

Probing Axion-like Particles with Gravitational Waves

杨桓(Huan Yang) Astronomy Department, Tsinghua University

BPCS2025, Beijing, Sep. 28, 2025

Axion-like particles

String Axiverse: Arvanitaki et al. PRD 2010

Content

- Black hole with axion clouds
 - LIGO constraints: spin, continuous wave and stochastic gravitational wave background
 - Constraints and implications for motions of stellar-mass black hole binaries
 - Future observation with EMRIs (extreme mass-ratio inspirals).
- Neutron star binary constraints

Black hole superradiance

$$E_1 = E_2 + E_3, E_2 < 0$$

 $\to E_1 > E_3$

• Switch particle to fields: trapped fields with continuous extraction:superrdiance

Penrose 1969 Press & Teukolsky 1972 Zouros & Eardley 1979 Detweiler 1980

Event horizon

Superradiant Cloud

- Superradiant process transfers black hole angular momentum to the axion cloud, until $\omega=m~\Omega_H$
- Defining a dimensionless quantity $\alpha \sim BH$ size/axion wavelength

$$\alpha \equiv \mu M \simeq 0.1 \left(\frac{M}{10 M_{\odot}}\right) \left(\frac{\mu}{10^{-12} \text{eV}}\right)$$

- Two relevant timescales:
 - Growth timescale ~ 12 days $(0.1/\alpha)^9 (M/10 M_{\odot})$
 - GW radiation decay timescale $\sim 10^9$ years $(0.1/\alpha)^{15}$ (M/10 M_{\odot})
- Cloud mass $\sim \alpha$ M

5

Black hole spin constraint

- BHs spin down to saturate the superradiant instability, so BHs with mass match axion wavelength should have low spins [Avarnitaki et al. PRD 2016].
- Current spin measurement of X-ray binaries may be used to place constraints. Caveats: lifetime unknown, accretion history unknown...
- LIGO and LISA observations can be used to place constraints for 5 to 6 orders of magnitude.

GW231123 and GW190517

$$M_1 = 137^{+22}_{-17} M_{\odot}, M_2 = 103^{+20}_{-52} M_{\odot}$$

$$\chi_1 = 0.9^{+0.10}_{-0.19}, \qquad \chi_2 = 0.8^{+0.20}_{-0.51}$$

GW231123

$$M_1 = 39.2^{+13.9}_{-9.2} M_{\odot}, M_2 = 24.0^{+7.4}_{-7.9} M_{\odot}$$

$$\chi_1 = 0.9^{+0.09}_{-0.30}, \qquad \chi_2 = 0.62^{+0.34}_{-0.54}$$

GW190517

Cloud radiation: continuous wave

- Ground-based detectors are sensitive to cloud radiation for bason mass $\sim 10^{-14}$ 10^{-11} eV
- All sky-search for scalar bosons [LVC 2022]
- Targeted galactic sources [LVC 2022]
- Cygnus X-1 [Sun, Brito, Isi, PRD 2020]
- LVC search for vector cloud radiation from remnant BHs.

Cloud radiation: stochastic background

- Close (<10 Mpc) sources may be resolved by the continuous wave search, where further sources contribute to a stochastic background
- Based on a model of BH distribution (mass, spin, distance), a constraint has been placed on the axion mass from \sim [2-4] 10^{-14} eV [Tsukada et al. PRD 2019]

Content

- Black hole with axion clouds
 - LIGO constraints: spin, continuous wave and stochastic gravitational wave background
 - Constraints and implications for motions of stellar-mass black hole binaries
 - Future observation with EMRIs (extreme mass-ratio inspirals).
- Neutron star binary constraints

Black hole binary with clouds: important questions

• Will the Axion clouds survive till the close separations (between the black holes)?

• What are the dynamical effects of the clouds if they survive to close distances?

• How do we use the dynamical effects to probe/constrain these ALPs?

Cloud dynamics in black hole binary

• Binary companion's tidal field induces level mixing in the cloud (Baumann et al. 2018). Excitation of decaying modes at resonance may lead to cloud depletion.

• This picture needs to be reconsidered with caution, i.e. by including the energy level drift associated with cloud depletion (nonlinear effects), and the astrophysical evolution path

Cloud dynamics in black hole binary

• Binary companion's tidal field induces level mixing in the cloud (Baumann et al. 2018). Excitation of decaying modes at resonance may lead to cloud depletion.

