The Gravitational Wave-Collider Interface

M.J. Ramsey-Musolf

- T.D. Lee Institute/Shanghai Jiao Tong Univ.
- UMass Amherst
- Caltech

About MJRM:



Family

Friends

My pronouns: he/him/his # MeToo

Bejing Particle Physics & Cosmology Symposium, September 26, 2025

Welcome!

Annual series

The 2025 Beijing Particle
Physics and Cosmology
Symposium (BPCS 2025):
Early Universe,
Gravitational-Wave Templates,
Collider Phenomenology

September 25-29, 2025, Beijing
Institute of Theoretical Physics, Chinese Academy of Sciences

Thanks!

- All participants
- Organizing Committee
- ITP-CAS Staff
 - Qing-Rong Ni
- The Executive Chair!
 - Shao-Jiang Wang

A Related Initiative: SPCS 2025

- Launch a China-based community on precision Higgs Factory Physics
- Followed by 4-day intensive school for PhD students & postdocs

Symposium

https://indico-tdli.sjtu.edu.cn/event/4194/

School

https://indico-tdli.sjtu.edu.cn/event/4428/

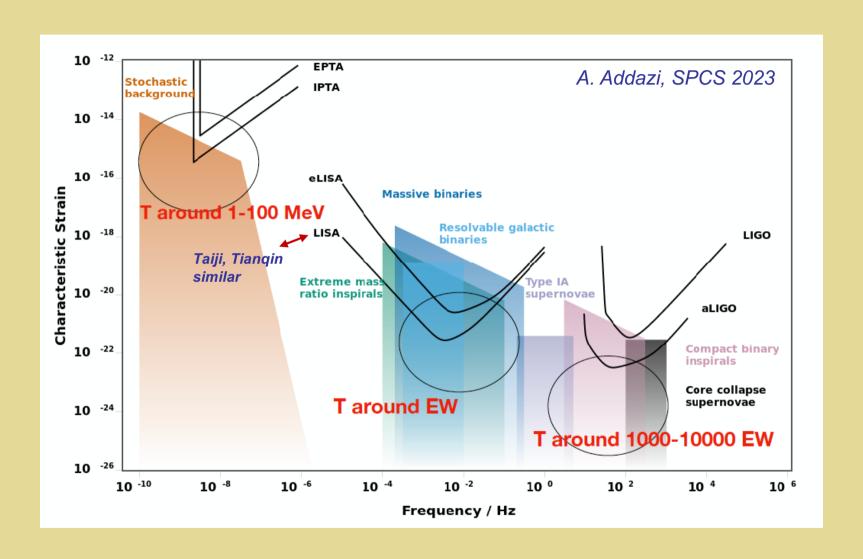
Key Themes for This Talk

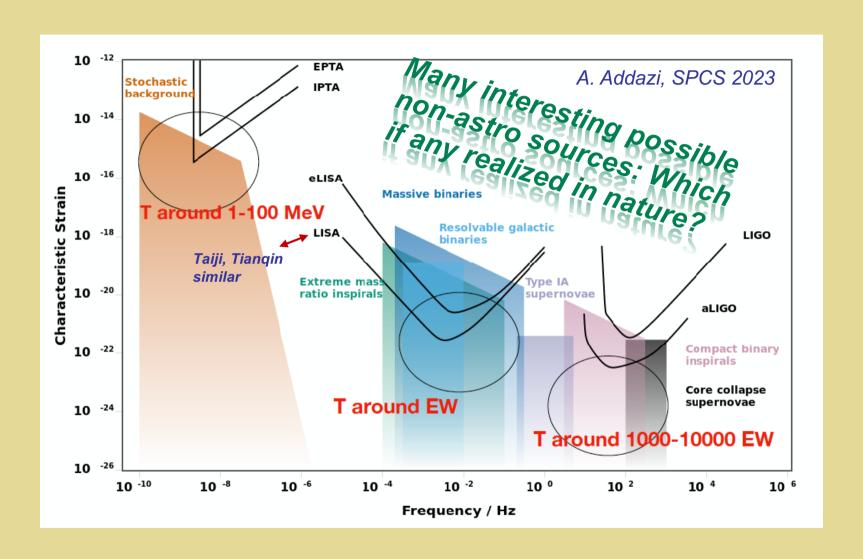
- The possibility of primordial gravitational waves generated from various particle physics dynamics has become an exciting area of exploration
- There exist many creative ideas for novel phenomena and dynamics that could have generated GW
- Realizing which, if any, of these ideas was realized in nature requires input from additional observables and performing the most rigorous theoretical calculations
- The electroweak phase transition provides a unique "laboratory" for testing our theoretical methods and ideas, with LHC and next generation collider measurements providing key input

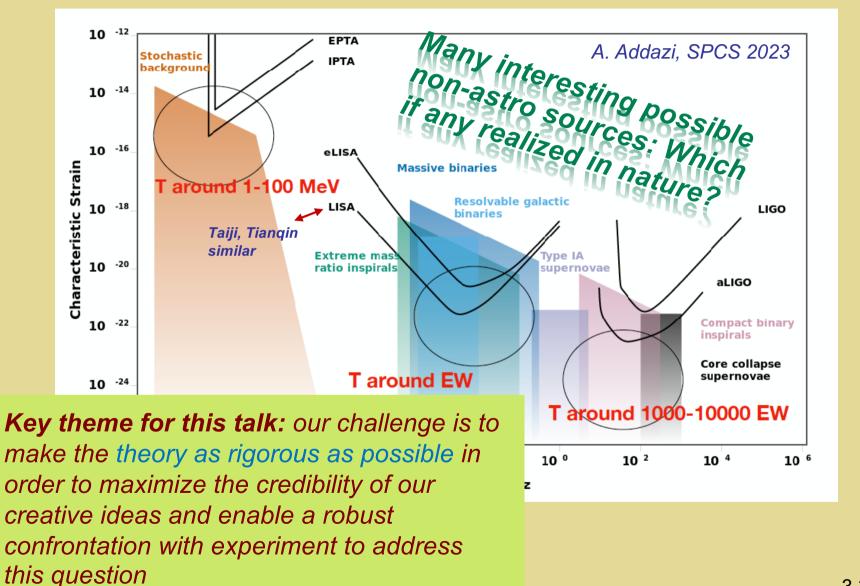
Outline

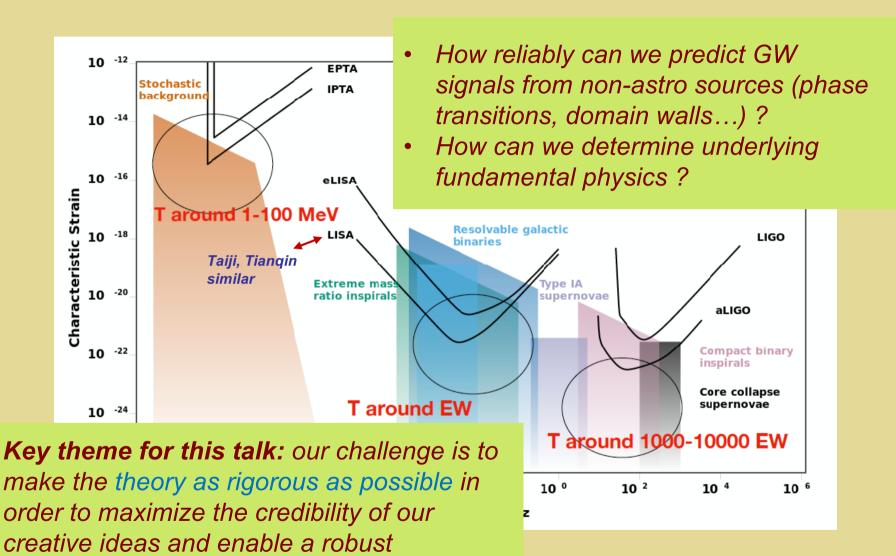
- I. Context & Questions
- II. Electroweak Phase Transition: A Laboratory
- III. Theoretical Robustness & Pheno Interface:
 - IR Problem
 - Nucleation & gauge invariance
 - Wall velocity
- IV. Outlook

I. Context & Questions





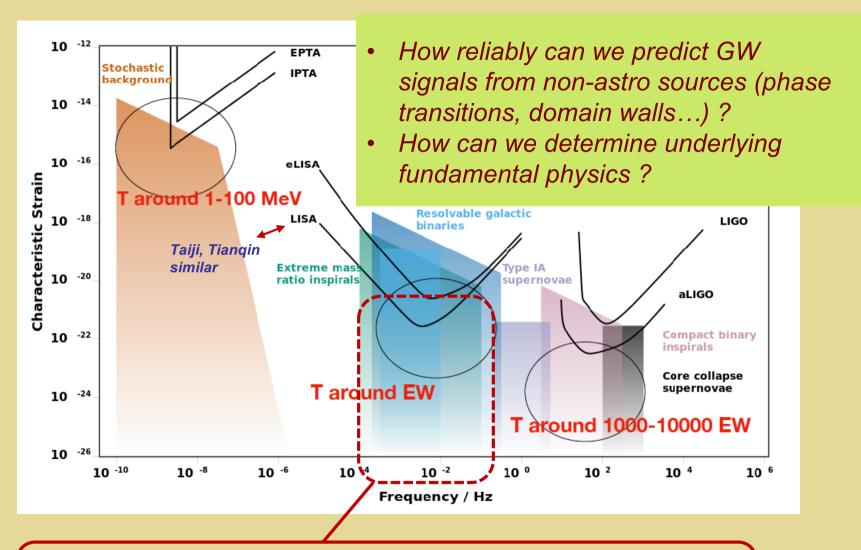




confrontation with experiment to address

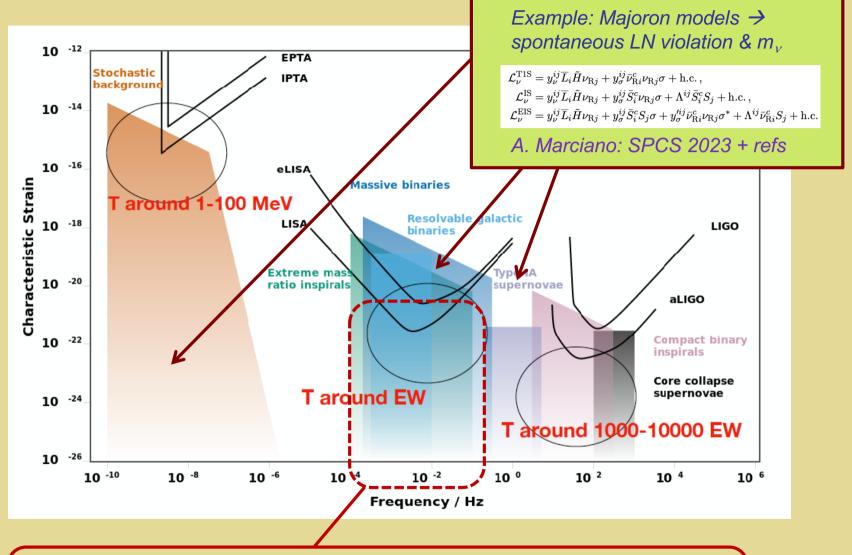
this question

GW: Electroweak Phase Transition



EWPT laboratory for GW micro-physics: colliders can probe particle physics responsible for non-astro GW sources \rightarrow test our framework for GW microphysics at other scales

GW: Electroweak Phase Transition



EWPT laboratory for GW micro-physics: colliders can probe particle physics responsible for non-astro GW sources \rightarrow test our framework for GW microphysics at other scales

II. EW Phase Transition

Was There an Electroweak Phase Transition?

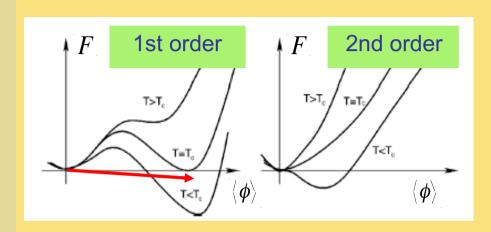
- Interesting in its own right
- Key ingredient for EW baryogenesis
- Source of gravitational radiation
- Laboratory for testing phase transition theoretical tools

Was There an Electroweak Phase Transition?

- Interesting in its own right
- Key ingredient for EW baryogenesis
- Source of gravitational radiation
- Laboratory for testing phase transition theoretical tools

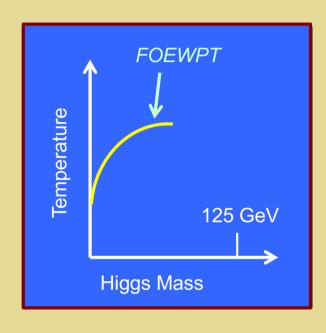
This talk

Was There an EW Phase Transition?



