
Probing Axion-like Particles with Gravitational Waves 

â
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Axion-like particles
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String Axiverse: Arvanitaki et al. PRD 2010
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• Black hole with axion clouds

• LIGO constraints: spin, continuous wave and stochastic 
gravitational wave background

• Constraints and implications for motions of stellar-mass black hole 
binaries

• Future observation with EMRIs (extreme mass-ratio inspirals).

• Neutron star binary constraints



Black hole superradiance
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• Penrose process with energy extraction:

• Switch particle to fields: trapped fields 
with continuous extraction:superrdiance
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Penrose 1969
Press & Teukolsky 1972
Zouros & Eardley 1979
Detweiler 1980
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Superradiant Cloud
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• Superradiant process transfers black hole angular momentum to the axion 
cloud, until 𝜔 = 𝑚	Ω!

• Defining a dimensionless quantity 𝛼	~ BH size/axion wavelength

• Two relevant timescales:
• Growth timescale ~ 12 days (0.1/𝛼)9(M/10	𝑀⨀)
• GW radiation decay timescale ~ 109 years (0.1/𝛼)15(M/10	𝑀⨀)

• Cloud mass ~ 𝛼	M



Black hole spin constraint
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• BHs spin down to saturate the 
superradiant instability, so BHs with 
mass match axion wavelength 
should have low spins [Avarnitaki et 
al. PRD 2016].

• Current spin measurement of X-ray 
binaries may be used to place 
constraints. Caveats: lifetime 
unknown, accretion history 
unknown…

•  LIGO and LISA observations can 
be used to place constraints for 5 to 
6 orders of magnitude. 

Baryakhtar et al, PRD  (2016)



GW231123 and GW190517
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Aswathi et al, arXiv  (2025)



Cloud radiation: continuous wave
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• Ground-based detectors are sensitive to 
cloud radiation for bason mass ~ 10-14 -
10-11 eV

• All sky-search for scalar bosons [LVC 
2022]

• Targeted galactic sources [LVC 2022]
• Cygnus X-1 [Sun, Brito, Isi, PRD 2020] 
• LVC search for vector cloud radiation 

from remnant BHs.



Cloud radiation: stochastic background
• Close (<10 Mpc) sources may be resolved by  the continuous wave search, 

where further sources contribute to a stochastic background

• Based on a model of BH distribution (mass, spin, distance), a constraint has 
been placed on the axion mass from ~ [2-4] 10-14 eV [Tsukada et al. PRD 2019]
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Black hole binary with clouds: important questions

• Will the Axion clouds survive till the close separations 
(between the black holes)?

• What are the dynamical effects of the clouds if they 
survive to close distances?

• How do we use the dynamical effects to probe/constrain 
these ALPs?



Cloud dynamics in black hole binary

• Binary companion’s tidal field induces level mixing in the cloud (Baumann 
et al. 2018). Excitation of decaying modes at resonance may lead to cloud 
depletion.

• This picture needs to be reconsidered with caution, i.e. by including the 
energy level drift associated with cloud depletion (nonlinear effects), and the 
astrophysical evolution path
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Astrophysical black hole binary evolution

• Black hole binary observed by LIGO or LISA will likely experience 
processes that significantly reduce the binary separation in a short time, i.e. 
the common envelope phase, so that the binary can merge in cosmic time. 
The cloud evolution has to be considered in such realistic setting [Zhang, 
Guo, HY, 2024]



Cloud within LISA band

• We find significant parameter range where cloud survives to the LISA band:

• Before entering LIGO band, we find resonant cloud transfer between black 
holes. The cloud likely survives into the LIGO band.

Ao Guo, Jun Zhang, HY, PRD  (2024)



Eccentricity excitation

• Eccentricity may be excited due to coupling with cloud states, which offers 
an explanation for the eccentric BHNS : GW200105

Ao Guo, Qi-yan Zhang, HY, Jun Zhang,   
(2025)
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Extreme Mass Ratio Inspirals (EMRIs)
• Extreme mass-ratio inspirals: stellar-mass object (black holes, neutron 

stars, compact stars) orbiting around the massive black hole (105-107 solar 
mass). 

• A typical EMRI is in-band for 104-105 cycles.

• EMRI→ideal tool for measuring small perturbations: opportunities for 
studying astrophysics and fundamental physics 

Figure adapted from gwplotter.com



Cloud interaction: extreme mass-ratio inspirals
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• Cloud possibly exists for EMRIs due to BH superradiance. Main interaction: 
dynamical friction [Zhang, HY, PRD 2020], modified gravitational potential, 
modified gravitational wave flux.



EMRIs within a cloud

• There are two major dissipation channels: scalar radiation and gravitational 
wave radiation.

• Scalar radiation is physically equivalent to the dynamic friction of the scalar 
field on the point mass.

• The modulation of gravitational radiation needs to be computed using the 
modified Teukolsky equation [Dongjun Li, et al. HY in preparation]

Page 34



Scalar sector

Page 36
(Li, Weller, Bourg, LaHaye, Yunes, & HY, arXiv 2507.02045)
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Probing ALPs with neutron stars

• Light axions may be sourced by neutron stars due to coupling with nuclear 
matter. Phase transitions occurs if NS radius is > some critical value.

• This generally happens if fa< 1018Gev. Axion profile shows up.

• Each NS carries an Axion charge Q1/2. The dipole radiation of Axion field 
also takes away orbital energy, so the GW phase is modified.

Zhang,.., HY, PRL 2021  23



Constraints from GW170817

• A modified gravitational waveform due to axion radiation and 
modification in the binding energy can be derived.

• With the BNS data from GW170817 the axion field interaction strength 
can be constrained using Bayesian parameter estimation.
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ALP Constraint from GW170817
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Conclusion

• Axions may be excited around spinning black holes if wavelength comparable to 
BH size.

• Existing constraints using BH spin, continuous wave, stochastic GW background. 
Next frontier is to understand the impact in binary motion.

• Extreme mass-ratio inspirals will also be ideal probe for avion clouds.

• Neutron star binary has already provided constrains on axions with nuclear 
couplings.
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