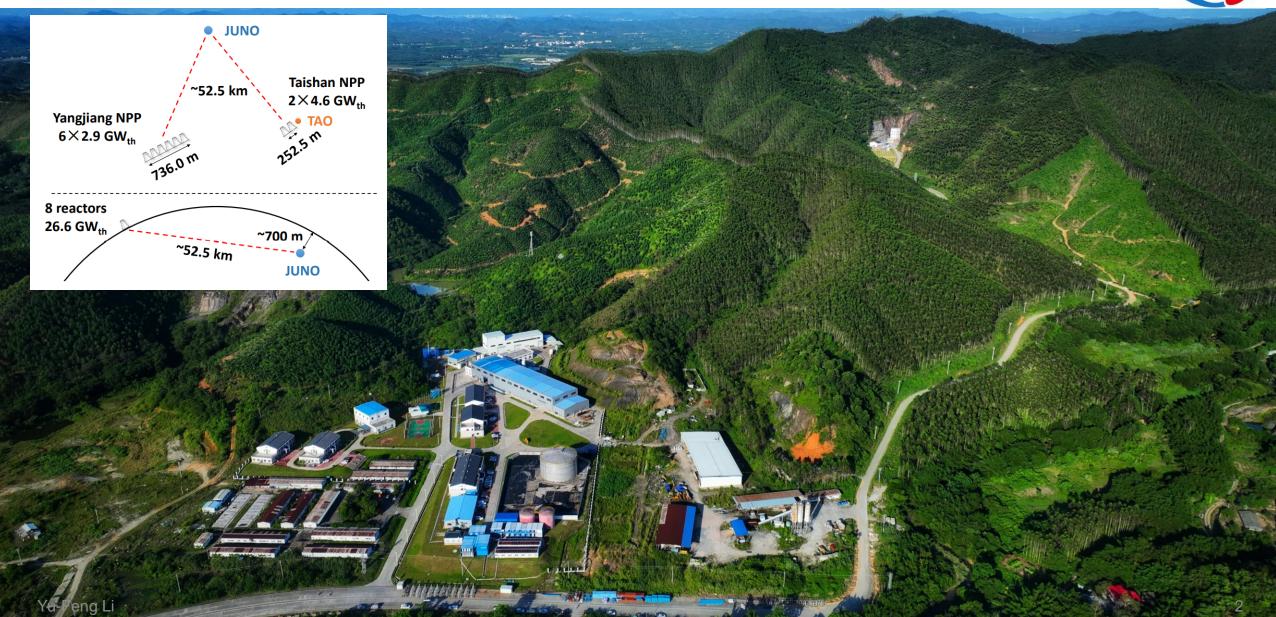

JUNO status and its prospective neutrino scattering physics

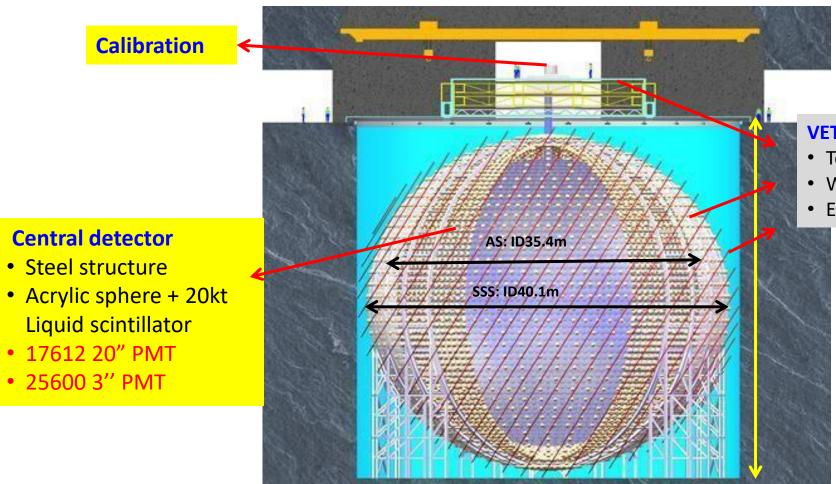
Yu-Feng Li (李玉峰)
Institute of High Energy Physics &
University of Chinese Academy of Sciences, Beijing




VSTEP 2025@Beijing 2025/10/25

Jiangmen Underground Neutrino Observatory

Jiangmen Underground Neutrino Observatory



JUNO detector design

- Two-layers structure for simplicity and cost: stainless steel frame + Acrylic tank
- Water as VETO and Buffer(instead of oil) → radiopurity control of water

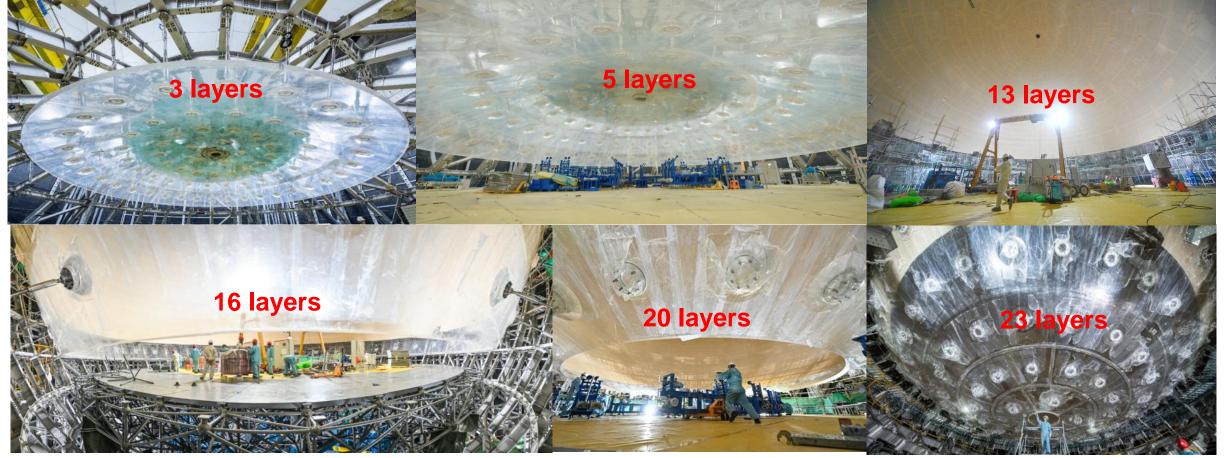
VETO system (for cosmic muon detection)

- Top Tracker: plastic scintillator
- Water + 2400 20" PMT
- Earth Magnetic Field shielding coils

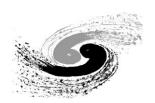
Central detector (SS structure)

Acrylic tank is supported by D = 40.1 m stainless steel structure via 590 Connecting Bars

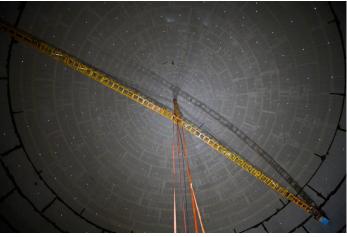
Assembly precision: < 3 mm for each grid. The final radius deviation -13 mm (0.06%)


Connected by 120,000 sets of special rivet bolts: high strength, high consistency, no welding.

2022.1~2022.6, pillar and shell most finished. 2024.11, bottom 4 layers of SS shell finished.