Increasing m_h

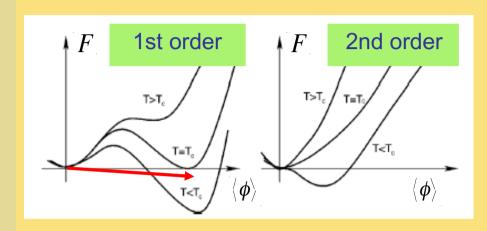
Lattice	Authors	$M_{\rm h}^C$ (GeV)
4D Isotropic	[76]	80±7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9



EW Phase Diagram

SM EW: Cross over transition

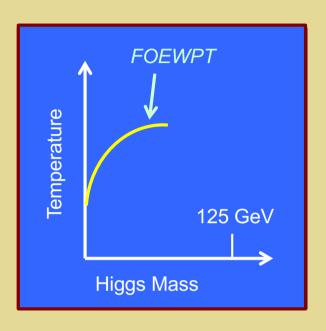
Was There an EW Phase Transition?



Increasing m_h

Lattice	Authors	$M_{\rm h}^{C}$ (GeV)
4D Isotropic	[76]	80±7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

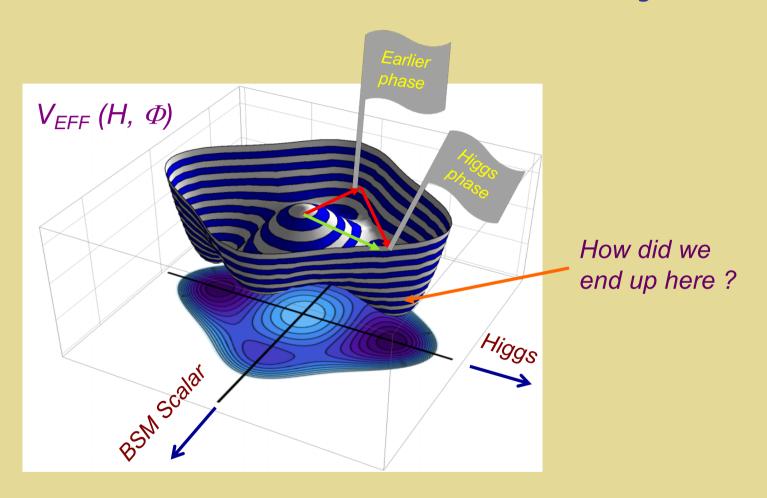
SM EW: Cross over transition



EW Phase Diagram

How does this picture change in presence of new TeV scale physics? What is the phase diagram? SFOEWPT?

What Was the EWSB Thermal History?



Extrema can evolve differently as T evolves > rich possibilities for symmetry breaking

What Was the EWSB Thermal History?

• What is the landscape of potentials and their thermal histories?

 $V_{EFF}(H, \Phi)$

How can we probe this
 T > 0 landscape
 experimentally ?

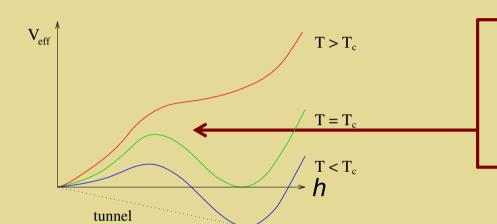
How did we end up here?

Higgs

How reliably can we compute the thermodynamics?

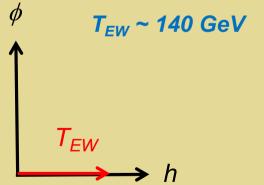
n evolve differently as T evolves → ilities for symmetry breaking

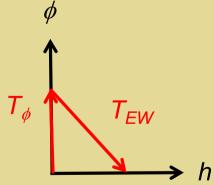
First Order EWPT from BSM Physics

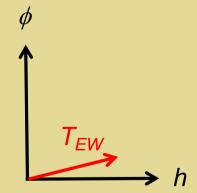


Representative thermal histories \rightarrow barrier for SFOEWPT

T_{EW} ~ 140 GeV

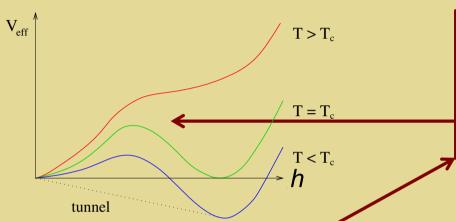




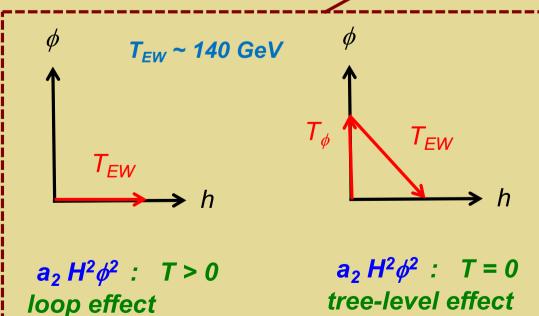


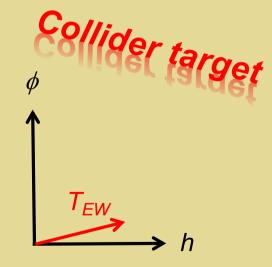
 $a_2 H^2 \phi^2$: T > 0loop effect $a_2 H^2 \phi^2$: T = 0tree-level effect $a_1 H^2 \phi$: T = 0tree-level effect

First Order EWPT from BSM Physics



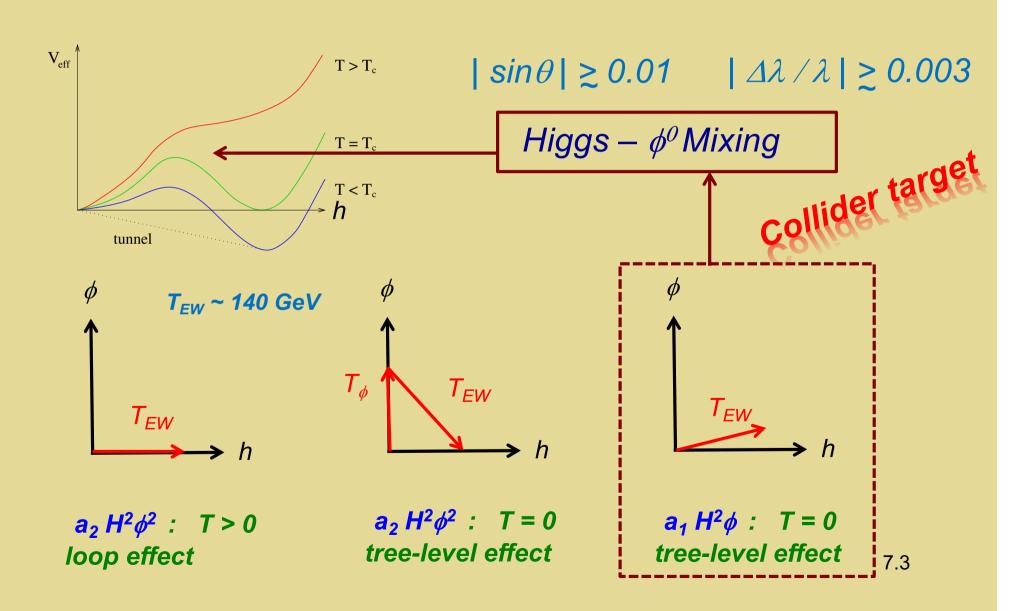
Simple arguments: T_{EW} +
first order EWPT \rightarrow $M_{\phi} \leq 700 \text{ GeV}$



