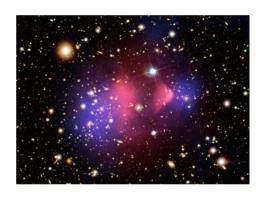
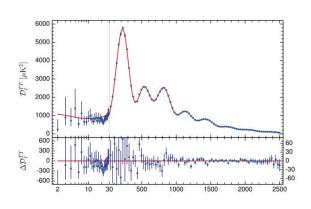
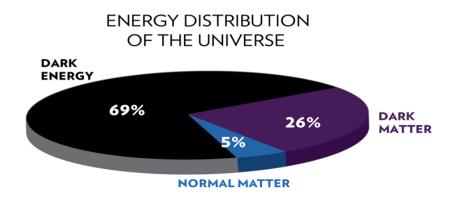

Supernova Cooling from Neutrino-devouring Dark Matter


Yugen Lin (林宇根)


Institute of Theoretical Physics, Chinese Academy of Sciences 2025.10.26

Collaboration with Chih-Ting Lu and Ningqiang Song arXiv: 2507.22124

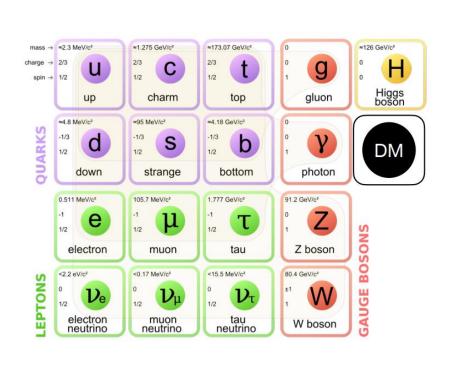
Evidence for Dark Matter

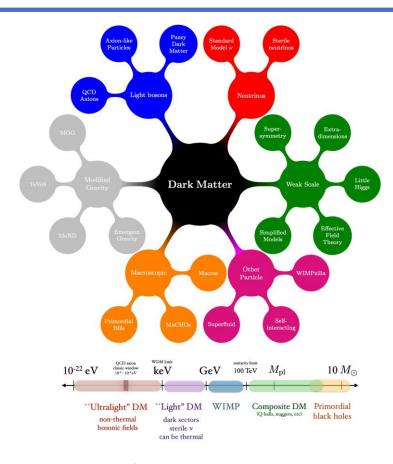


Galaxy Rotation Curve

Bullet Cluster

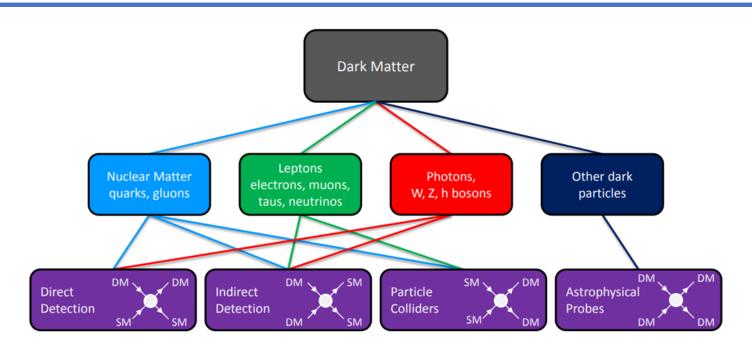
CMB

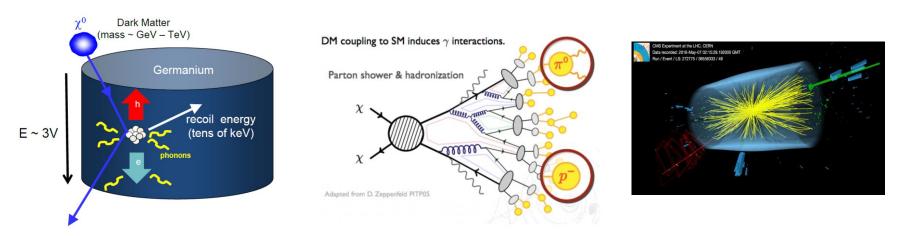


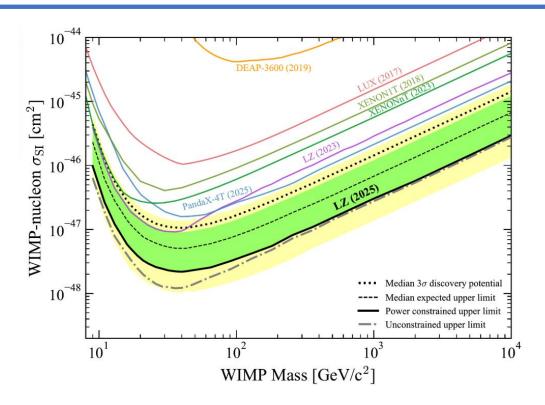

DM: $\Omega_{\rm c}h^2 = 0.11933 \pm 0.00091$

NM: $\Omega_b h^2 = 0.022242 \pm 0.00014$

DE: $\Omega_{\Lambda} = 0.6889 \pm 0.0056$


What is Dark Matter?




- What do we know about DM at present?
 - 1. Neutral 2. Non-baryonic 3. Stable 4. Relative-cold
- What do we not know about DM at present?
 - 1. Mass? 2. Spin? 3. Interaction? ...

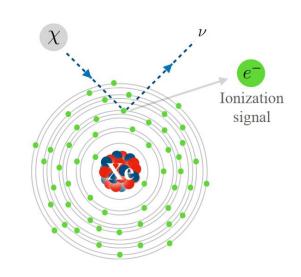
Ways of Probing DM

Direct Detection Status

- DM in the GeV-TeV mass scale has been under extensive searches in multi-tonne scale experiments underground by investigating the recoil signals of nucleus down to the energy of O(keV) range.
- ✓ DM searches have pushed the limit on the WIMP-nucleon cross-section near the neutrino floor. The null results of direct detection experiments have sparked the search for lighter DM below the GeV mass scale.