Central detector (acrylic tank)

23 layers/263 spherical panels + top and bottom chimneys were bonded onsite (finished in Oct. 2024).


- A total of 21 cyclic operations for the construction, each lasting 20-30 days, with a total bonding length reaching 2 km.
- Developed large-volume injection, polymerization and annealing technology. The final fitting result of the diameter deviation: -23mm (0.06%)

Central detector (acrylic tank)

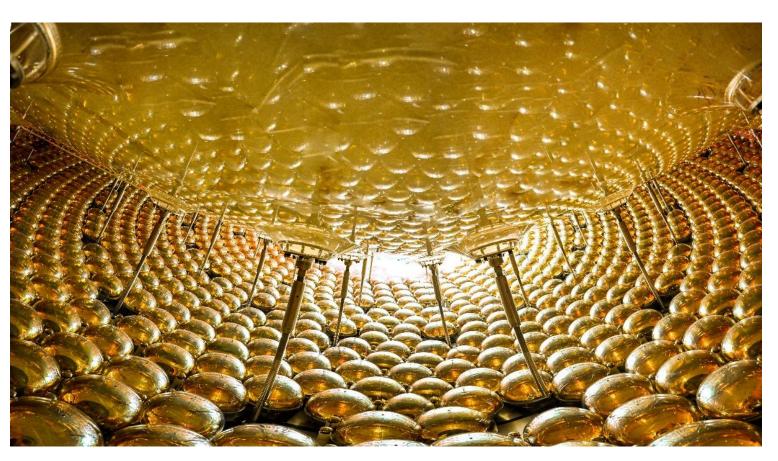
- Final checks of the acrylic tank inside and outside.
- Moisture spray over two days reduced dust levels inside CD air from ~10,000 to ~100.
- Two weeks high pressure water jet to remove the protection film and clean the inner acrylic surface by 3D rotating nozzle. Check water cleanness until satisfactory.

PMT testing

All PMTs were produced, tested, and instrumented with waterproof

potting		LPMT (20-inch)		SPMT (3-inch)	
		Hamamatsu	NNVT	HZC	
Quantity		5000	15012	25600	
Charge Collection	n	Dynode	MCP	Dynode	
Photon Detection Efficiency		28.5%	30.1%	25%	
Mean Dark Count Rate	Bare	15.3	49.3	0.5	
[kHz]	Potted	17.0	31.2	0.5	
Transit Time Spread (σ) [ns]		1.3	7.0	1.6	
Dynamic range for [0-10] MeV		[0, 100] PEs		[0, 2] PEs	
Coverage		75%		3%	
Reference		EPJC 82 (2022) 12, 1168		NIM.A 1005 (2021) 165347	

12.6k NNVT PMTs with highest PDE are selected for light collection from LS and the rest are used in the Water Cherenkov detector.



PMT installation

Synergetic 20-inch and 3-inch PMT systems to ensure energy resolution and charge linearity

Clearance between PMTs: 3 mm → Assembly precision: < 1 mm

17612-16 LPMTs installed for CD, 2400-1 LPMTs installed for VETO, 25600-13 sPMT installed for CD

Filling the detector with water

Simultaneous filling of ultrapure water inside and outside the sphere → totally filled 60 kt

- ✓ Filling started on Dec. 18, 2024, and finished in 45 days. No light and gas leak. Keep the temperature uniformity 21.1°C±0.5°C
- ✓ Liquid and air pressure were kept the same between the inside and outside of the acrylic tank. Water pipes and acrylic tank "breath" with N₂
- ✓ Stress of the detector structure closely monitored, in good agreement with expectations.

	Muon rate [Hz]	Efficiency [%]	Attenuation length [m]	U/Th [10 ⁻¹⁵ g/g]	²²² Rn [mBq/m³]	²²⁶ Ra [mBq/m³]
Design	~4	99.5	30-40	10	<10	<1
Reached	5	99.99	>60	<0.4	<5	<0.01

CD PMTs VETO PMTs

Supporting Legs

OSIRIS for LS qualification

Liquid scintillator (20 kton)

Four purification plants + LS Mixing + QA/QC + high purity N_2 and water production plant to guarantee radio-purity and transparency Recipe: LAB + 2.5g/L PPO + 3 mg/L bis-MSB

NIM.A 908 (2021) 164823

Samples tested by ICP-MS every week for radiopurity, verified by NAA and other methods

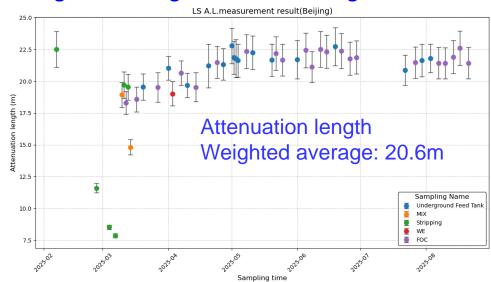
Rn and O₂

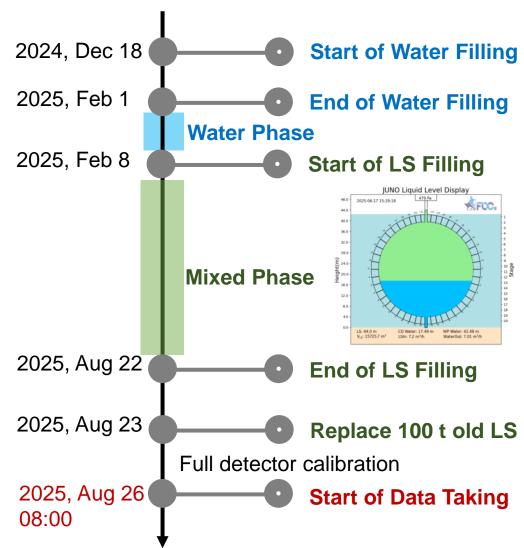
Yu-Feng Li 13

Gas stripping to remove

Water extraction to remove

radioactive impurities

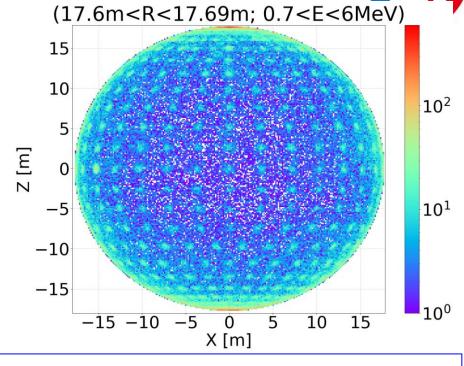

Liquid scintillator filling



Simultaneous water extraction and LS filling

Comprehensive QC/QA program for LS production, measured for batches:

- ✓ Radiopurity by ICP-MS every week: U/Th $< 1 \times 10^{-16}$ g/g
- √ 222Rn in fresh LS, monitored by CD: <1 mBq/m³
 </p>
- √ 222Rn leak < 0.5 mBq/h
 </p>
- ✓ Frequent radiopurity monitoring for N₂ and water
- ✓ Weighted average attenuation length > 20m



