay module
 - Effective field theory from Eur. Phys. J C 81 (2021) 78
 - Generic choice from 10 implemented decay channels
 - Interface with record of parent particles
 - Companion paper: <u>Phys. Rev. **D 107** (2023) 055003</u>
 - Caveat: very model dependent
- **Planned improvement:** A generic module for unstable long-lived particles
 - User specifies production and decay channels complete freedom for phenomenology
 - Many individual weights stored for full reweighting capability
 - Reworked calculation of detector acceptance to accommodate atmospheric use cases as well



Event library

- Use GENIE's flux and geometry drivers with events generated with other generators
- Streamlines workflow: keep production pipelines (already integrated with GENIE) available for use
- But lose some truth information about events
- Simple organisation: user needs to fill out total cross-sections and information about final state for each (current x flavour x target)
 - Contribution from NOvA experiment

