FREEZE-IN OF COMPOSITE DM

Lingfeng Li 李凌风

ICTP-AP, UCAS

Sep. 29 BPCS 2025, Beijing

25xx.abcde w/ Sida Lu

Composite DM Candidates

Motivation

"Baryons" are Composite

"Minimal" Setup (?)

See more in Xiaoyong Chu's talk

Unique
Dynamics &
Phenomena

DISCLAIMER:

ONGOING WORK WITH PRELIMINARY RESULTS DETAILS MAY CHANGE IN THE FUTURE

Freeze-in DM

L. J. Hall, K. Jedamzik, J. March-Russell and S.

M. West, 0911.1120

The portal interaction is highly suppressed, the dark sector never reaches equilibrium

Dark Sector from the "Leaks"

of Radiation

□DM relic abundance insensitive to DM mass

$$Y_{FI} \sim \lambda^2 \left(\frac{M_{Pl}}{m}\right)$$

Freeze-In of Composite DM

L. J. Hall, K. Jedamzik, J. March-Russell and S. M. West, 0911.1120

(IR) Freeze-in

$$\langle \sigma v \rangle \sim \Lambda_{\rm IR}^n T^{-2-n}$$

F. Elahi, C. Kolda and J. Unwin, 1410. 6157

UV Freeze-in

$$\langle \sigma v \rangle \sim T^{n+4} \Lambda_{\rm UV}^{-n}$$

Dark Hadron Production

Phenomenology: 25xx-abcde H-C. Cheng, X. Jiang, LFL, E. Salvioni 2408.13304; H-C.Cheng, LFL, E. Salvioni, 2110.10691

No longer pair produced but hadronize

$$\frac{N(\mu)}{N(\mu_0) \equiv N_0} = \exp\left[\int_{\mu_0}^{\mu} \gamma(\mu) d\log\mu\right]$$

$$\gamma = \sqrt{2N_D \frac{\alpha_D}{\pi}} - \frac{\alpha_D}{2\pi} \left(\frac{\beta_0}{4} + \frac{10N_{f,D}}{3N_D^2} \right)$$

B.R. Webber, 1984

With a limited range of energy/temperature, $N(\mu)=N_0\Big(rac{\mu}{\mu_0}\Big)^{\gamma}$ simplifies as:

$$N(\mu) = N_0 \left(\frac{\mu}{\mu_0}\right)^{\frac{1}{2}}$$

Dynamics of (IR) Freeze-in

Extremal anomalous dimension γ → ~1 for the "soft bomb" case

S. Knapen, S. Pagan Griso, M. Papucci and D. J. Robinson, 1612.00850

$$Y_D \sim 2\sqrt{\frac{2}{5}}g_D\sqrt{g_*}\frac{\lambda^2 M_{PL}\Lambda_{IR}^n N_0\Lambda_D^{-n-1}}{3\pi(1+n-\bar{\gamma})}$$

☐ Recover the result of weakly-interacting results when $N_0 \sim 2$ and $\gamma \sim 0$

See also:

S. Hong, G. Kurup, and M. Perelstein, 1910-10160; W. H. Chiu, S. Hong, and L.-T. Wang, 2209.10563

UV Freeze-in

☐ Assuming the UV d.o.f. are produced instead

$$\langle \sigma v \rangle \sim c_n^2 \frac{T^{4+n}}{\Lambda_{\rm UV}^n}$$

$$Y_{D,i} \approx \begin{cases} 7.6 \times 10^{-6} \frac{c_n^2 M_{\rm pl} T_{\rm RH}}{\Lambda_{\rm UV}^2} \left(\frac{g_*}{106.5}\right)^{-3/2} & n = 2\\ 6.1 \times 10^{-5} \frac{c_n^2 M_{\rm pl} T_{\rm RH}^3}{\Lambda_{\rm UV}^4} \left(\frac{g_*}{106.5}\right)^{-3/2} & n = 4\\ 1.7 \times 10^{-3} \frac{c_n^2 M_{\rm pl} T_{\rm RH}^5}{\Lambda_{\rm UV}^6} \left(\frac{g_*}{106.5}\right)^{-3/2} & n = 6 \end{cases}$$

lacksquare Could even be gravity-only when we assign $\Lambda_{
m UV}$ \sim $M_{
m pl}$

The First Hadronization

Only when the horizon size is large enough, the color string can form (and break)

Necessary Condition of Quark-Gluon Plasma (non-) Formation

☐ Inelastic cross section reaches geometric ones

$$\langle \sigma v \rangle \sim \mathcal{O}\left(\frac{1}{\Lambda_D^2}\right)$$

☐ Mean free path greater than the horizon size, otherwise thin+hot hadron gas instead of QGP

$$l \sim (\langle \sigma v \rangle n_D)^{-1} \ll H^{-1}$$

Need to reach critical abundance to make it happen

Necessary Condition of Quark-Gluon Plasma (non-) Formation

☐(Very) high energy confined d.o.f. instead of elementary ones during radiation dominance

$$Y \gtrsim \frac{g_D \Lambda_D^2}{g_* M_{\rm pl} T}$$

Hot, thin hadron "gas" instead of quark gluon "plasma"

Sufficient Condition of Quark-Gluon Plasma (non-) Formation

☐ For QGP to be formed, the mean free path for UV d.o.f. scattering with radiation shall be less than the horizon size

$$n\langle \sigma v \rangle \gtrsim H$$

$$n\langle \sigma v \rangle \gtrsim H \qquad \langle \sigma v \rangle \sim \alpha^3 / \widetilde{T}^2$$

The critical density

$$Y_{\rm QGP} \sim \frac{\widetilde{T}^2}{\alpha_D^3 g_*^{1/2} T M_{\rm pl}} \gg \frac{g_D \Lambda_D^2}{g_* M_{\rm pl} T}$$

Dark Sector Population

Dark Sector Self-Population

☐ At late times, sparce dark hadrons with high energy scatter with each other and reproduce J. March-Rus

J. March-Russell, H. Tillim and

S. M. West, 2007.14688

- ☐ Most interactions could be "ultra-peripheral" and "forward" (small q²)
- □ Differential properties not completely known even for SM QCD

Dark Sector Self-Population

- ☐ Geometric inelastic cross section
- Moderate hadron yield

$$\frac{Y_{D, \text{ final}}}{Y_{D, \text{ initial}}}$$

Large enhancement (or nothing) across the "critical point" of the initial population

Potential Observable Effects

DM self-heating

☐ Higher DM components (vector mesons, heavy flavor, excited glueballs...) annihilate and heats the DS

Other Possibilities

☐ Gravitational waves?

☐Small-scale structure?

See more in Xiaoyong Chu's talk

■Phenomenology?

Summary (I)

Make freeze-in more UV with strong dynamics

First hadronization

Summary (II)

- We study the case of generic dark sector with strong dynamics
- Both type of freeze-in scenario work as expected, but more feature granted by the DM self-interactions
- The IR case becomes more UV and produces more DM
- The UV case can be of gravitational interaction only (depending on the reheating temperature)
- Hadronization and self-population of DM possible