Fermionic Dark Matter

■ Particle DM detection strategy


- 1. Scattering: depositing kinetic energy, it is difficult to probe light DM.
- 2. Absorption: depositing mass energy, it is easy to overcome the threshold.

□ Fermionic DM model

1. Scalar-type:
$$O_S = \frac{1}{\Lambda^2} \left(\bar{\chi} P_L \nu \right) \left(\bar{e} e \right)$$

2. Vector-type:
$$O_V = \frac{1}{\Lambda^2} \left(\bar{\chi} \gamma^{\mu} P_L \nu \right) \left(\bar{e} \gamma_{\mu} e \right)$$

3. Tensor-type:
$$O_T=rac{1}{\Lambda^2}\left(ar{\chi}\sigma^{\mu\nu}P_L
u
ight)\left(ar{e}\sigma_{\mu\nu}e
ight)$$

- Direct detection signal
 - 1.Ionized electron, it can be searched in photoelectron signatures.
 - 2. Neutrino, missing energy.

UV Completion

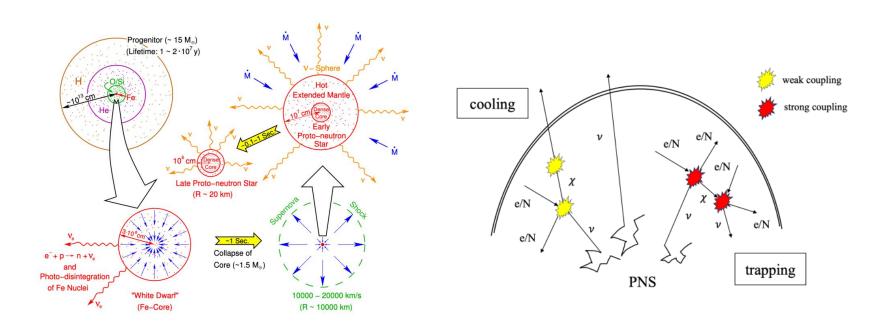
■ Scalar interaction:

$$\mathcal{L} \supset y_{ee}\varphi\bar{e}e + y_{\chi\nu}\varphi\bar{\chi}P_L\nu + \text{h.c.} \quad \phi \text{ is a heavy scalar field.}$$

Integrating out the scalar field, we can obtain

$$O_S = \frac{1}{\Lambda^2} (\bar{\chi} P_L \nu) (\bar{e}e), \quad \frac{1}{\Lambda^2} \equiv \frac{y_{\chi \nu} y_{ee}}{m_{\varphi}^2}.$$

■ Vector interaction:


$$\mathcal{L} \supset g_e \bar{e} \gamma_\mu e A'^\mu + g_\chi \bar{\chi} \gamma_\mu \chi A'^\mu$$
, A' is a new gauge boson.