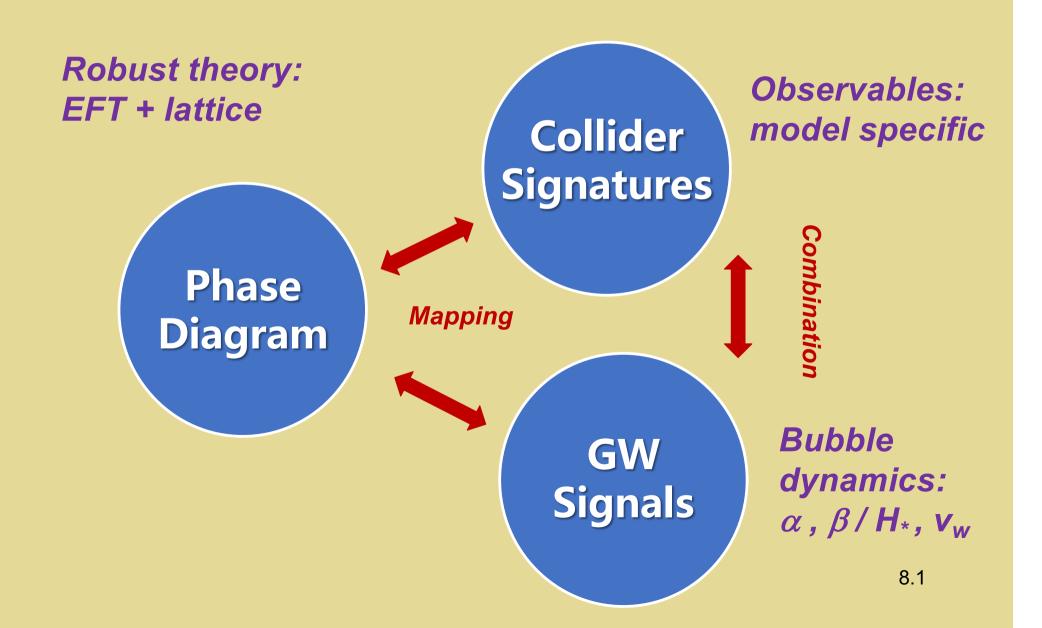


 $a_1 H^2 \phi$: T = 0tree-level effect

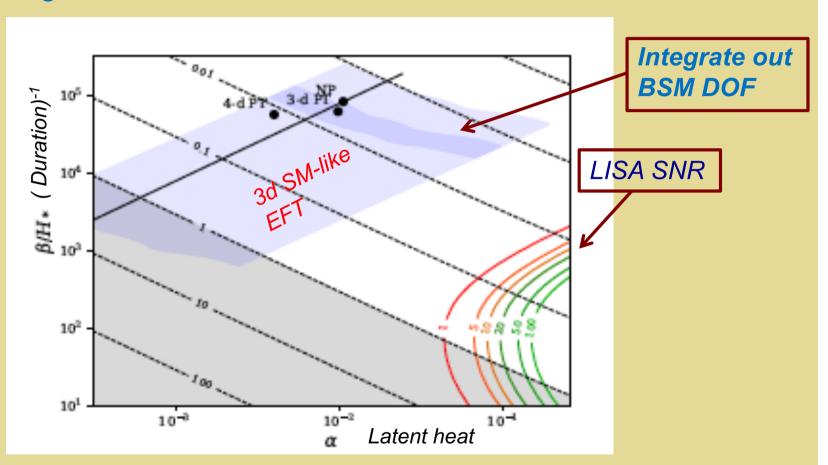
First Order EWPT from BSM Physics



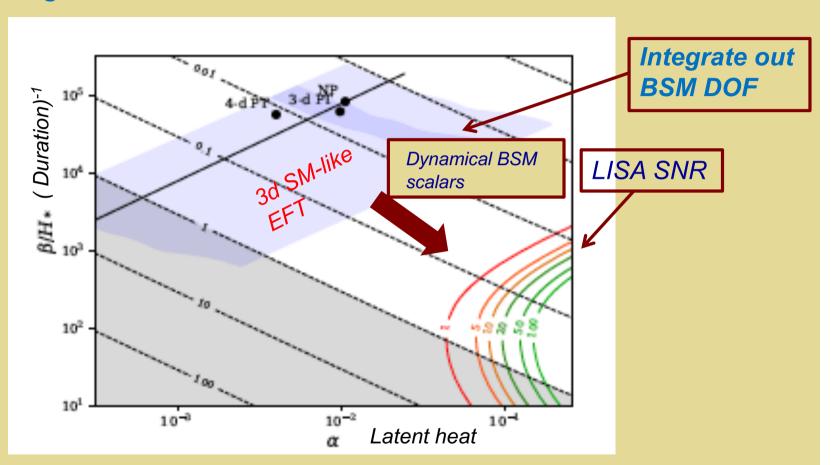
BSM EWPT: Inter-frontier Connections



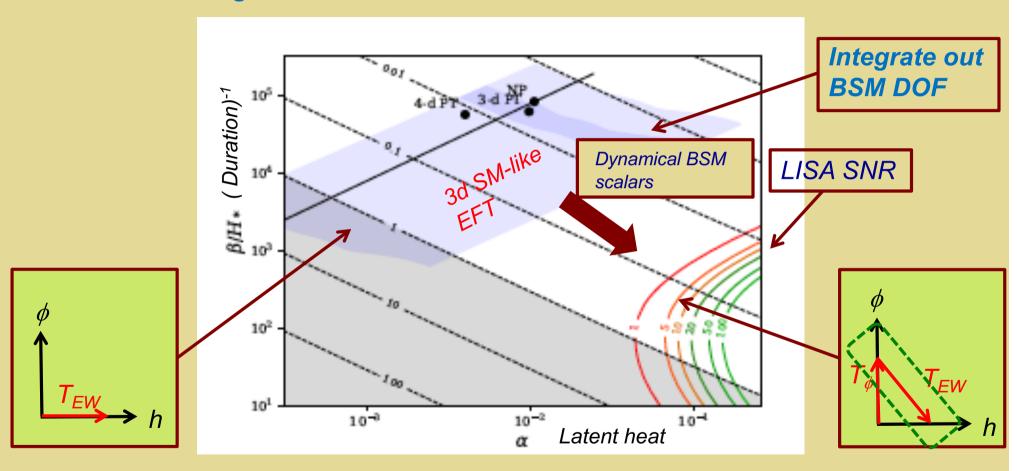
High-T dimensional reduction: DR 3d EFT

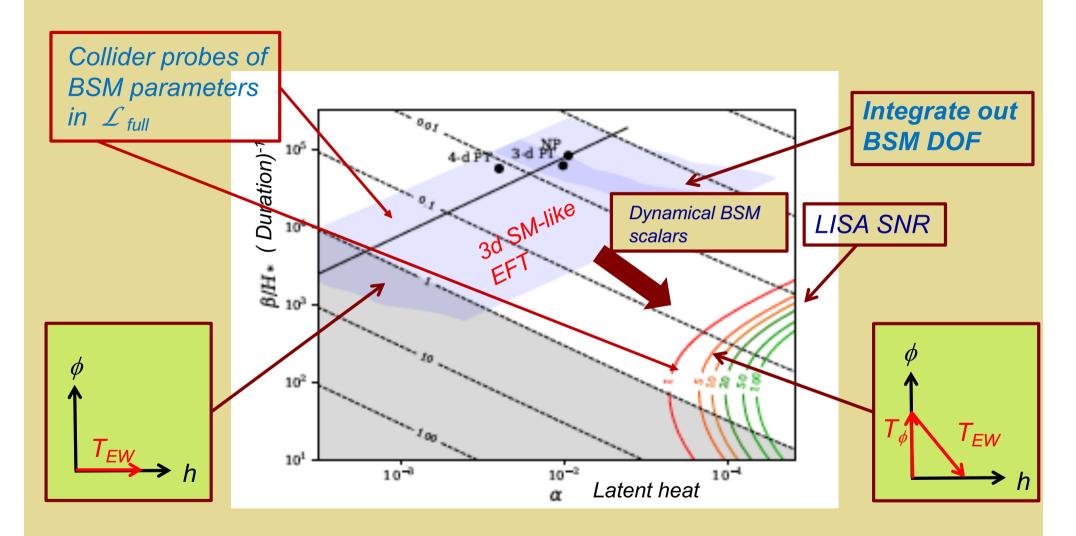


High-T dimensional reduction: DR 3d EFT



High-T dimensional reduction: DR 3d EFT





III. Theoretical Robustness

- IR Problem
- Nucleation @ finite T: gauge invariance
- Wall velocity

III. Theoretical Robustness

- IR Problem
- Nucleation @ finite T: gauge invariance
- Wall velocity

Inputs from Thermal QFT

Thermodynamics

- Phase diagram: first order EWPT?
- Latent heat: GW

Dynamics

- Nucleation rate: transition occurs? T_N ? Transition duration (GW)?
- EW sphaleron rate: baryon number preserved?

Inputs from Thermal QFT

Thermodynamics

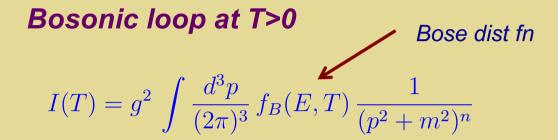
- Phase diagram: first order EWPT?
- Latent heat: GW

Dynamics

- Nucleation rate: transition occurs? T_N ? Transition duration (GW)?
- EW sphaleron rate: baryon number preserved?

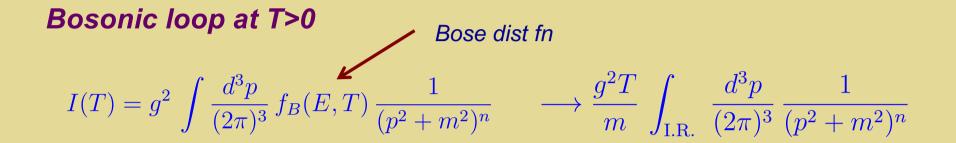
How reliable is the theory ?

IR Problem



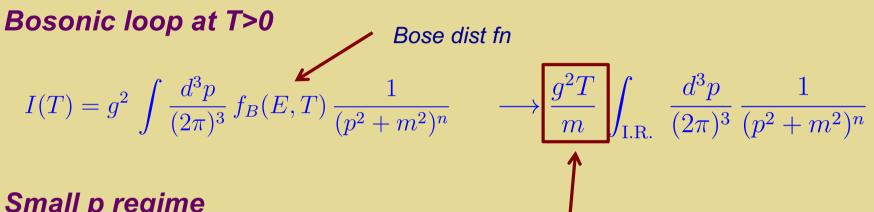
Small p regime

$$f_B(E,T) \longrightarrow \frac{T}{m}$$



Small p regime

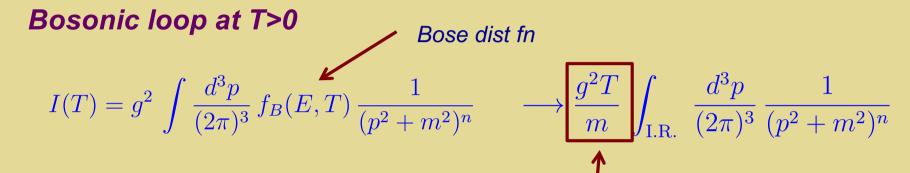
$$f_B(E,T) \longrightarrow \frac{T}{m}$$



Small p regime

$$f_B(E,T) \longrightarrow \frac{T}{m}$$

Effective expansion parameter



Small p regime

$$f_B(E,T) \longrightarrow \frac{T}{m}$$

Effective expansion parameter

Field-dependent thermal mass

$$m^{2}(\varphi, T) \sim C_{1} g^{2} \varphi^{2} + C_{2} g^{2} T^{2} \equiv m_{T}^{2}(\varphi)$$

- Near phase transition: $\varphi \sim 0$
- $m_T(\varphi) < g T$

Theory Meets Phenomenology

A. Non-perturbative

- Most reliable determination of character of EWPT & dependence on parameters
- Broad survey of scenarios & parameter space not viable

B. Perturbative

- Most feasible approach to survey broad ranges of models, analyze parameter space, & predict experimental signatures
- Quantitative reliability needs to be verified

Theory Meets Phenomenology

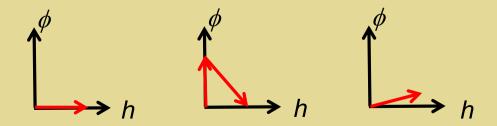
A. Non-perturbative

- Most reliable determination of character of EWPT & dependence on parameters
- Broad survey of scenarios & parameter B. Perturbative mark pert theo

- National approach to survey broad ranges of models, analyze parameter space, & predict experimental signatures
- Quantitative reliability needs to be verified

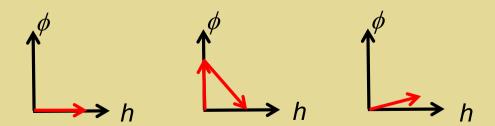
- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

$$V \subset a_1 H^2 \phi + a_2 H^2 \phi^2$$

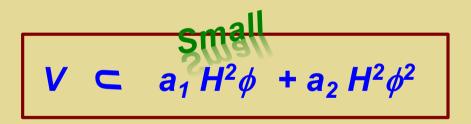


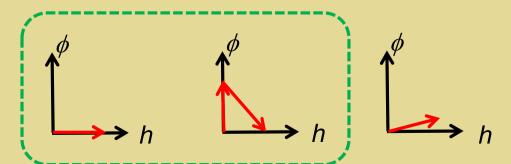
- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

$$V \subset a_1 H^2 \phi + a_2 H^2 \phi^2$$



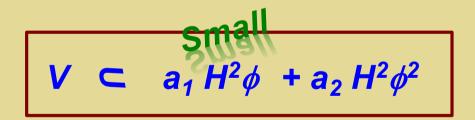
- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)





Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

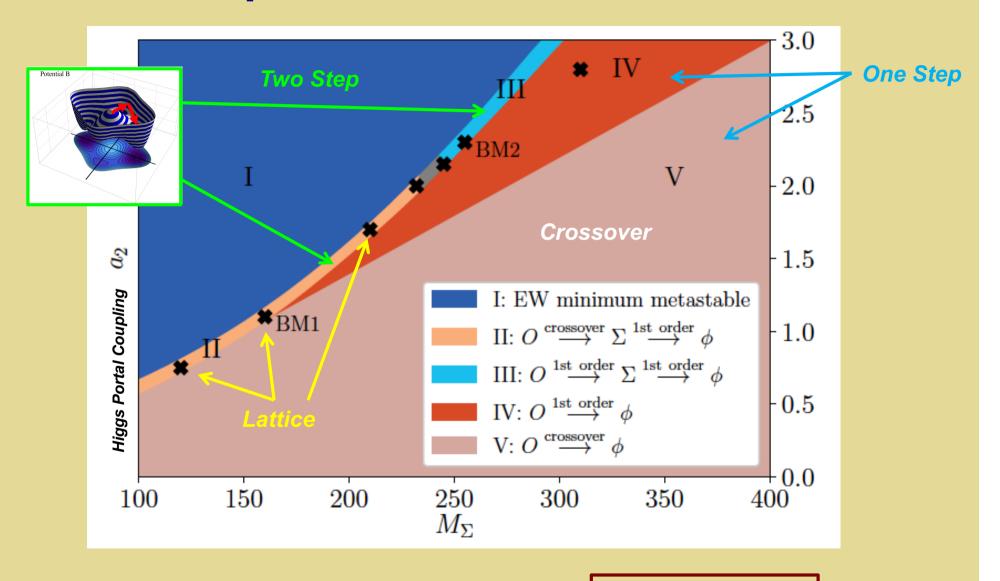




Phenomenology

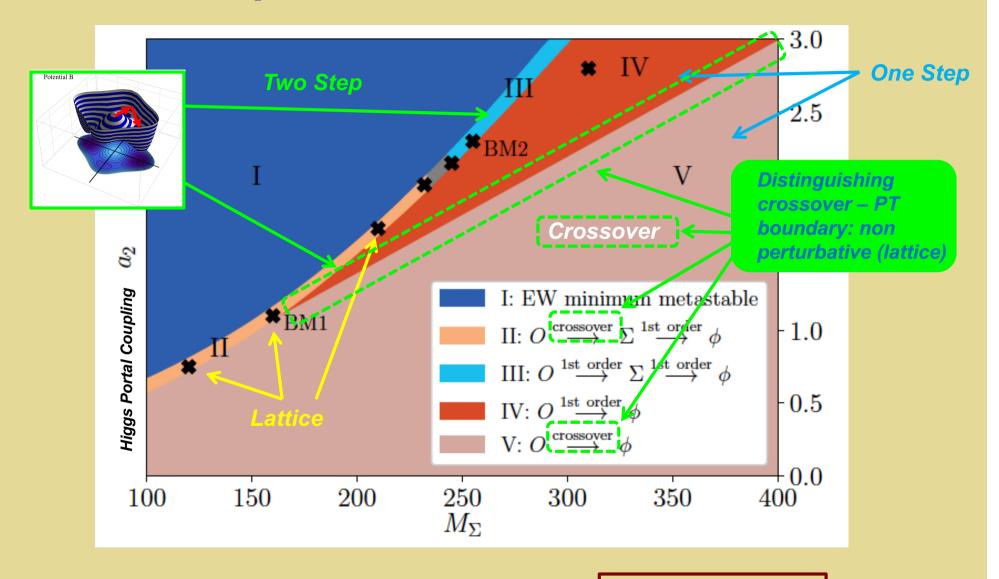
- Gravitational waves
- Collider: h → γγ, dis charged track, NLO e⁺e⁻ → Zh...