A clean detector

- VETO Water:
 - ⇒ U/Th<0.4×10⁻¹⁵ g/g, ²²²Rn<10 mBq/m³, ²²⁶Ra<1 mBq/m³
- Acrylic, water, PMTs, steel and LS are clean and water shielding works :
 - ⇒ Single rate <7 Hz for R<17.2m & E>0.7MeV (design 7.2Hz)
- ♦ LS cleanness is very close to other solar neutrino experiments
 - ⇒ ²³⁸U < 3×10⁻¹⁷ g/g (low radon area in a small fiducial volume) < 1×10⁻¹⁶ g/g (fitted plateau from full detector radon decay)
 - \Rightarrow 232Th < 1×10⁻¹⁶ g/g (R<13m)
 - ⇒ 210Po < 1×10⁵ [cpd/kt]

Radiopurity control of raw material:

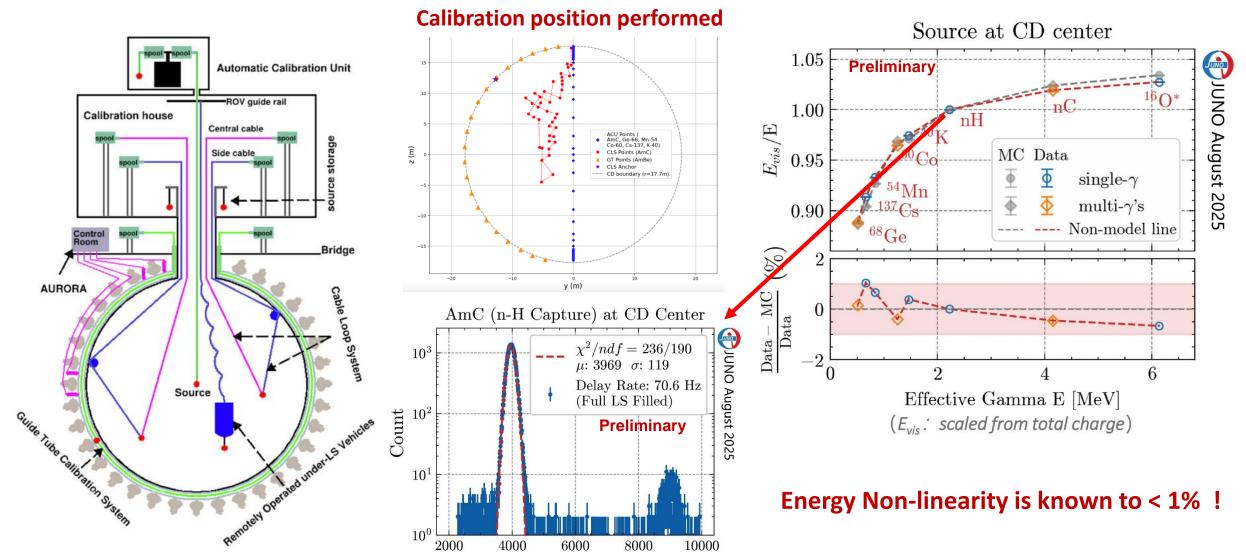
- ✓ Meticulous Monte Carlo Simulation for proper distribution of radioactivity budget
- ✓ Careful material screening
- ✓ Accurate detector production handling

Better than spec. by 15%!

JHEP 11 (2021) 102

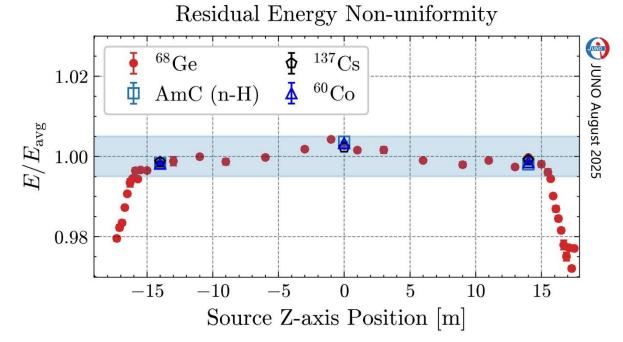
Radiopurity control during installation:

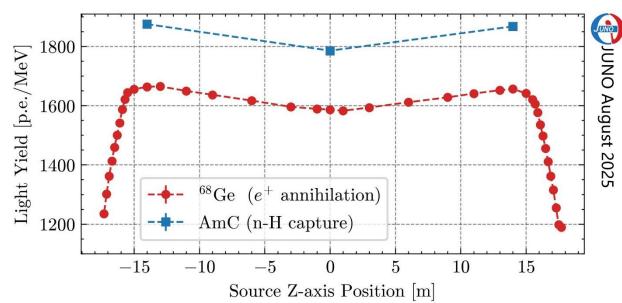
- ► Leak check of all joints (each < 10⁻⁸ mbar·L/s) for ²²²Rn and ⁸⁵Kr √
- Cleaning and washing of all pipes & vessels to remove dust (by check water/LAB cleanness) √
- Clean room environment during installation <a>\square
- \succ Acrylic Surface treatment and protection(Rn daughters) $\sqrt{}$
- ➤ LS filling scheme: water replacement and water washing √

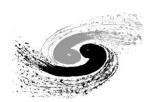

Recirculation probably impossible, unlike Borexino, KamLAND, SNO+,...

Calibration

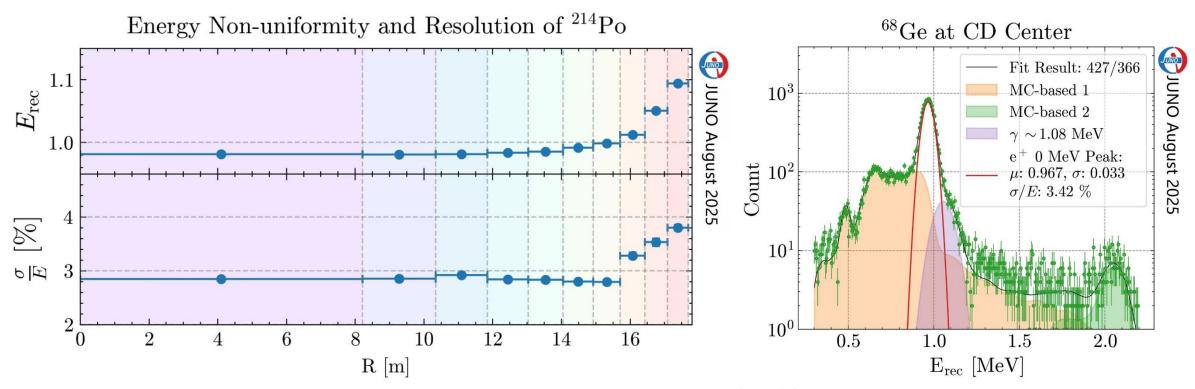
1D, 2D, 3D scan systems using laser/e⁺/ γ /n sources + n/ α background events


Total p.e. (DCR removed)

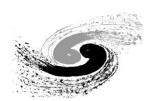



Uniformity and light yield

- For R<16m, residual energy non-uniformity scanned along the Z-axis is <0.5%
- Light yield is >1600 PE/MeV for ⁶⁸Ge, >1800 PE/MeV for neutron, better than expectations (difference due to non-linearity, *Chinese Phys. C 49 (2025) 013003*)
- Edge effects still exist, more calibration data and software work needed



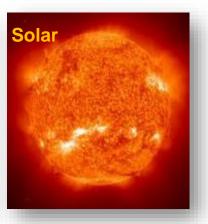
Energy Resolution



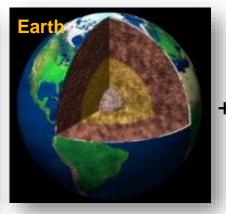
- ◆ Energy resolution for alpha from ²¹⁴Po is ~3% @0.92MeV
- Energy resolution for 68 Ge is $^{\sim}3.4\%$ @ 2×0.511 MeV, already close to but slightly worse than the expectation of 3.1%
- Further improvement are coming: more calibration data, noise/flasher removal, reconstruction and fit, ...