• This picture needs to be reconsidered with caution, i.e. by including the energy level drift associated with cloud depletion (nonlinear effects), and the astrophysical evolution path

Astrophysical black hole binary evolution

• Black hole binary observed by LIGO or LISA will likely experience processes that significantly reduce the binary separation in a short time, i.e. the common envelope phase, so that the binary can merge in cosmic time. The cloud evolution has to be considered in such realistic setting [Zhang, Guo, HY, 2024]

Cloud within LISA band

• We find significant parameter range where cloud survives to the LISA band:

• Before entering LIGO band, we find resonant cloud transfer between black holes. The cloud likely survives into the LIGO band.

Eccentricity excitation

• Eccentricity may be excited due to coupling with cloud states, which offers an explanation for the eccentric BHNS : GW200105

Ao Guo, Qi-yan Zhang, HY, Jun Zhang, (2025)

Content

- Black hole with axion clouds
 - LIGO constraints: spin, continuous wave and stochastic gravitational wave background
 - Constraints and implications for motions of stellar-mass black hole binaries
 - Future observation with EMRIs (extreme mass-ratio inspirals).
- Neutron star binary constraints

Extreme Mass Ratio Inspirals (EMRIs)

- Extreme mass-ratio inspirals: stellar-mass object (black holes, neutron stars, compact stars) orbiting around the massive black hole (10⁵-10⁷ solar mass).
- A typical EMRI is in-band for 10⁴-10⁵ cycles.
- EMRI→ideal tool for measuring small perturbations: opportunities for studying astrophysics and fundamental physics

Figure adapted from gwplotter.com

Cloud interaction: extreme mass-ratio inspirals

 Cloud possibly exists for EMRIs due to BH superradiance. Main interaction: dynamical friction [Zhang, HY, PRD 2020], modified gravitational potential, modified gravitational wave flux.

EMRIs within a cloud

- There are two major dissipation channels: scalar radiation and gravitational wave radiation.
- Scalar radiation is physically equivalent to the dynamic friction of the scalar field on the point mass.
- The modulation of gravitational radiation needs to be computed using the modified Teukolsky equation [Dongjun Li, et al. HY in preparation]

Scalar sector

$$M = 10^6 M_{\odot}, \ \epsilon = 10^{-5}, \ \mu M = 0.3, \ M_c = 10^{-4} M, \ a = 0.88 M$$

Content

- Black hole with axion clouds
 - LIGO constraints: spin, continuous wave and stochastic gravitational wave background
 - Constraints and implications for motions of stellar-mass black hole binaries
 - Future observation with EMRIs (extreme mass-ratio inspirals).
- Neutron star binary constraints

Probing ALPs with neutron stars

• Light axions may be sourced by neutron stars due to coupling with nuclear matter. Phase transitions occurs if NS radius is > some critical value.

$$V(a) = -m_{\pi}^{2} f_{\pi}^{2} \epsilon \sqrt{1 - \frac{4m_{u}m_{d}}{(m_{u} + m_{d})^{2}} \sin^{2}\left(\frac{a}{2f_{a}}\right)} - m_{\pi}^{2} f_{\pi}^{2} \left[\left(\epsilon - \frac{\sigma_{N} n_{N}}{m_{\pi}^{2} f_{\pi}^{2}}\right) \middle| \cos\left(\frac{a}{2f_{a}}\right)\right|$$

• This generally happens if $f_a < 10^{18}$ Gev. Axion profile shows up.

$$Q_{1,2} = \pm 4\pi^2 f_a R_{1,2}$$

• Each NS carries an Axion charge $Q_{1/2}$. The dipole radiation of Axion field also takes away orbital energy, so the GW phase is modified.

$$P_a = \frac{(Q_1 M_2 - Q_2 M_1)^2}{12\pi (M_1 + M_2)^2} r^2 \Omega^4 \left(1 - \frac{m_a^2}{\Omega^2}\right)^{3/2}$$

Constraints from GW170817

- A modified gravitational waveform due to axion radiation and modification in the binding energy can be derived.
- With the BNS data from GW170817 the axion field interaction strength can be constrained using Bayesian parameter estimation.

Constraints from GW170817

- A modified gravitational waveform due to axion radiation and modification in the binding energy can be derived.
- With the BNS data from GW170817 the axion field interaction strength can be constrained using Bayesian parameter estimation.

ALP Constraint from GW170817

Conclusion

- Axions may be excited around spinning black holes if wavelength comparable to BH size.
- Existing constraints using BH spin, continuous wave, stochastic GW background. Next frontier is to understand the impact in binary motion.
- Extreme mass-ratio inspirals will also be ideal probe for avion clouds.
- Neutron star binary has already provided constrains on axions with nuclear couplings.