Real Triplet & EWPT: Novel EWSB



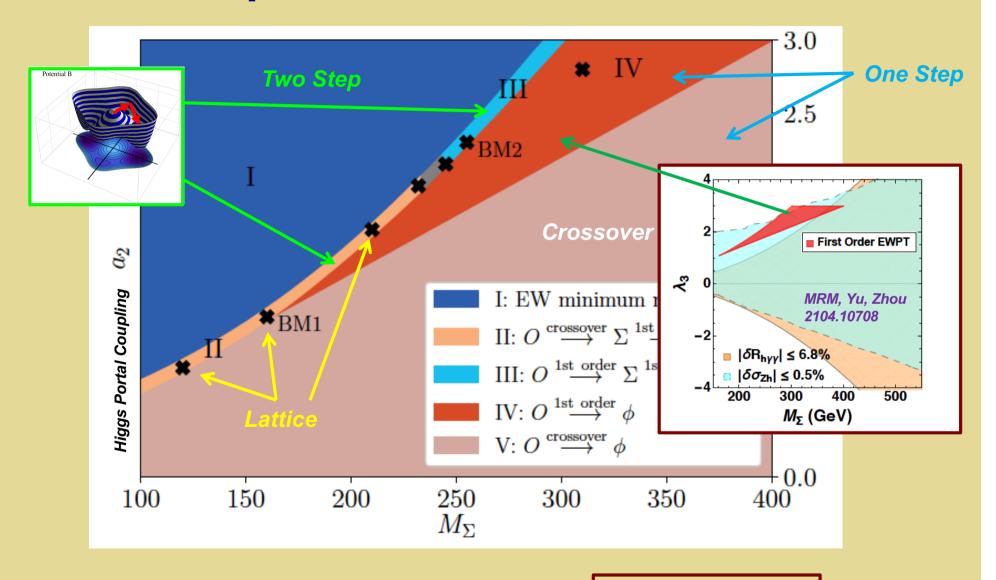
- 1 or 2 step
- Non-perturbative

Real Triplet & EWPT: Novel EWSB



- 1 or 2 step
- Non-perturbative

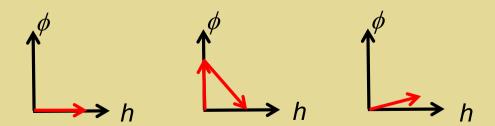
Real Triplet & EWPT: Novel EWSB



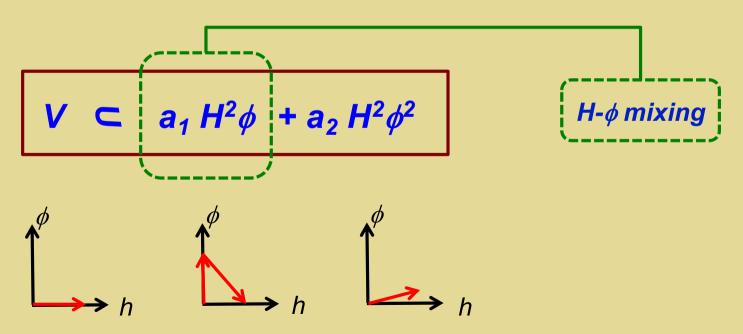
- 1 or 2 step
- Non-perturbative

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

$$V \subset a_1 H^2 \phi + a_2 H^2 \phi^2$$

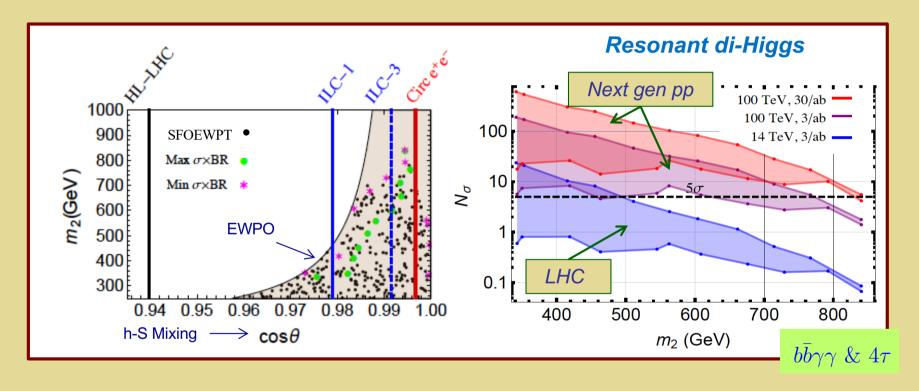


- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)



Singlets: Precision & Res Di-Higgs Prod

SFOEWPT Benchmarks**: Resonant di-Higgs & precision Higgs studies



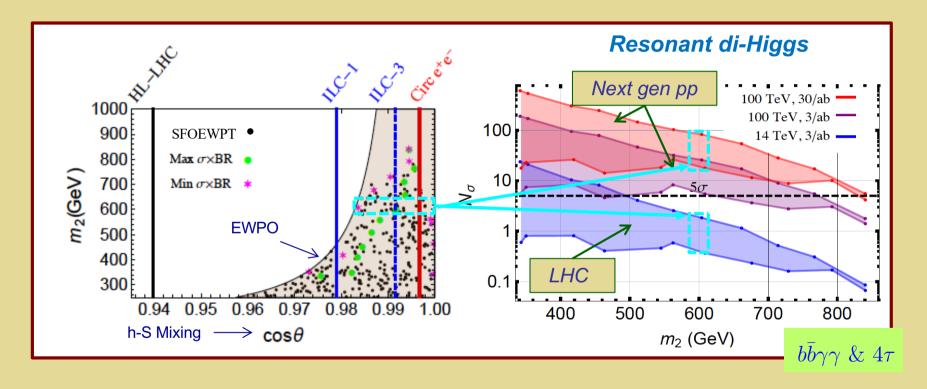
Kotwal, No, R-M, Winslow 1605.06123

** Perturbative thermal QFT

See also: Huang et al, 1701.04442; Li et al, 1906.05289

Singlets: Precision & Res Di-Higgs Prod

SFOEWPT Benchmarks**: Resonant di-Higgs & precision Higgs studies



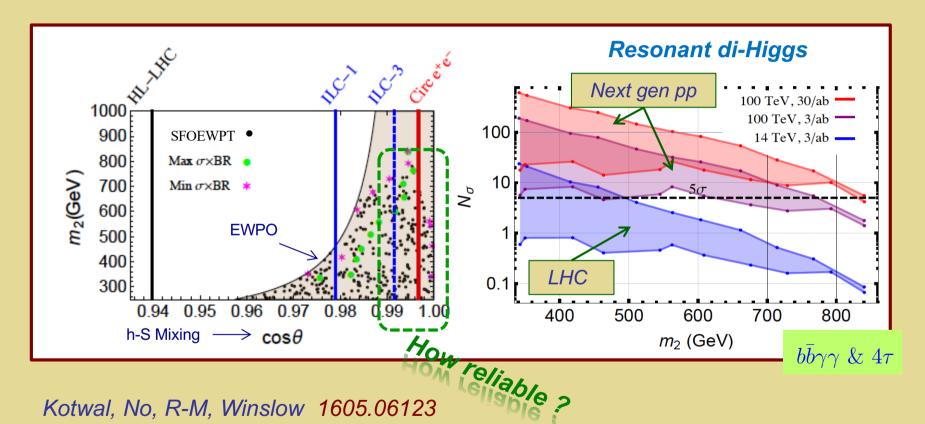
Kotwal, No, R-M, Winslow 1605.06123

** Perturbative thermal QFT

See also: Huang et al, 1701.04442; Li et al, 1906.05289

Singlets: Precision & Res Di-Higgs Prod

SFOEWPT Benchmarks**: Resonant di-Higgs & precision Higgs studies

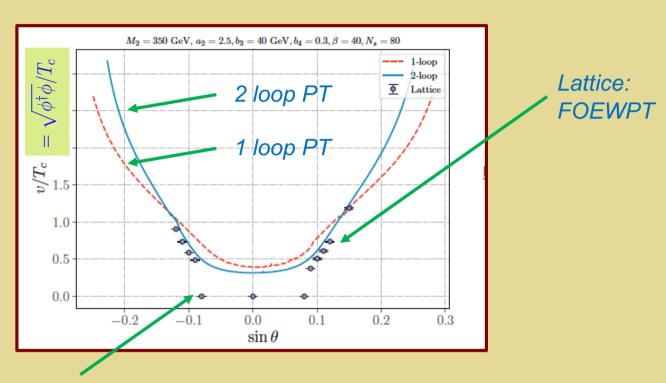


Kotwal, No, R-M, Winslow 1605.06123

Perturbative thermal QFT

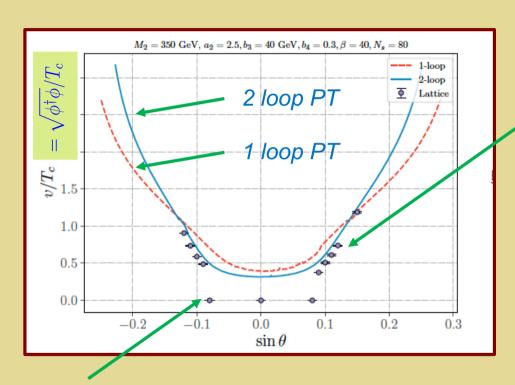
See also: Huang et al, 1701.04442; Li et al, 1906.05289

Singlets: Lattice vs. Pert Theory

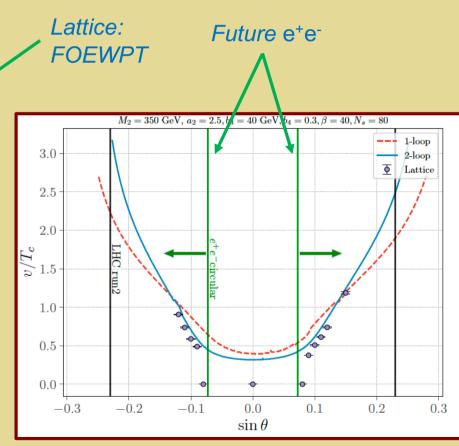


Lattice: Crossover

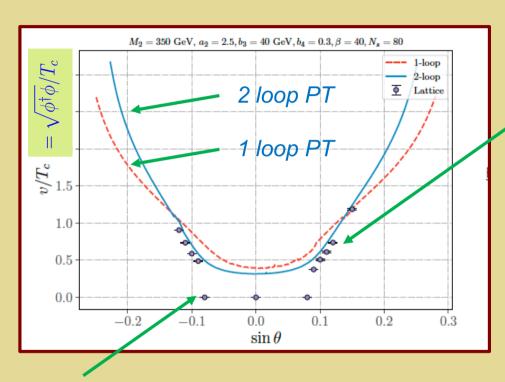
Singlets: Lattice vs. Pert Theory



Lattice: Crossover

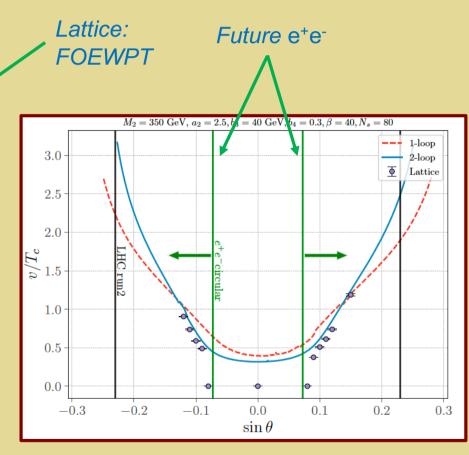


Singlets: Lattice vs. Pert Theory



Lattice: Crossover

- Lattice: crossover-FOEWPT boundary
- FOEWPT region: PT-lattice agreement
- Pheno: precision Higgs studies may be sensitive to a greater portion of FOEWPT-viable param space than earlier realized