Physics Sensitivities

For topics not covered here, please refer to PPNP 123 (2022) 103927



A multi-purpose observatory



New physics

~60 IBDs per day

Several per day

Hundreds per day

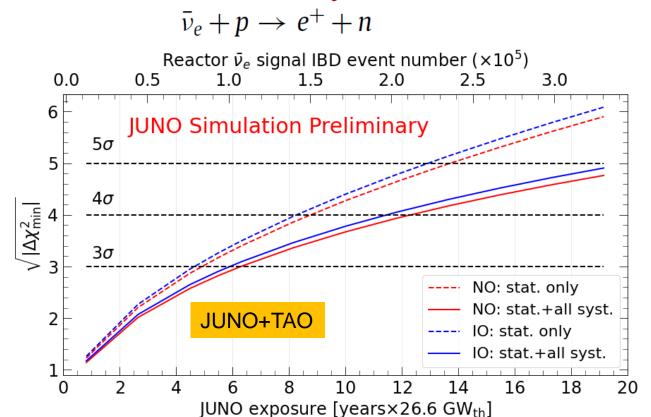
~5000 IBDs for CCSN @10 kpc

Several IBDs per day

Neutrino oscillation & properties

IBD: inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$

CCSN: core-collapse supernova


Neutrinos as a probe

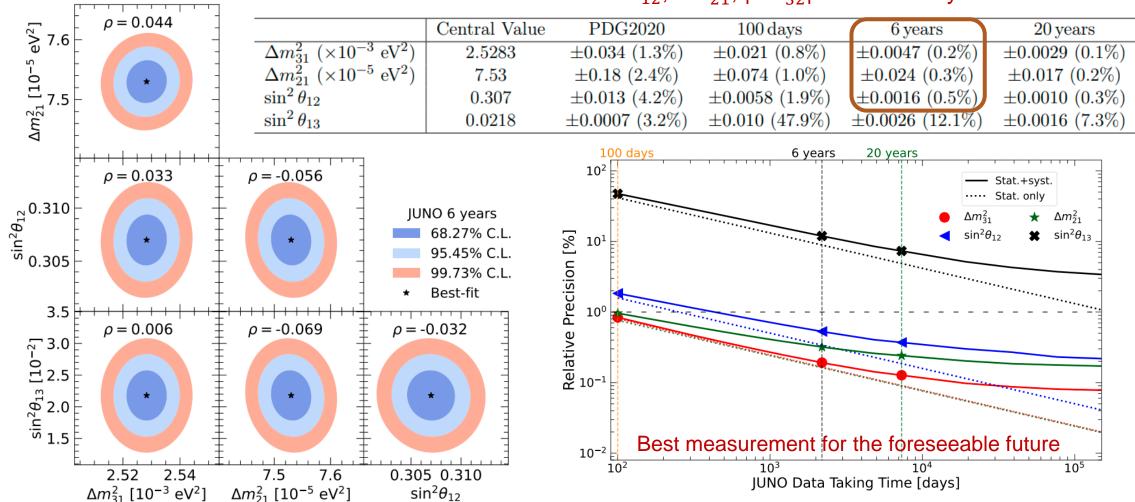
Neutrino Mass Ordering

Inverse beta decay reaction

	Design (J. Phys. G 43:030401 (2016))	Now (2022)
Thermal Power	36 GW _{th}	26.6 GW _{th} (26%↓)
Overburden	~700 m	~650 m
Muon flux in LS	3 Hz	4 Hz (33%↑)
Muon veto efficiency	83%	93% (12%↑)
Signal rate	60 /day	47.1 /day (22%↓)
Backgrounds	3.75 /day	4.11 /day (10%↑)
Energy resolution	3% @ 1 MeV	2.9% @ 1 MeV (3%↑)
Shape uncertainty	1%	JUNO+TAO
3σ NMO sensitivity exposure	$< 6 \text{ yrs} \times 35.8 \text{ GW}_{\text{th}}$	\sim 6 yrs \times 26.6 GW _{th}

JUNO sensitivity on NMO: 3σ (reactors only) @ ~6 yrs * 26.6 GW_{th} exposure

Combined reactor + atmospheric neutrino analysis is in progress: further improve the NMO sensitivity



Neutrino oscillation parameters

arXiv:2204.13249, Chin. Phys. C 46 (2022) 123001

Precision of $\sin^2 2\theta_{12}$, Δm_{21}^2 , $|\Delta m_{32}^2| < 0.5\%$ in 6 yrs

The improvement in precision over existing constraints will be about one order of magnitude

A: Inverse Beta Decay

$$\nu_{\ell} + n \rightarrow p + \ell^{-}$$
 $n \rightarrow p + e^{-} + \bar{\nu}_{e}$

$$\bar{\nu}_{\ell} + p \rightarrow n + \ell^{+}$$

- Famous inverse beta decay on free proton (in Hydrogen rich detectors)
- > Hadron weak current: induced currents

$$\overline{u_u}(p_u) \gamma^{\rho} (1 - \gamma^5) u_d(p_d) \rightarrow \langle p(p_p) | h_W^{\rho}(0) | n(p_n) \rangle$$

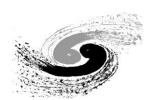
- > Isospin symmetry
- > Correlated with free neutron decay

$$\begin{split} \langle p(p_p)|v_W^\rho(0)|n(p_n)\rangle &= \overline{u_p}(p_p) \left[\gamma^\rho \, F_1(Q^2) + \frac{i\,\sigma^{\rho\eta}\,q_\eta}{2\,m_N} \, F_2(Q^2) + \frac{q^\rho}{m_N} \, F_3(Q^2) \right] u_n(p_n) \\ \langle p(p_p)|a_W^\rho(0)|n(p_n)\rangle &= \overline{u_p}(p_p) \left[\gamma^\rho \gamma^5 G_A(Q^2) + \frac{q^\rho}{m_N} \, \gamma^5 G_P(Q^2) \right. \\ &\left. + \frac{p_p^\rho + p_n^\rho}{m_N} \, \gamma^5 G_3(Q^2) \right] u_n(p_n) \,. \end{split}$$

$$\overline{v}_e + p \rightarrow e^+ + n$$

Capture on H or Gd, Delayed signal, 2.2, 8 MeV

Dedicated calculations in:

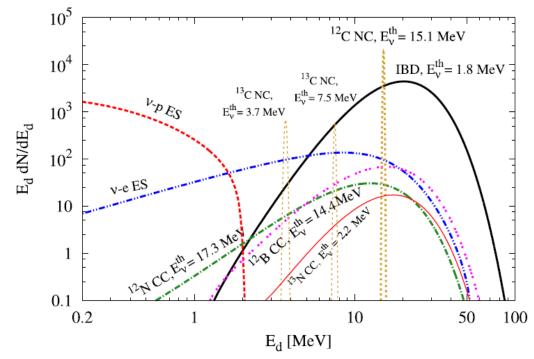

Vogel & Beacom, 1999 Strumia & Vissani, 2003 Ricciardi, Vignaroli, Vissani, 2022

Radiative correction:

Kurylov, Ramsey-Musolf, Vogel, 2003

Uncertainty as small as ~0.2%

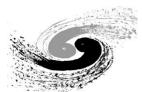
Excellent opportunity for new physics searches!