Integrating out A', $\mathcal{L} \supset \frac{g_e g_\chi}{m_{A'}^2} \bar{e} \gamma^\mu e \bar{\chi} \gamma_\mu \chi.$

$$\mathcal{L}_{\text{mass}} \supset m_{\chi} \bar{\chi} \chi + (y \phi \bar{\chi} P_L \nu + \text{h.c.}) = (\bar{\nu} \bar{\chi}) \begin{pmatrix} 0 & 0 \\ y \langle \phi \rangle & m_{\chi} \end{pmatrix} P_L \begin{pmatrix} \nu \\ \chi \end{pmatrix} + \text{h.c.}$$

$$O_V = \frac{1}{\Lambda^2} \left(\bar{\chi} \gamma^{\mu} P_L \nu \right) \left(\bar{e} \gamma_{\mu} e \right) , \quad 1/\Lambda^2 \equiv g_e g_{\chi} s_{\theta} c_{\theta} / m_{A'}^2, \quad s_{\theta} = y \langle \phi \rangle / \sqrt{y^2 \langle \phi \rangle^2 + m_{\chi}^2}$$

Supernova Explosion

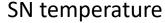
- ✓ Core-collapse SN can reach core temperatures in excess of 30 MeV, which makes them an ideal astrophysical source for sub-GeV dark matter.
- ✓ Raffelt criterion: The luminosity carried by the new particles must be smaller than the luminosity carried by neutrinos.

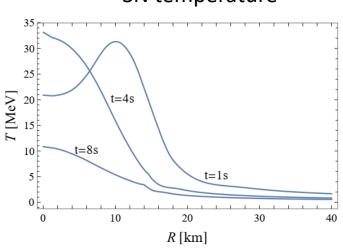
DM Production

- ✓ Considering the supernova core temperature, the process $\nu e^- \to \chi e^-$ can effectively produce dark matter $M_\chi \lesssim 100$ MeV.
- ✓ The differential number of fermionic DM particle produced via the effective DM-neutrino interaction per unit time t at position r is

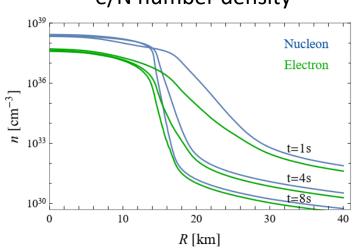
$$\frac{1}{4\pi r^2} \frac{\partial^2}{\partial r \partial t} \left(\frac{d\mathcal{N}_{\chi}}{dE_{\chi}} \right) = \sigma_{\nu e} n_e \frac{dn_{\nu}}{dE_{\nu}}$$

$$dn_{\nu}/dE_{\nu} = n_{\nu} f_{\nu}(E_{\nu})/\bar{E}_{\nu} \qquad f_{\nu} = \frac{(1+\alpha)^{(1+\alpha)}}{\Gamma(1+\alpha)} \left(\frac{E_{\nu}}{\bar{E}_{\nu}} \right)^{\alpha} \operatorname{Exp} \left[-(1+\alpha) \frac{E_{\nu}}{\bar{E}_{\nu}} \right]$$

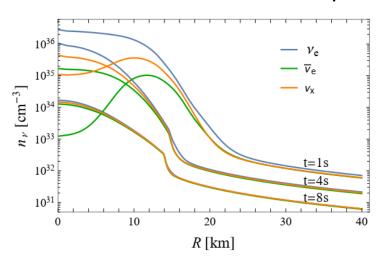

$$\frac{d\mathcal{N}_{\chi}}{dE_{\chi}} = \int_{0}^{R} 4\pi R'^2 dR' \int_{0}^{t} dt' \frac{(1+\alpha(t',R'))^{(1+\alpha(t',R'))}}{\Gamma(1+\alpha(t',R'))\bar{E}(t',R')}$$