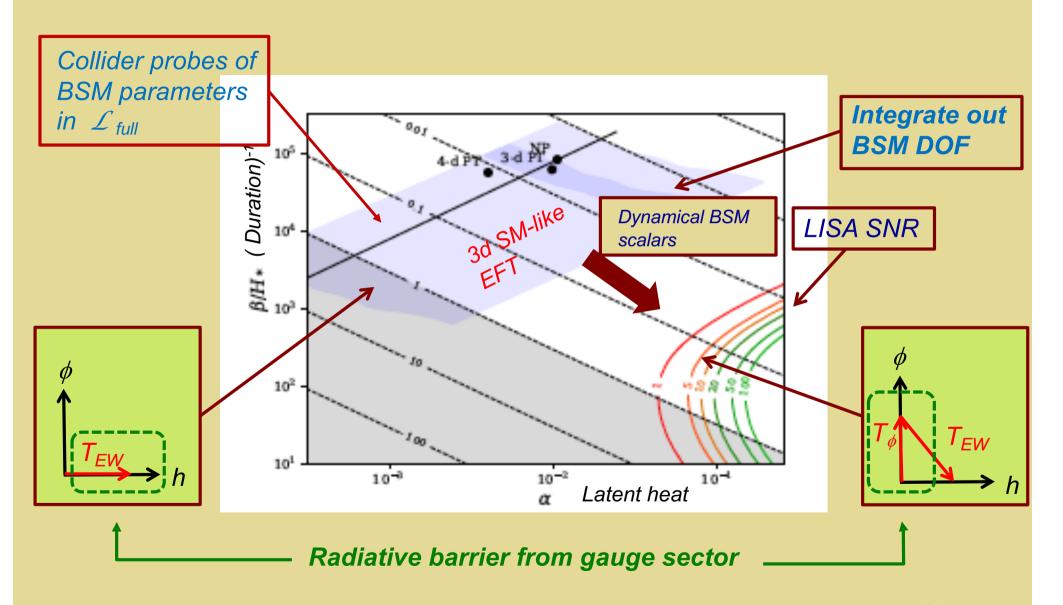


III. Theoretical Robustness

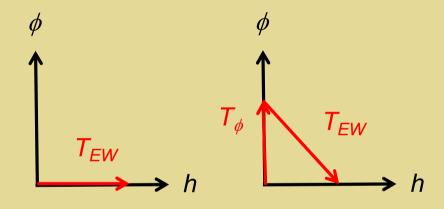
- IR Problem
- Nucleation @ finite T: gauge invariance
- Wall velocity

$$\frac{\beta}{H_*} = T \frac{d}{dT} \frac{S_3}{T} + T_N$$

BSM Scalar: EWPT & GW



Tunneling @ T>0

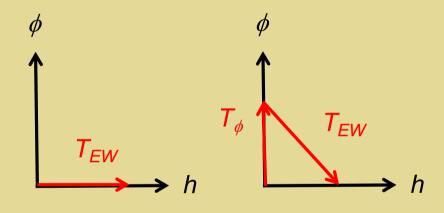


Tunneling rate / unit volume:

$$\Gamma = Ae^{-\beta S_3} \hbar \left[1 + \mathcal{O}(\hbar) \right]$$

$$A \sim \mathcal{O}(1) \times T^4$$

Tunneling @ T>0



Exponent in Γ

Path: minimize S_E

$$S_3 = \int d^3x \left\{ \frac{1}{2} (\vec{\nabla}\varphi)^2 + V(\varphi, T) \right\}$$

Tunneling rate / unit volume:

$$\Gamma = Ae^{-\beta S_3/\hbar} \left[1 + \mathcal{O}(\hbar) \right]$$

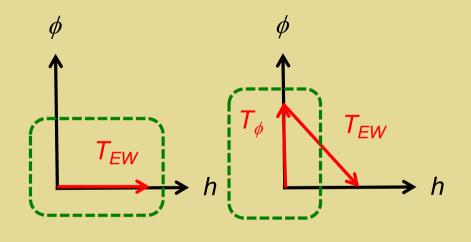
$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = V'(\varphi, T)$$

$$A \sim \mathcal{O}(1) \times T^4$$

Tunneling @ T>0

Radiative barriers \rightarrow standard method gauge-dependent Γ

Tunneling rate / unit volume:



$$\Gamma = Ae^{-\beta S_3} \hbar \left[1 + \mathcal{O}(\hbar) \right]$$

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = V'(\varphi, T)$$

Exponent in Γ

Path: minimize S_E

$$S_3 = \int d^3x \left\{ \frac{1}{2} (\vec{\nabla}\varphi)^2 + V(\varphi, T) \right\}$$

$$A \sim \mathcal{O}(1) \times T^4$$

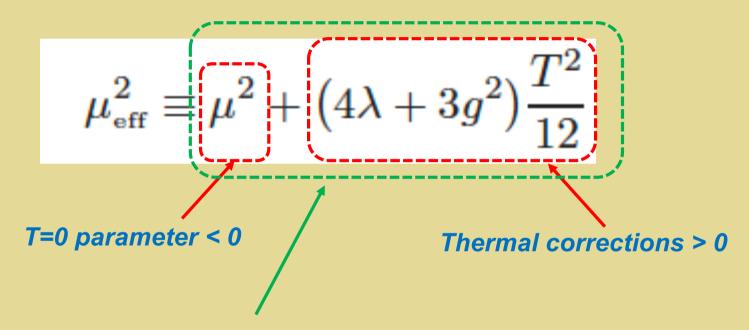
SSB @ T>0 : Power Counting

Lofgren, MRM, Tenkanen, Schicho 2112.0752 → PRL

$$\mu_{ ext{eff}}^2 \equiv \mu^2 + \left(4\lambda + 3g^2\right) \frac{T^2}{12}$$
T=0 parameter < 0 Thermal corrections > 0

SSB @ T>0 : Power Counting

Lofgren, MRM, Tenkanen, Schicho 2112.0752 → PRL



Near cancellation for $T \sim T_C$

For a range of $T \sim T_{nuc}$: N = 1

$$\mu^2_{eff} \sim O(g^{2+N}T^2) < O(g^2T^2)$$

Power Counting

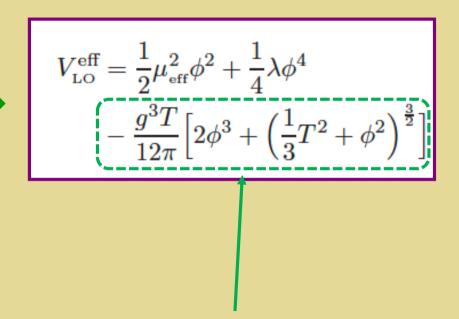
Lofgren, MRM, Tenkanen, Schicho 2112.0752 → PRL

$$\phi \sim T$$

$$\lambda \sim g^3$$

$$\mu^2 \sim g^2 T^2$$

$$\mu_{\text{eff}}^2 \sim g^3 T^2$$



Radiative barrier: *ξ*-independent

(Re) Organize the Perturbative Expansion

Illustrate w/ Abelian Higgs

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + (D_{\mu} \Phi)^* (D_{\mu} \Phi) + \mu^2 \Phi^* \Phi + \lambda (\Phi^* \Phi)^2 + \mathcal{L}_{GF} + \mathcal{L}_{FP}$$

- Lofgren, MRM, Tenkanen,
 Schicho 2112.0752 → PRL
- Hirvonen, Lofgren, MRM, Tenkanen, Schicho 2112.08912

Full 3D effective action

$$S_3 = \int d^3x \left[V^{\text{eff}}(\phi, T) + \frac{1}{2} Z(\phi, T) (\partial_i \phi)^2 + \dots \right]$$

Adopt appropriate power-counting in couplings

$$S_3 = a_0 g^{-\frac{3}{2}} + a_1 g^{-\frac{1}{2}} + \Delta$$

(Re) Organize the Perturbative Expansion

Illustrate w/ Abelian Higgs

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + (D_{\mu}\Phi)^* (D_{\mu}\Phi)$$
$$+ \mu^2 \Phi^* \Phi + \lambda (\Phi^* \Phi)^2 + \mathcal{L}_{GF} + \mathcal{L}_{FP}$$

- Lofgren, MRM, Tenkanen, Schicho 2112.0752 → PRL
- Hirvonen, Lofgren, MRM, Tenkanen, Schicho 2112.08912

Full 3D effective action

$$S_3 = \int d^3x \left[V^{\text{eff}}(\phi, T) + \frac{1}{2} Z(\phi, T) (\partial_i \phi)^2 + \dots \right]$$

Adopt appropriate power-counting in couplings

$$S_3 = a_0 y^{-\frac{3}{2}} + a_1 g^{-\frac{1}{2}} + \Delta$$

G.I. pertubative expansion only valid up to NLO $\rightarrow \Delta$: higher order contributions only via other methods

G.I. pertubative expansion

Tunneling @ T>0: G.I. & Nielsen Identities

Adopt appropriate power-counting in couplings

Lofgren, MRM, Tenkanen, Schicho 2112.0752 → PRL

$$S_3 = a_0 g^{-\frac{3}{2}} + a_1 g^{-\frac{1}{2}} + \Delta$$

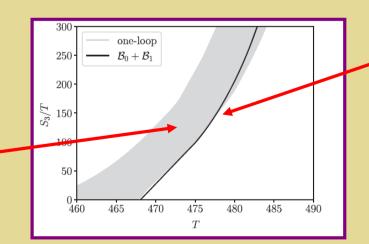
Order-by-order consistent with Nielsen Identities

$$\xi \frac{\partial S^{\text{eff}}}{\partial \xi} = -\int d^d \mathbf{x} \frac{\delta S^{\text{eff}}}{\delta \phi(x)} \, \mathcal{C}(x)$$

$$C(x) = \frac{ig}{2} \int d^d \mathbf{y} \langle \chi(x) c(x) \bar{c}(y) \rangle$$
$$\times \left[\partial_i B_i(y) + \sqrt{2} g \xi \phi \chi(y) \right] \rangle$$

Numerical comparison with conventional approach

Conventional: $0 < \xi < 4$



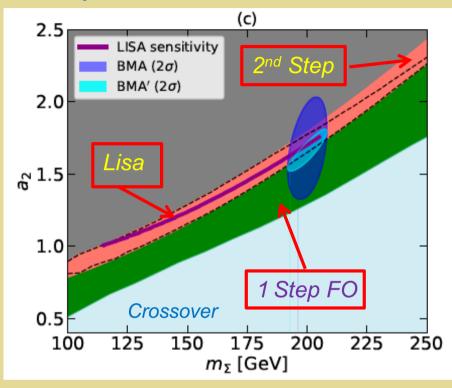
 S_3 to $O(g^{-1/2})$: $0 < \xi < 4$

III. Theoretical Robustness

- IR Problem
- Nucleation @ finite T: gauge invariance
- Wall velocity

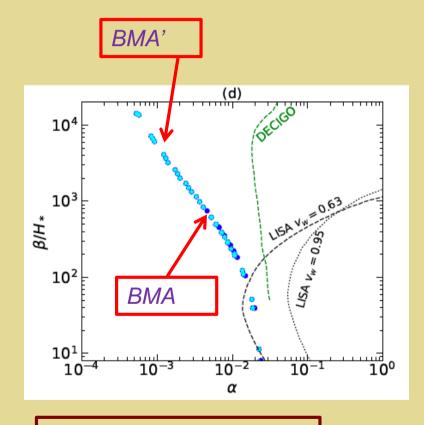
GW & Collider: EWPT Phase Diagram

Real triplet extension



BMA: $m_{\Sigma} + h \rightarrow \gamma \gamma$

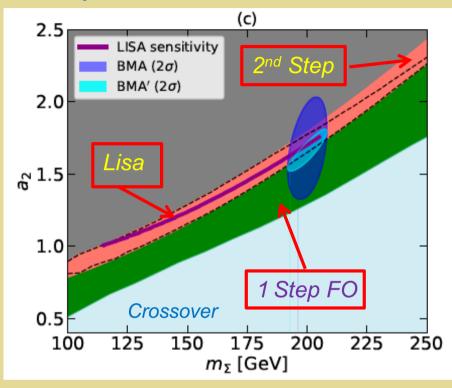
 $BMA': BMA + \Sigma^0 \rightarrow ZZ$



- Two-step
- EFT+ Non-perturbative

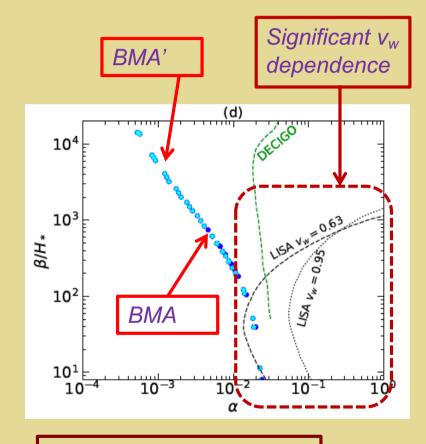
GW & Collider: EWPT Phase Diagram

Real triplet extension



BMA: $m_{\Sigma} + h \rightarrow \gamma \gamma$

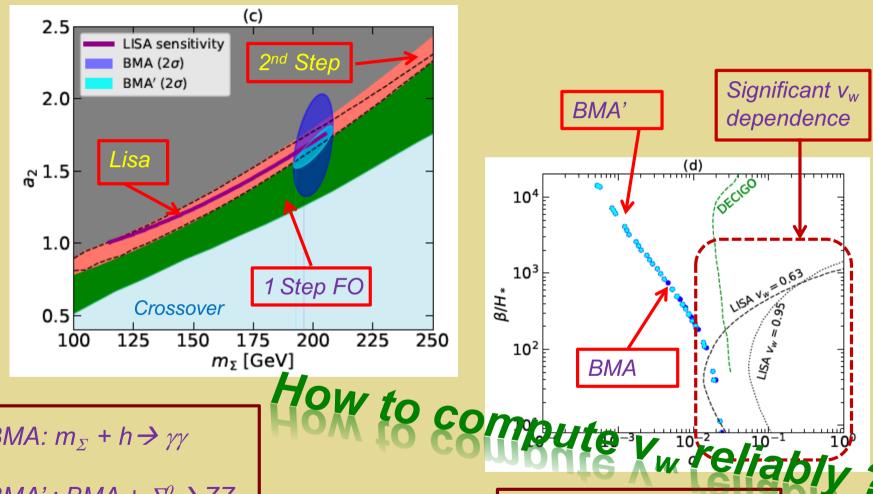
BMA': BMA + $\Sigma^0 \rightarrow ZZ$



- Two-step
- EFT+ Non-perturbative

GW & Collider: EWPT Phase Diagram

Real triplet extension



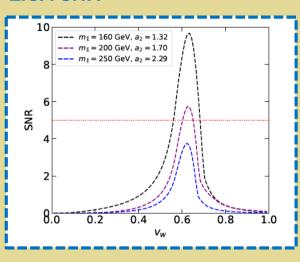
BMA: $m_{\Sigma} + h \rightarrow \gamma \gamma$