CCSN potential at JUNO

Multi-channel detection, all flavors

~5000 IBD, ~300 eES, ~2000 pES, ~200 ¹²C CC, ~300 ¹²C NC @10 kpc

- Early warning
- **CCSN Characteristics**
 - Time evolution & Energy spectra
 - Total energy, luminosity,



Neutrino properties

- Mass ordering
- Absolute mass
- New physics

Channel	Туре	Events for different $\langle E_{\nu} \rangle$ values		
Channel	туре	12 MeV	14 MeV	16 MeV
$\overline{\nu}_e + p \to e^+ + n$	CC	4.3×10^{3}	5.0×10^{3}	5.7×10^{3}
$\nu + p \rightarrow \nu + p$	NC	0.6×10^{3}	1.2×10^{3}	2.0×10^{3}
$\nu + e \rightarrow \nu + e$	ES	3.6×10^2	3.6×10^2	3.6×10^2
$\nu + {}^{12}\text{C} \rightarrow \nu + {}^{12}\text{C}^*$	NC	1.7×10^{2}	3.2×10^{2}	5.2×10^{2}
$\nu_e + {}^{12}\text{C} \rightarrow e^- + {}^{12}\text{N}$	$^{\rm CC}$	0.5×10^{2}	0.9×10^{2}	1.6×10^{2}
$\overline{\nu}_e + {}^{12}\mathrm{C} \rightarrow e^+ + {}^{12}\mathrm{B}$	$^{\rm CC}$	0.6×10^{2}	1.1×10^2	1.6×10^2

24

JUNO: Feasibility (high energy)

Chin. Phys. C 45 023004 (Ap. J. 965 (2024) 122

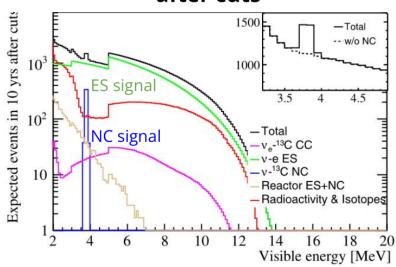
Interaction channels of ⁸Β-ν:

ES:
$$v_x + e^- \rightarrow v_x + e^-$$

- No threshold
- All flavours & $\sigma(v_{\mu,\tau})$ / $\sigma(v_e)$ = 1/6
- Single events continuous spectrum

CC: $v_e + {}^{13}C \rightarrow e^- + {}^{13}N$

- $E_{thr} = 2.2 \text{ MeV}$
- Possible only with $v_{\rm e}$
- Prompt: e⁻; Delayed: ¹³N decay


NC:
$$v_x + {}^{13}C \rightarrow v_x + {}^{13}C^*$$

- $E_{thr} = 3.685 \text{ MeV}$
- All flavors & equal σ
- Single events monochromatic y

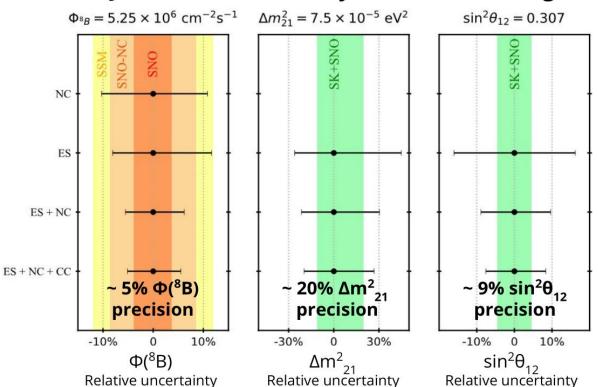
Backgrounds:

- **Externals**: can be neglected after FV cuts
- ❖ Internals: unstable nuclei in ²³²Th and ²³⁸U chains with high Q values
- **Cosmogenics**: can be reduced after Three-Fold Coincidences cuts
- Accidental coincidences (specific for CC)

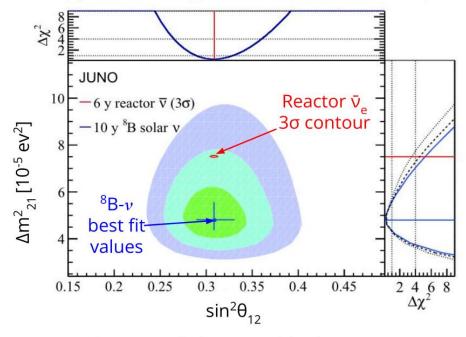
10 years, single events after cuts

10 years, correlated prompt events after cuts

Neutrinos from Sun (B8)



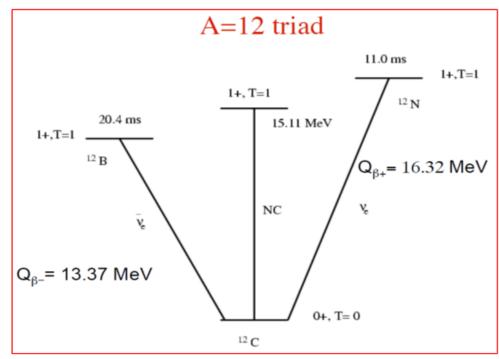
CC & ES: their event **rate** depends on the neutrino flux and on the v_e survival probability model **NC**: it will allow a **model independent measurement** of $\Phi(^8B)$, first after SNO


 \rightarrow Simultaneous measurement of $\Phi(^8B)$, Δm_{21}^2 , and $\sin^2\theta_{12}$

Chin. Phys. C 45 023004 (2021) 1 Ap. J. 965 (2024) 122

JUNO results with 10 years of data-taking

Δm_{21}^2 and $\sin^2\theta_{12}$ with $^8B-\nu$ & reactor $\bar{\nu}_e$



Potential to search for possible discrepancies

B: Low Energy Scattering on Carbon

Nuclear structure effects:

- > beta (M1) decay calibration
- ν-energy ~ nuclear excitation energy: shell model
- giant resonance: CRPA or shell model
- > >100 MeV, fermi Gas models or spectral function method
- DIS region: parton,

From Vogel, NPA 777 (2006) 340-355

	$^{12}\text{C}(v_e, e^-)^{12}\text{N}_{gs}$	$^{12}\text{C}(\nu_{\mu},\mu^{-})^{12}\text{N}_{gs}$	$^{12}\text{C}(v_e, e^-)^{12}\text{C}(15.11)$
	decay at rest	decay in flight	decay at rest
Experiment [31]	$9.4 \pm 0.5 \pm 0.8$	_	$11 \pm 0.85 \pm 1.0$
Experiment [32]	$9.1 \pm 0.4 \pm 0.9$	$66 \pm 10 \pm 10$	_
Experiment [33]	$10.5 \pm 1.0 \pm 1.0$	_	_
Shell model [36]	9.1	63.5	9.8
CRPA [34,35]	8.9	63.0	10.5
EPT [37]	9.2	59	9.9

B: Low Energy Scattering on Carbon

 \square B(GT) from Daejeon16 using the wave functions from ¹³C or ¹³N (based on isospin symmetry)