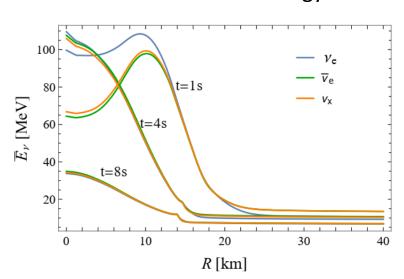

$$\left[\frac{E}{\bar{E}(t',R')} \right]^{\alpha(t',R')} \operatorname{Exp} \left[-(1+\alpha(t',R')) \frac{E}{\bar{E}(t',R')} \right]$$

$$n_{\nu}(t',R') \sigma \left(\Lambda, M_{\chi}, T(t',R'), E \right) n_{e}(t',R').$$

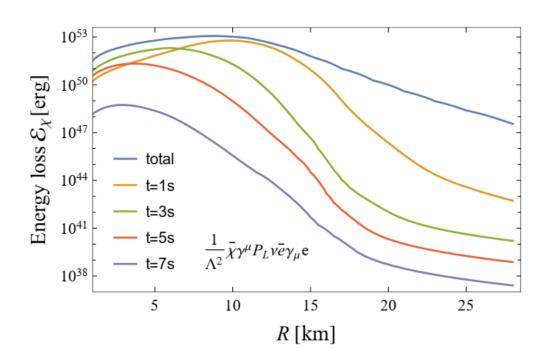

✓ Solving the above equation using data associated to the simulation performed by the Garching group of an $8.8M_{\odot}$ progenitor star.

Supernova Simulation Data




e/N number density

Neutrino number density



Neutrino mean energy

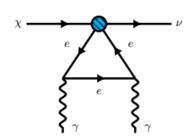
Supernova Energy Loss

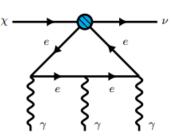
$$\frac{d\mathcal{N}_{\chi}}{dE_{\chi}} = \int_{0}^{R} 4\pi R'^{2} dR' \int_{0}^{t} dt' \frac{dn_{\nu}(t', R')}{dE_{\nu}}$$
$$\times \sigma_{\nu e} \left(\Lambda, M_{\chi}, T\left(t', R'\right), E_{\nu}\right) n_{e} \left(t', R'\right)$$

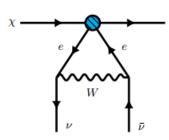
- Parameter choice: M_{χ} = 1 MeV, $\Lambda^{-1} = 10^{-7} \mathrm{MeV}^{-1}$.
- The position of maximum energy loss: $R \sim 10$ km.

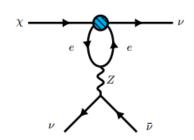
Supernova energy loss from DM production in 1 km wide spherical shells and 1 s time slides as a function of radius.

DM Propagation


- ✓ If $1/\Lambda^2$ is too large, the produced DM particle may further scatter with the electron or nucleon to convert back to a neutrino.
- ✓ The survival probability of DM from back-conversion


$$P(t,r) = \operatorname{Exp}\left(-\int_{r}^{\infty} \frac{\mathrm{d}r'}{\lambda(t,r')}\right)$$


- $\lambda(t,r)$ is the mean free path of DM, $\lambda_{\chi e}\left(r\right)=(n_{e}\sigma_{\chi e
 ightarrow
 u e})^{-1}$
- The energy of DM produced at (t, R): $ar E_\chi=\int rac{d\mathcal N_\chi}{dE_\chi}E_\chi dE_\chi/\int rac{d\mathcal N_\chi}{dE_\chi}dE_\chi$
- \checkmark The two approximation for the calculation of the free path $\lambda(t,r)$
 - In the first approach, we fix the time variable and evaluate λ at t=1 s.
 - In the second approach, we fix the radius and evaluate λ at r=10 km.