BMA': BMA + $\Sigma^0 \rightarrow ZZ$

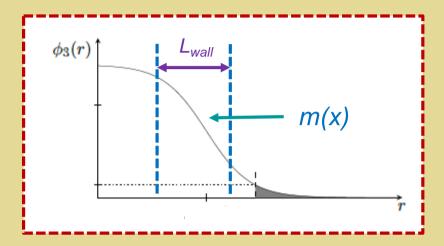
Two-step

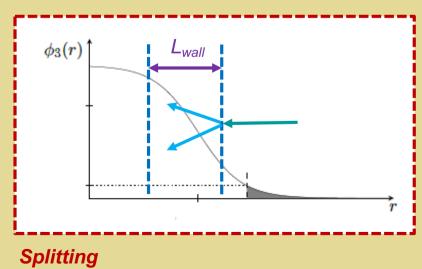
EFT+ Non-perturbative

LISA SNR



Mass variation

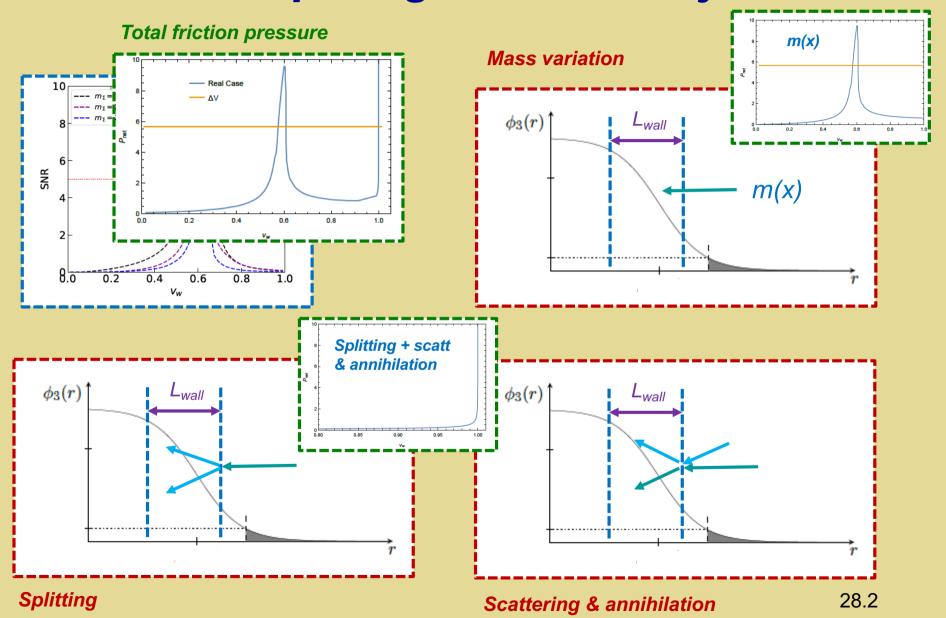


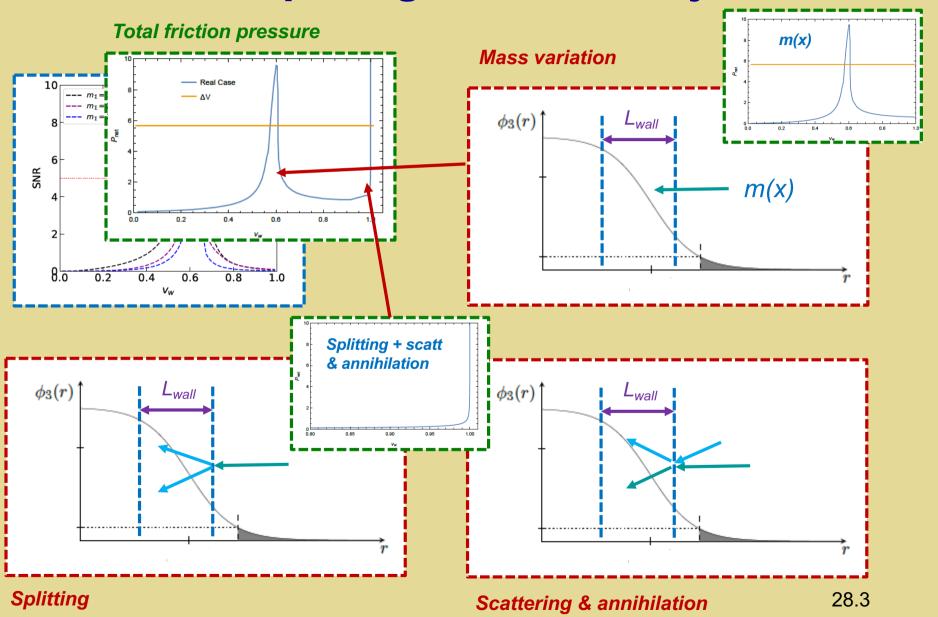


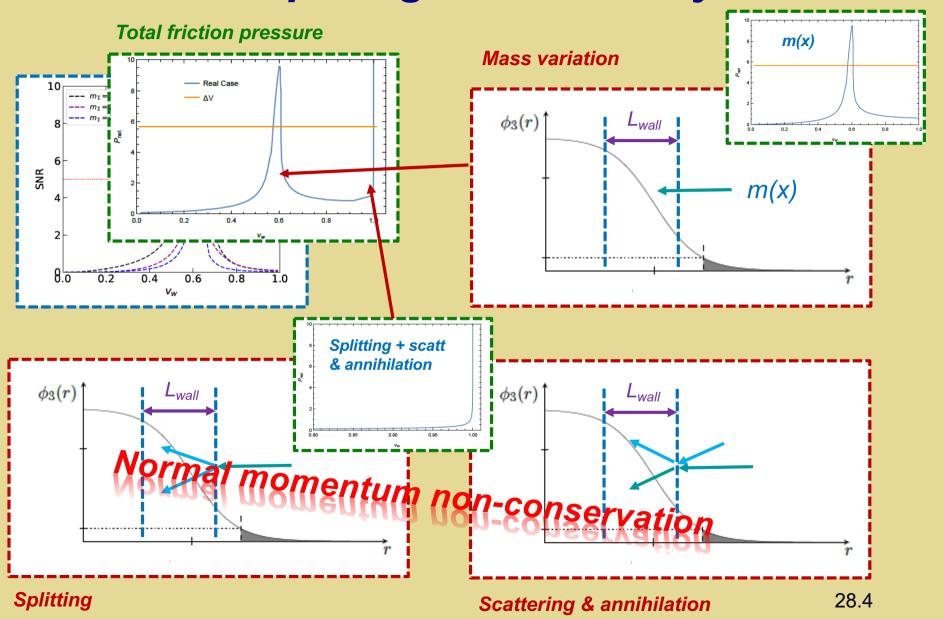
 $\phi_3(r)$ L_{wall} r

Scattering & annihilation

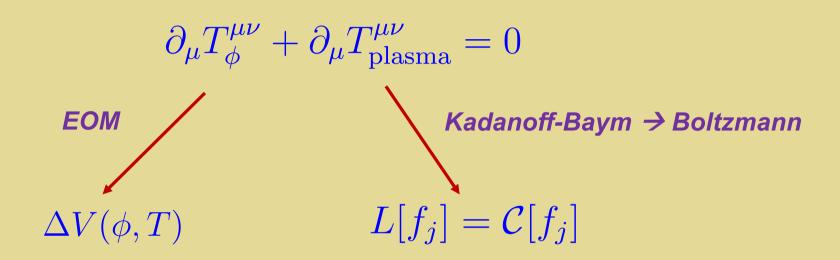
28.1

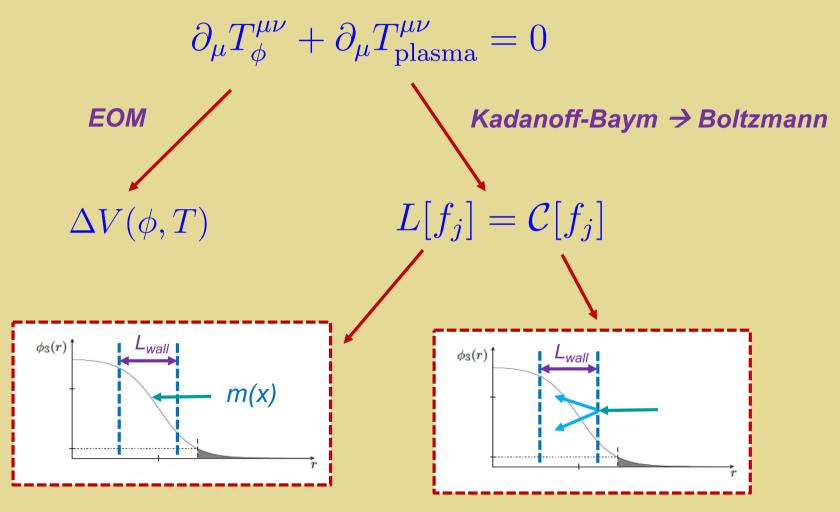






$$\partial_{\mu}T_{\phi}^{\mu\nu} + \partial_{\mu}T_{\text{plasma}}^{\mu\nu} = 0$$





Kadanoff-Baym "constraint eq"

$$-2ik \cdot \partial_X G^{\gtrless} + e^{-i\diamondsuit}[m^2, G^{\gtrless}] = -ie^{-i\diamondsuit}([\Pi^h, G^{\gtrless}] + [\Pi^{\gtrless}, G^h] + \frac{1}{2}\{\Pi^{>}, G^{<}\} - \frac{1}{2}\{G^{>}, \Pi^{<}\}),$$

Project out distribution functions

$$\begin{split} \int_0^\infty \frac{dk^0}{2\pi} k_z \frac{d}{dz} G^<(k,z) + \frac{i}{2} \int_0^\infty \frac{dk^0}{2\pi} e^{-i\diamondsuit} [m_a^2(z), G^<(k,z)] \\ + \frac{1}{4} \int_0^\infty \frac{dk^0}{2\pi} e^{-i\diamondsuit} (\{\Pi_a^>, G_a^<\} - \{\Pi_a^<, G_a^>\}) \\ = \frac{1}{2} \int_0^\infty \frac{k^0}{2\pi} e^{-i\diamondsuit} ([\Pi_a^h, G_a^<] + [\Pi_a^<, G_a^h]). \end{split}$$

Gradient expansion except on δ fns

$$\begin{split} \left[2k_{z}\frac{\partial}{\partial z} - \frac{dm^{2}(z)}{dz}\frac{\partial}{\partial k_{z}}\right] \frac{f_{\phi}(k,z)}{E_{k}} \\ &= -\int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} \int \frac{d^{3}\mathbf{p}'}{(2\pi)^{3}} F(k,z) \frac{1 + f_{\Phi}(p,z)}{2E_{p}} \frac{1 + f_{\Phi}(p',z)}{2E_{p'}} \\ &\qquad \times (2\pi)^{3} \delta(E_{k} - E_{p} - E_{p'}) \delta^{2}(\mathbf{k}_{\perp} - \mathbf{p}_{\perp} - \mathbf{p}'_{\perp}) + (\Delta p_{z} \leftrightarrow -\Delta p_{z}) \\ &+ \text{InverseProcess}, \end{split}$$

Kadanoff-Baym "constraint eq"

$$-2ik\cdot\partial_X G^{\gtrless} + e^{-i\diamondsuit}[m^2,G^{\gtrless}] = -ie^{-i\diamondsuit}([\Pi^h,G^{\gtrless}] + [\Pi^{\gtrless},G^h] + \frac{1}{2}\{\Pi^{>},G^{<}\} - \frac{1}{2}\{G^{>},\Pi^{<}\}),$$

Wigner transformed Wightman functions

"Diamond operator"