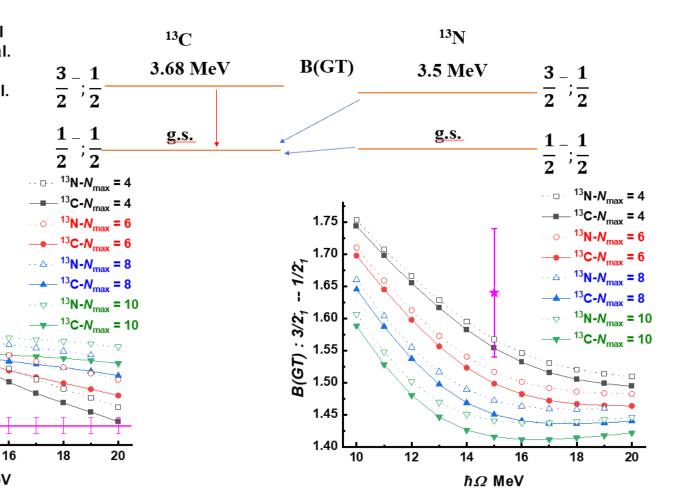
Work in progress based on No-Core Shell Model method, by He Li, P. Yin, J Vary et al.

Also early calculations by Kajino-san et. al.

0.56

0.48

0.44


0.40

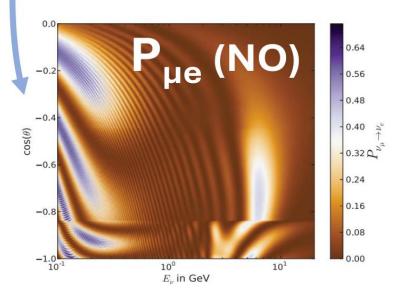
12

14

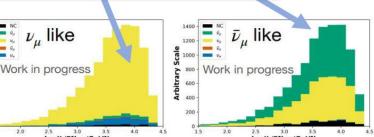
 $\hbar\Omega$ MeV

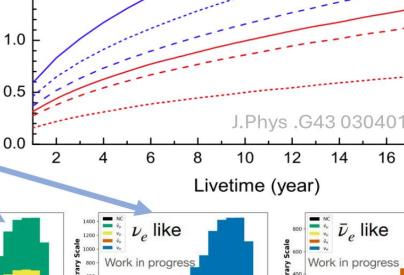
B(GT): 1/2,

Atmospheric neutrinos



MSW effect → Neutrino Mass Ordering (NMO) → Independent measurement from reactor antineutrinos


JUNO **first experiment** to study **atmospheric** neutrino oscillation with **liquid scintillator**:


NMO via matter effects requirements:

- → Good **flavor separation** (traditional + ML)
- → Good track reconstruction

Expected $> 3\sigma$ in 6 years combined with reactor

- Track-like

Point+Track

Electron neutrinos ----- Point-like

Muon neutrinos

Electron+Muon


Normal Hierarchy

2.5

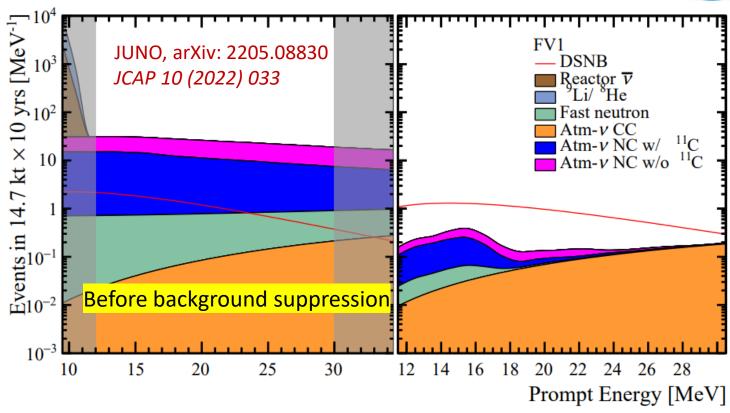
2.0

1.5

Sensitivity (σ)

Diffuse Supernova Neutrino Background (DSNB)

■ DSNB: 2-4 events in JUNO per year


✓ Not detected yet

Holding:

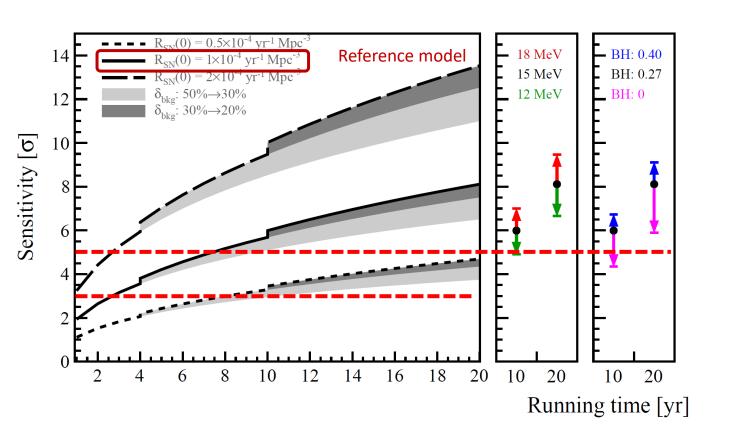
- Supernova (SN) rate $(R_{SN}(0))$
- ightharpoonup Average energy of SN neutrinos $(\langle E_{\nu} \rangle)$
- ightharpoonup Fraction of black hole (f_{BH})
- Dominant background (above 12 MeV):
 - \checkmark Atm- ν NC interactions

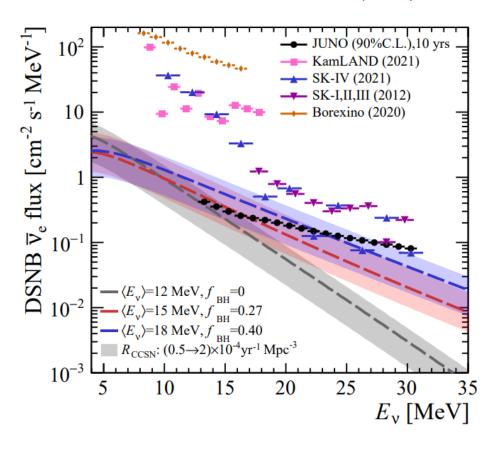
Highlights on background suppression

- ✓ Muon veto
- ✓ Pulse shape discrimination (PSD) technique
- ✓ Triple coincidence (¹¹C delayed decay)

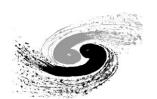
Improvements compared to JUNO physics book J. Phys. G43:030401(2016):

- ✓ **Background evaluation:** 0.7 per year → **0.54** per year
- ✓ **PSD:** signal efficiency 50% → 80% (1% residual background)
- ✓ Realistic DSNB signal model: non-zero fraction of failed Supernova

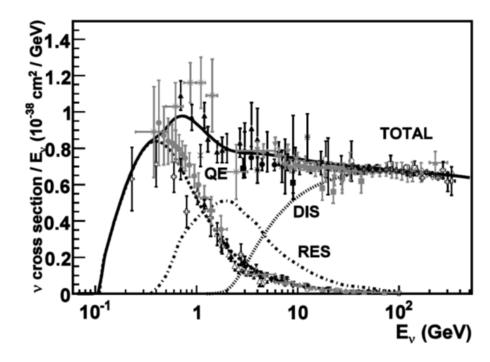




Diffuse Supernova Neutrino Background (DSNB)



arXiv: 2205.08830, JCAP 10 (2022) 033


- If no positive observation, JUNO can set the world-leading best limits of DSNB flux
- With the nominal model (black solid curve (left plot)): 3σ (3 yrs) and 6σ (10 yrs)