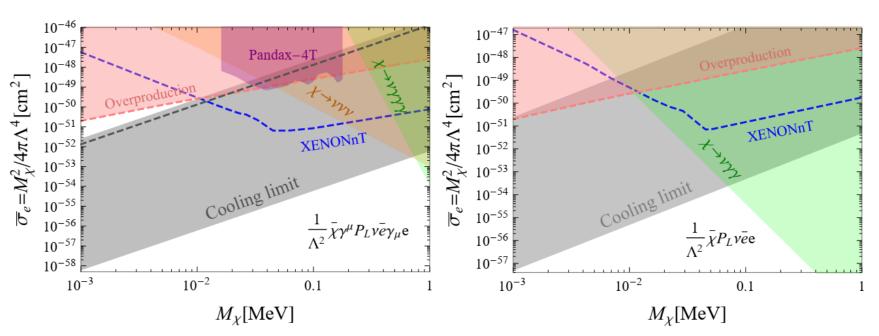

Fermionic DM Decay

$$O_S = \frac{1}{\Lambda^2} (\bar{\chi} P_L \nu) (\bar{e}e) \qquad O_V = \frac{1}{\Lambda^2} (\bar{\chi} \gamma^{\mu} P_L \nu) (\bar{e} \gamma_{\mu} e)$$

□ Scalar-type: the leading decay is $\chi \rightarrow \nu \gamma \gamma$

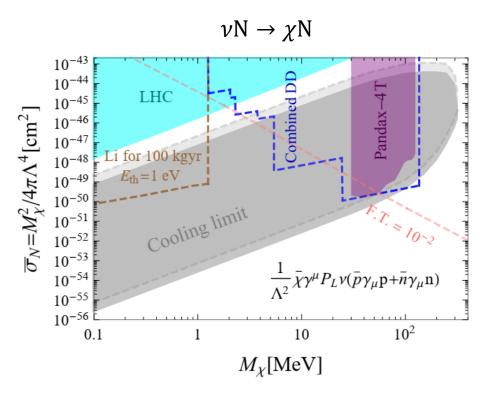
$$\Gamma_{\nu\gamma\gamma} \simeq 10^{-26} \text{sec}^{-1} \left(\frac{m_{\chi}}{20 \text{ keV}}\right)^7 \left(\frac{\text{TeV}}{\Lambda}\right)^4$$

□ Vector-type: the leading decay is $\chi \rightarrow \nu \gamma \gamma \gamma$ and $\chi \rightarrow \nu \nu \nu$


$$\Gamma_{\nu\gamma\gamma\gamma} \simeq 10^{-26} \text{sec}^{-1} \left(\frac{m_{\chi}}{320 \text{ keV}}\right)^{13} \left(\frac{\text{TeV}}{\Lambda}\right)^{4}$$

$$\Gamma_{\nu\nu\nu} \simeq 10^{-17} \text{sec}^{-1} \left(\frac{m_{\chi}}{200 \text{ keV}}\right)^5 \left(\frac{\text{TeV}}{\Lambda}\right)^4$$

Cooling Limits



Scalar-type operator

- ✓ The cooling limits have strong complementarity with constraints from DM decay, cosmology, astrophysics, and direct detection experiments.
- ✓ Supernova cooling sets stringent constraints on FDM, which span by about seven orders of magnitude in the cross section. It rules out the cross sections as low as $10^{-51} 10^{-58}$ cm² in the keV–MeV mass range.

Cooling Limits

- ✓ We also do the similar analysis for neutrino-nucleon scattering process.
- ✓ For DM coupling to nucleons, supernova cooling rules out $10^{-49}-10^{-56}~\rm cm^2$ in the 0.1 100 MeV mass range.
- ✓ The supernova limits do not require the new particles to be cosmological DM, which can be extended to arbitrarily small masses of new particles.

Summary

- The direct detection null results have sparked the search of lighter DM with masses below the GeV scale.
- Core-collapse SN is an ideal astrophysical source for sub-GeV particles, which can set unique constraints on the existence of new, low-mass particles that are weakly-coupled to the SM.
- We exclude the cross sections down to $10^{-51}-10^{-58}~\rm cm^2$ in the keV-MeV mass range for DM-electron scattering, and $10^{-49}-10^{-56}~\rm cm^2$ in the 0.1-100 MeV mass range for DM-nucleon scattering.
- SN cooling limits are complementary with the constraints from cosmology, astrophysics, LHC and direct detection experiments, which can also be scaled and extended to arbitrarily small masses of new particles.