Project out distribution functions

$$\int_{0}^{\infty} \frac{dk^{0}}{2\pi} k_{z} \frac{d}{dz} G^{<}(k, z) + \frac{i}{2} \int_{0}^{\infty} \frac{dk^{0}}{2\pi} e^{-i\diamondsuit} [m_{a}^{2}(z), G^{<}(k, z)]$$

$$+ \frac{1}{4} \int_{0}^{\infty} \frac{dk^{0}}{2\pi} e^{-i\diamondsuit} (\{\Pi_{a}^{>}, G_{a}^{<}\} - \{\Pi_{a}^{<}, G_{a}^{>}\})$$

$$= \frac{1}{2} \int_{0}^{\infty} \frac{k^{0}}{2\pi} e^{-i\diamondsuit} ([\Pi_{a}^{h}, G_{a}^{<}] + [\Pi_{a}^{<}, G_{a}^{h}]).$$

$\diamondsuit \Big(A(k,x)B(k,x) \Big) = \frac{1}{2} \left(\frac{\partial A}{\partial x^{\mu}} \frac{\partial B}{\partial k_{\mu}} - \frac{\partial A}{\partial k_{\mu}} \frac{\partial B}{\partial x^{\mu}} \right)$

Gradient expansion except on δ fns

$$\begin{split} \left[2k_{z}\frac{\partial}{\partial z} - \frac{dm^{2}(z)}{dz}\frac{\partial}{\partial k_{z}}\right] \frac{f_{\phi}(k,z)}{E_{k}} \\ &= -\int \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} \int \frac{d^{3}\mathbf{p}'}{(2\pi)^{3}} F(k,z) \frac{1 + f_{\Phi}(p,z)}{2E_{p}} \frac{1 + f_{\Phi}(p',z)}{2E_{p'}} \\ &\qquad \times (2\pi)^{3} \delta(E_{k} - E_{p} - E_{p'}) \delta^{2}(\mathbf{k}_{\perp} - \mathbf{p}_{\perp} - \mathbf{p}'_{\perp}) + (\Delta p_{z} \leftrightarrow -\Delta p_{z}) \\ &+ \text{InverseProcess}, \end{split}$$

Kadanoff-Baym "constraint eq"

$$-2ik \cdot \partial_X G^{\gtrless} + e^{-i\diamondsuit}[m^2, G^{\gtrless}] = -ie^{-i\diamondsuit}([\Pi^h, G^{\gtrless}] + [\Pi^{\gtrless}, G^h] + \frac{1}{2}\{\Pi^{>}, G^{<}\} - \frac{1}{2}\{G^{>}, \Pi^{<}\}),$$

Wigner transformed Wightman functions

"Diamond operator"

Project out distribution functions

$$\begin{split} \int_0^\infty \frac{dk^0}{2\pi} k_z \frac{d}{dz} G^<(k,z) + \frac{i}{2} \int_0^\infty \frac{dk^0}{2\pi} e^{-i\diamondsuit} [m_a^2(z), G^<(k,z)] \\ + \frac{1}{4} \int_0^\infty \frac{dk^0}{2\pi} e^{-i\diamondsuit} (\{\Pi_a^>, G_a^<\} - \{\Pi_a^<, G_a^>\}) \\ = \frac{1}{2} \int_0^\infty \frac{k^0}{2\pi} e^{-i\diamondsuit} ([\Pi_a^h, G_a^<] + [\Pi_a^<, G_a^h]). \end{split}$$

$\diamond \Big(A(k,x)B(k,x) \Big) = \frac{1}{2} \left(\frac{\partial A}{\partial x^{\mu}} \frac{\partial B}{\partial k_{\mu}} - \frac{\partial A}{\partial k_{\mu}} \frac{\partial B}{\partial x^{\mu}} \right)$

Gradient expansion except on δ fns

Collision term: p, non-cons

$$F(k,z) = \int dz' f_{\phi}(k,z') Y(z') Y(2z-z') e^{-2i\Delta p_z(z-z')}$$

Kadanoff-Baym "constraint eq"

$$-2ik\cdot\partial_X G^{\gtrless} + e^{-i\diamondsuit}[m^2,G^{\gtrless}] = -ie^{-i\diamondsuit}([\Pi^h,G^{\gtrless}] + [\Pi^{\gtrless},G^h] + \frac{1}{2}\{\Pi^{>},G^{<}\} - \frac{1}{2}\{G^{>},\Pi^{<}\}),$$

Wigner transformed Wightman functions

"Diamond operator"

Project out distribution functions

$$\int_{0}^{\infty} \frac{dk^{0}}{2\pi} k_{z} \frac{d}{dz} G^{<}(k, z) + \frac{i}{2} \int_{0}^{\infty} \frac{dk^{0}}{2\pi} e^{-i\diamondsuit} [m_{a}^{2}(z), G^{<}(k, z)]$$

$$+ \frac{1}{4} \int_{0}^{\infty} \frac{dk^{0}}{2\pi} e^{-i\diamondsuit} (\{\Pi_{a}^{>}, G_{a}^{<}\} - \{\Pi_{a}^{<}, G_{a}^{>}\})$$

$$= \frac{1}{2} \int_{0}^{\infty} \frac{k^{0}}{2\pi} e^{-i\diamondsuit} ([\Pi_{a}^{h}, G_{a}^{<}] + [\Pi_{a}^{<}, G_{a}^{h}]).$$

$\diamondsuit \Big(A(k,x)B(k,x) \Big) = \frac{1}{2} \left(\frac{\partial A}{\partial x^{\mu}} \frac{\partial B}{\partial k_{\mu}} - \frac{\partial A}{\partial k_{\mu}} \frac{\partial B}{\partial x^{\mu}} \right)$

See Jiang Zhu talk

Gradient expansion except on δ fns

Collision term: p₇ non-cons

$$F(k,z) = \int dz' f_{\phi}(k,z') Y(z') Y(2z-z') e^{-2i\Delta p_z(z-z')}$$

IV. Outlook

- The possibility of primordial gravitational waves generated from various particle physics dynamics has become an exciting area of exploration
- There exist many creative ideas for novel phenomena and dynamics that could have generated GW
- Realizing which, if any, of these ideas was realized in nature requires input from additional observables and performing the most rigorous theoretical calculations
- The electroweak phase transition provides a unique "laboratory" for testing our theoretical methods and ideas, with LHC and next generation collider measurements providing key input

IV. Outlook

- The possibility of primordial gravitational waves generated from various particle physics dynamics has become an exciting area of exploration
- There exist many creative ideas for novel phenomena and dynamics that could have generated GW
- Realiting which, if any, of these ideas was realized in nature requires had ress additional observables and performing the nations the charter and the chart
- The electroweak phase transition provides reimain "laboratory" for testing our theoretical methods and ideas, with LHC and next generation collider measurements providing key input ▶★↓↓ ▶★↓↓

Back Up Slides

EWPT & Perturbation Theory

Expansion parameter

$$g_{
m eff} \equiv rac{g^2 T}{\pi m_T(arphi)}$$
 Infrared sensitive near phase trans

SM lattice studies: $g_{eff} \sim 0.8$ in vicinity of EWPT for $m_H \sim 70$ GeV *

^{*} Kajantie et al, NPB 466 (1996) 189; hep/lat 9510020 [see sec 10.1]

Tunneling @ T>0: Take Aways

- For a radiatively-induced barrier, a gauge-invariant perturbative computation of nucleation rate can be performed for S_3 to $O(g^{-1/2})$ by adopting an appropriate power counting for T in the vicinity of T_{nuc}
- Abelian Higgs example generalizes to non-Abelian theories as well as other early universe phase transitions
- Remaining contributions to Γ_{nuc} beyond $\mathcal{O}(g^{-1/2})$ in S_3 and including long-distance (nucleation scale) contributions require other methods
- Assessing numerical reliability will require benchmarking with non-perturbative computations

Tunneling @ T>0

Theoretical issues:

- Radiatively-induced barrier (St'd Model) → gauge dependence
 - T = 0 Abelian Higgs: E. Weinberg & D. Metaxas: hep-ph/9507381
 - T=0 St'd Model: A. Andreassen, W. Frost, M. Schwartz 1408.0287
 - *T* > 0 Gauge theories: recently solved in 2112.07452 (→ PRL) and 2112.08912
- Multi-field problem (still gauge invar issue)
 - Cosmotransitions: C. Wainwright 1109.4189
 - Espinosa method: J. R. Espinosa 1805.03680

Challenges for Theory

Perturbation theory

- I.R. problem: poor convergence
- Thermal resummations
- Gauge Invariance (radiative barriers)
- RG invariance at T>0

Non-perturbative (I.R.)

• Computationally and labor intensive

Challenges for Theory

Perturbation theory

- I.R. problem: poor convergence
- Thermal resummations
- Gauge Invariance (radiative barriers)
- RG invariance at T>0

Non-perturbative (I.R.)

• Computationally and labor intensive

BSM proposals

Challenges for Theory

Perturbation theory

- I.R. problem: poor convergence
- Thermal resummations
- Gauge Invariance (radiative barriers)
- RG invariance at T>0

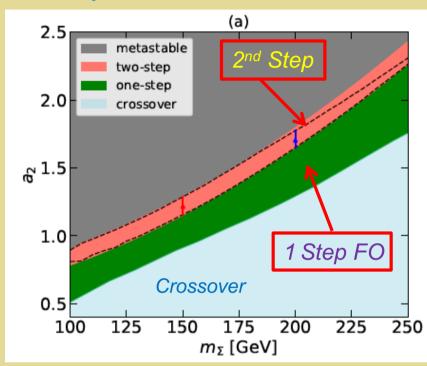
Non-perturbative (I.R.)

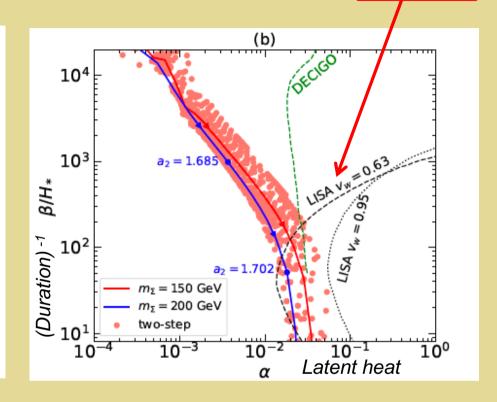
• Computationally and labor intensive

Dimensionally reduced 3D EFT at T > 0

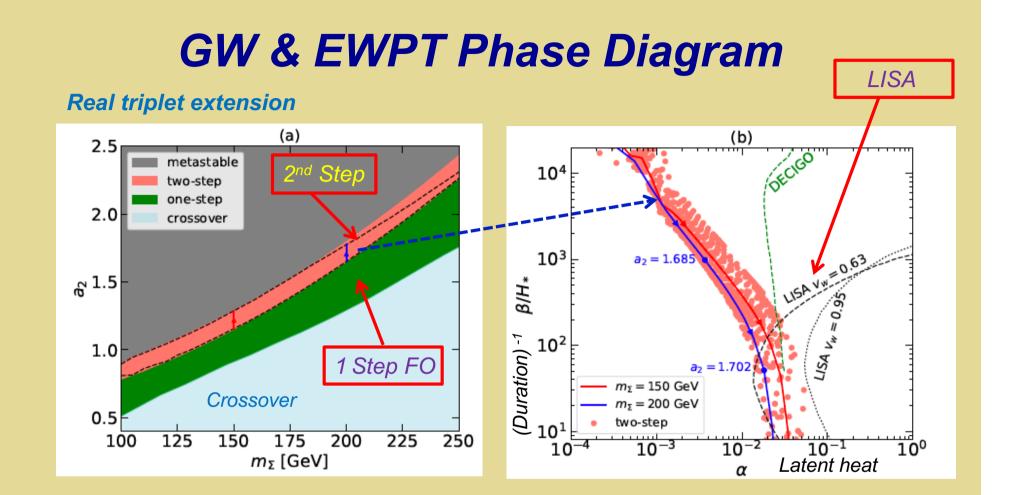
BSM proposals

GW & EWPT Phase Diagram





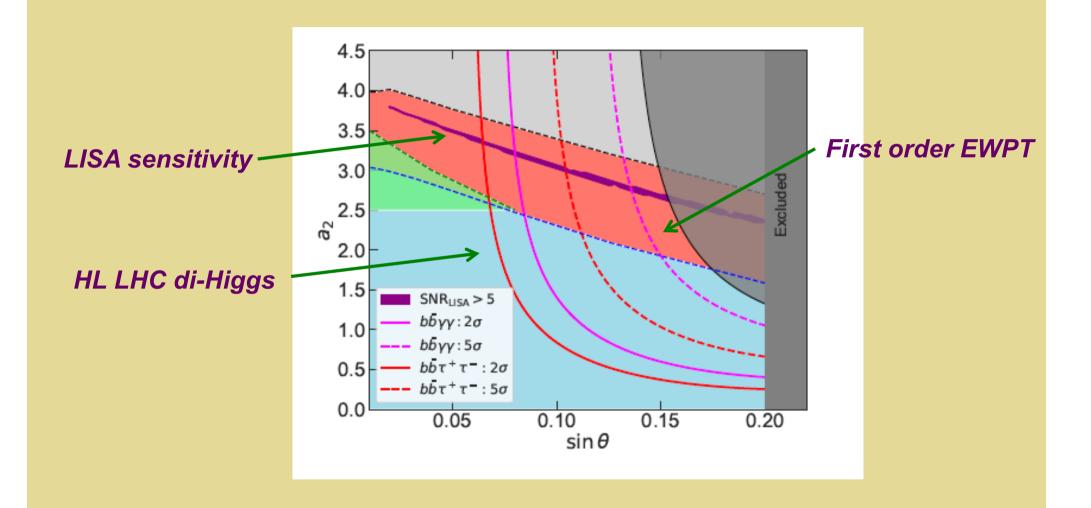
LISA



GW & EWPT Phase Diagram LISA Real triplet extension (b) 2.5 metastable 104 wo-step one-step 2.0 crossover 10³ $a_2 = 1.68$ _{ا 1.5} β/H* (Duration) -1 10² 1.0 1 Step FO $a_2 = 1.702$ $m_5 = 150 \text{ GeV}$ Crossover $m_{\bar{2}} = 200 \text{ GeV}$ 0.5 two-step 175 225 125 150 200 250 100 10^{-2} 10^{-1} m_{Σ} [GeV] Latent heat