C: GeV neutrino-nucleus interactions

quasielastic scattering

$$\frac{v_l + n \to l^- + p}{\overline{v_l} + p \to l^+ + n}$$

Fermi motion, binding energy, M_A, 2p2h,

resonance production

$$v_l + n \rightarrow l^- + \Delta^+ \ v_l + p \rightarrow l^- + \Delta^{++} \ \overline{v_l} + n \rightarrow l^+ + \Delta^- \ \overline{v_l} + p \rightarrow l^+ + \Delta^0$$
Hardon production, FSI

deep-inelastic scattering

$$\frac{v_l + N \rightarrow l^2 + N' + n\pi}{v_l + N \rightarrow l^2 + N' + n\pi}$$

Parton Model, FSI

C: Generators in the Market

Status overview

- Well established generator
 - Used by many experiments around the world
 Main pays addition is ILINO
 - Main new addition is JUNO
 Main generator for all the LAr experiments
- Two main efforts
 - Model development
 - Tuning
- Contacts, details and code are all available from our website: www.genie-mc.org/
- Latest release: version 3.04.02, released in April 2024
 - Previous release was 3.04.00, released in March 2023
 - http://releases.genie-mc.org/
- Recent publications
 - Neutrino-nucleon cross-section model tuning in GENIE v3 Phys.Rev.D 104 (2021) 7, 072009
 - Hadronization model tuning in genie v3 Phys.Rev.D 105 (2022) 1, 01200

NuWro - general information (1) Jan T. Sobczyk @ NUINT24

- · Monte Carlo generator of neutrino interactions
- Beginning ~ 2005 at the University of Wrocław
- Optimized for ~1 GeV
- · Can handle all kind of targets, neutrino fluxes, equipped with detector interface
- Written in C++
- · Output files in the ROOT format
- PYTHIA6 used for hadronization in DIS
- Open source code, repository: https://github.com/NuWro/nuwro

-

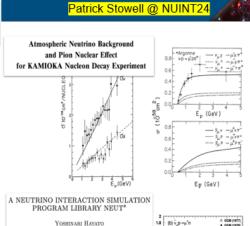
GiBUU

The Giessen Boltzmann-Uehling-Uhlenbeck Project
Ulrich Mosel and Kai Gallmeister @ NUINT24

- GiBUU is presently used to describe
 - Dilepton and pion production in heavy-ion collisions (HADES experiment at GSI)
 - 2. Inelastic electron scattering at JLAB (and SLAC, MAMI)
 - 3. Neutrino-nucleus reactions at Fermilab, T2K and FASER

. .

- All with the same theory input and code!
- We provide the code for download from gibuu.hepforge.org,

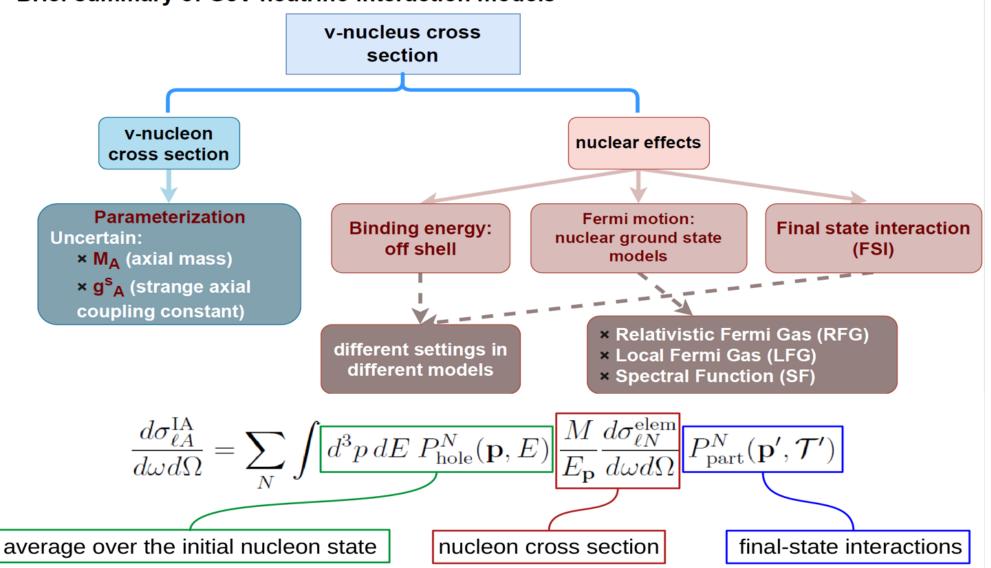

The NEUT neutrino interaction simulation program library

Yoshinari Hayato ** and Luke Pickering* **

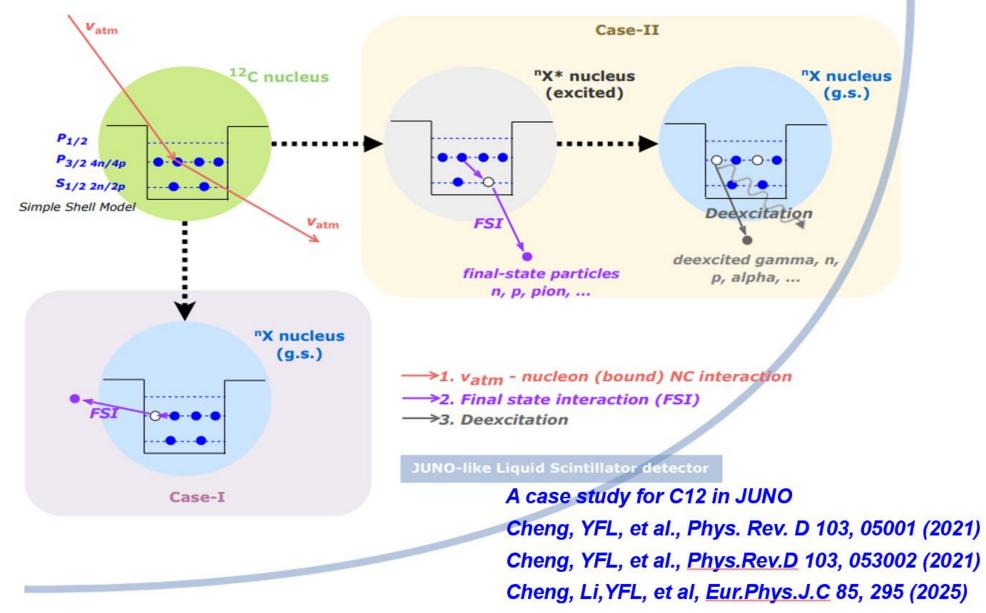
*The European Physical Journal Special Topics volume 230, pages 4469–4481 (2021)

 MeV to TeV scale neutrino interaction generator originally created in the 70s to support neutrino backgrounds at Kamioka.