- Single step transition: GW well outside LISA sensitivity
- Second step of 2-step transition can be observable
- Significant GW sensitivity to portal coupling

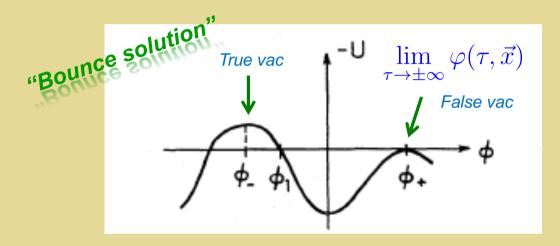
Gravitational Radiation & Colliders



S. Coleman, PRD 15 (1977) 2929

Tunneling @ T=0: Coleman

Scalar Quantum Field Theory



Ln Γ Path: minimize S_E

$$S_E = \int d\tau d^3x \left\{ \frac{1}{2} (\partial_\tau \varphi)^2 + \frac{1}{2} (\vec{\nabla} \varphi)^2 + U(\varphi) \right\}$$

Rotational symmetry

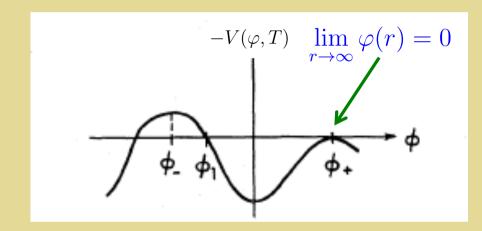
$$\rho^2 \equiv \tau^2 + |\vec{x}|^2$$

$$\frac{d^2\varphi}{d\rho^2} + \frac{3}{\rho} \frac{d\varphi}{d\rho} = U'(\varphi)$$

Friction term

Tunneling @ T>0

Scalar Quantum Field Theory



Exponent in Γ

Path: minimize S_E

$$S_3 = \int d^3x \left\{ \frac{1}{2} (\vec{\nabla}\varphi)^2 + V(\varphi, T) \right\}$$

Tunneling rate / unit volume:

$$\Gamma = Ae^{-\beta S_3} \hbar \left[1 + \mathcal{O}(\hbar) \right]$$

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = V'(\varphi, T)$$

Friction term

$$A \sim \mathcal{O}(1) \times T^4$$

Inputs from Thermal QFT: EFTs

Thermodynamics

- Phase diagram: first order EWPT?
- Latent heat: GW

EFT 1

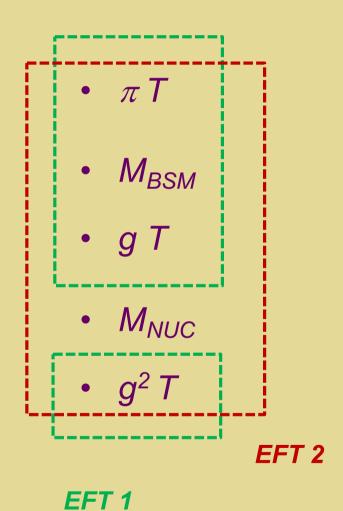
Dynamics

EFT 2

- Nucleation rate: transition occurs? T_N ? Transition duration (GW) ?
- EW sphaleron rate: baryon number preserved?

EFT 3

DR 3dEFT: Scales



Non-zero Matsubara modes

BSM mass scale: can be > or $< \pi T$

Thermal masses

Nucleation scale ~ 1/r_{bubble}

Light scale

Thermal Effective Field Theory: EFT 1

Meeting ground: 3-D high-T effective theory

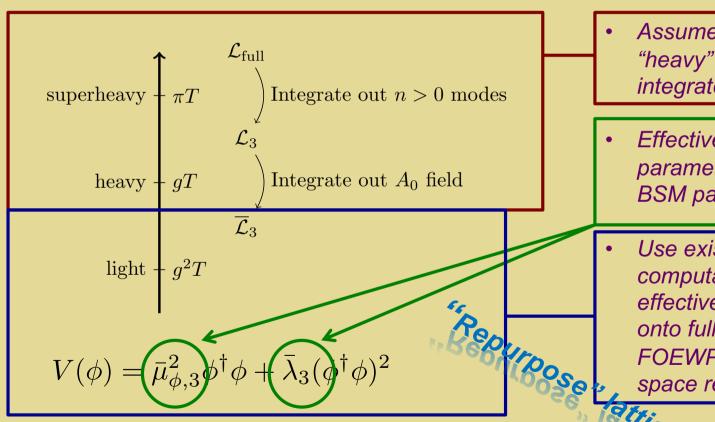


$$V(\phi) = \bar{\mu}_{\phi,3}^2 \phi^{\dagger} \phi + \bar{\lambda}_3 (\phi^{\dagger} \phi)^2$$

+ $V(\Phi)$ + $V(\phi,\Phi)_{portal}$

EFT 1-A: Integrate Out All BSM Fields

Meeting ground: 3-D high-T effective theory

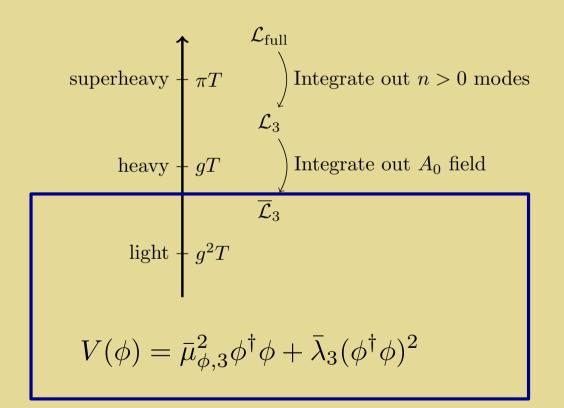


- Assume BSM fields are "heavy" or "supeheavy": integrate out
- Effective "SM-like" theory parameters are functions of BSM parameters
- Use existing lattice computations for SM-like effective theory & matching onto full theory to determine FOEWPT-viable parameter space regions

Lattice simulations exist (e.g., Kajantie et al '95)

EFT 1-A: Integrate Out All BSM Fields

Meeting ground: 3-D high-T effective theory



When \mathcal{L}_{full} contains BSM interactions, λ_3 and $\mu_{\phi,3}$ can accommodate first order EWPT and m_h =125 GeV

Tunneling @ T>0: Gravitational Waves

Amplitude & frequency: latent heat & intrinsic time scale

Normalized latent heat

$$\Delta Q = \Delta F + T \Delta S$$

$$S = -\partial F / \partial T$$

$$F \approx V$$

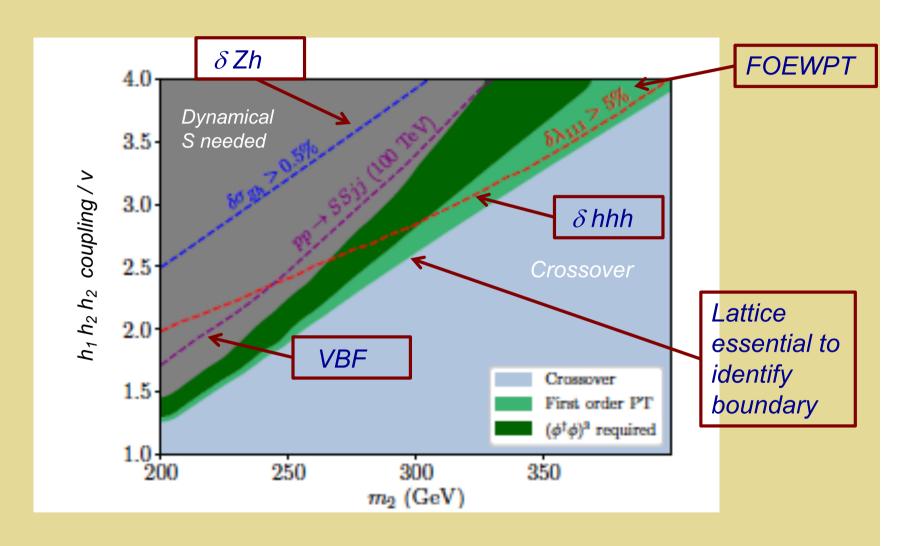
$$\Delta Q \approx \Delta V - T \partial \Delta V / \partial T$$

$$\alpha = \frac{30\Delta q}{\pi^2 g_* T^4}$$

Time scale

$$\frac{\beta}{H_*} = T \frac{d}{dT} \, \frac{S_3}{T}$$

Non-Dynamcial Real Singlet & EWPT: Probes

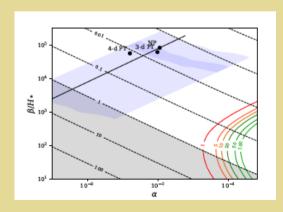


- One-step
- Non-perturbative

Non-Dynamical Real Singlet: Lattice vs PT

Benchmark pert theory

	T_c/GeV	T_n/GeV	$\alpha(T_c)$	β/H_*
NP	140.4	140.2	0.011	8.20×10^{4}
3-d PT	140.4	140.0	0.010	6.11×10^{4}
4-d PT	131.0	130.7	0.004	5.59×10^{4}



- One-step
- Non-perturbative

Dynamical Real Singlet

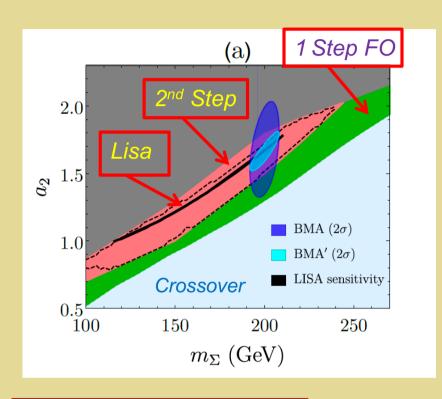
Meeting ground: 3-D high-T effective theory



$$V(\phi) = \bar{\mu}_{\phi,3}^2 \phi^{\dagger} \phi + \bar{\lambda}_3 (\phi^{\dagger} \phi)^2 + V(\boldsymbol{\Phi}) + V(\boldsymbol{\phi}, \boldsymbol{\Phi})_{portal}$$

+
$$V(\Phi)$$
 + $V(\phi,\Phi)_{portal}$

GW, Collider & EWPT Phase Diagram



How combine sensitivities?

$$SNR = \left\{ \mathcal{T} \int_{f_{\min}}^{f_{\max}} df \left[\frac{\Omega_{GW}(f)}{\Omega_{sens}(f)} \right]^2 \right\}^{1/2}$$

• Gaussian significance (N_{σ})

BMA: $m_{\Sigma} + h \rightarrow \gamma \gamma$

BMA': BMA + $\Sigma^0 \rightarrow ZZ$

Collider Signatures (Model-Dep)

- Thermal $\Gamma(h \rightarrow \gamma\gamma)$
- Higgs signal strengths
- $\delta \sigma$ (e+e- \rightarrow Zh)
- Higgs self-coupling
- Exotic Decays
- Single φ production

T_{FW} -> Scale for Colliders & GW probes

High-T SM Effective Potential

$$V(h,T)_{\rm SM} = D(T^2 - T_0^2) h^2 + \lambda h^4 + \dots$$

$$T_0 \sim 140 \text{ GeV} \quad \equiv \quad T_{EW}$$

$$\equiv T_{EW}$$