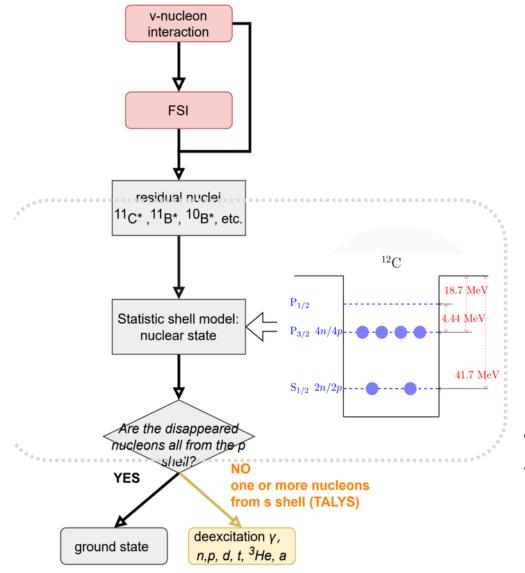
- Long history of development driven by evolving requirements of KamiokaNDE, Super-KamiokaNDE, and T2K.
- ◆ Currently the primary interaction generator for SK and T2K, used in all oscillation/cross-section analyses.
 - See Laura, Stephen, Ulyesse, and Cesar's talks this NuINT!


33

C: General components in generators


Brief summary of GeV neutrino interaction models

C: New component: adding deexcitation



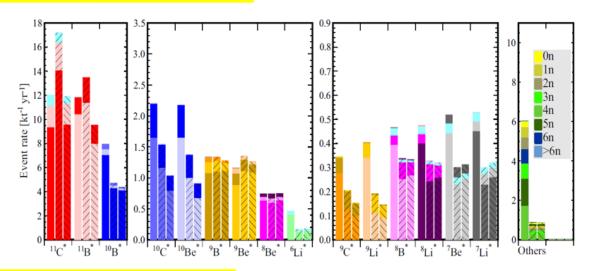
C: TALYS-based Deexcitation

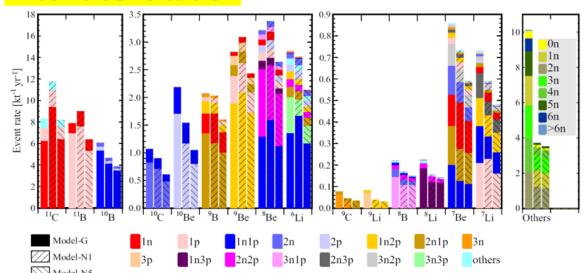
Simple shell model → Status of the residual nuclei

- All residual nuclei with A>5 have been considered
- Taking 11C*, 11B*, 10C*, 10Be* and 10B* for example

Daughter Nuclei	Shell Hole	Configuration Probability	Excitation Energy
¹¹ C* or ¹¹ B*	$s_{1/2}$	1/3	$E^* = 23 \text{ MeV}$
or or B	$p_{3/2}$	2/3	$E^* = 0 \text{ MeV}$
	$s_{1/2}$	1/15	$E^* = 46 \text{ MeV}$
$^{10}\mathrm{C}^*$ or $^{10}\mathrm{Be}^*$	$p_{3/2}$	6/15	$E^* = 0 \text{ MeV}$
	$s_{1/2} \ \& \ p_{3/2}$	8/15	$E^* = 23 \text{ MeV}$
	$s_{1/2}$	1/9	$E^* = 46 \text{ MeV}$
$^{10}\mathrm{B}^*$	$p_{3/2}$	4/9	$E^* = 0 \text{ MeV}$
	$s_{1/2} \ \& \ p_{3/2}$	4/9	$E^* = 23 \text{ MeV}$

Triggered a variety of research interest in the neutrino interaction community:


Abe, PRD (2024), 2508.04040, etc. Guo et al, PLB (2022), PLB (2025) etc. Gardiner, MARLEY, etc.


C: Impact on exclusive cross sections

Before deexcitation

After deexcitation

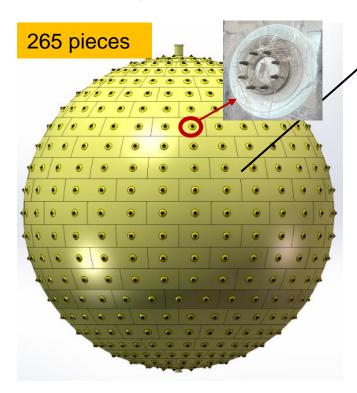
- 11C, 11B, 10B reduced, and lighter nuclei increased; neutron multiplicity redistributed.
- Exclusive final-state information, such as neutron multiplicity, charge pion multiplicity, unstable nuclei, is important for
- (a) Energy reconstruction
- (b) Evaluate systematics

Summary and outlook

- After 17 years efforts, from idea to construction, JUNO detector is fully completed, despite numerous challenges
- > Initial testing and performance studies show that key specifications have been mostly met
- > We are excited to have started the physics data taking
- Many important and challenging topics on neutrino-scattering physics!

Physics	Sensitivity PPNP 123 (2022) 103927
Neutrino Mass Ordering	3σ (~1 σ) in 6 yrs by reactor (atmospheric) $\bar{\nu}_e$
Neutrino Oscillation Parameters	Precision of $\sin^2\theta_{12}$, Δm^2_{21} , $ \Delta m^2_{32} < 0.5\%$ in 6 yrs
Supernova Burst (10 kpc)	\sim 5000 IBD, \sim 300 eES and \sim 2000 pES of all-flavor neutrinos
Diffuse Supernova Neutrino Background	3σ in 3 yrs
Solar neutrino	Measure Be7, pep, CNO simultaneously, measure B8 flux independently
Nucleon decays $(p \to \bar{\nu}K^+)$	9.6×10 ³³ years (90% C.L.) in 10 yrs (<i>CPC 47, 113002 (2023</i>))
Geo-neutrino	~400 per year, 8% measurement in 10 yrs

Central detector (acrylic tank)

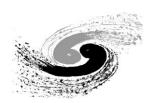

LS container:

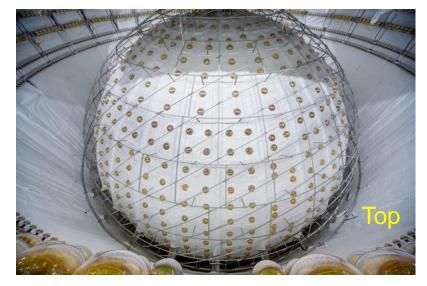
Inner diameter: 35.40±0.04 m

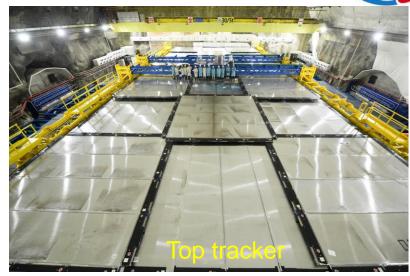
Thickness: 124±4 mm

Light transparency > 96% @ LS

Radiopurity: U/Th/K < 1 ppt







Veto detector

Water Cherenkov:

- ✓ 40 kt pure water for backgrounds shielding & tagging + 2400
 20" PMTs + Tyvek for light reflection
- √ 100 t/h pure water production system
- ✓ Pool lining: 5 mm HDPE for clean water and Rn prevention
- ✓ Pool cover by using 0.6 mm vulcanized fabric

Top tracker: refurbished OPERA plastic scintillators

Earth magnetic field compensation coil

