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Machine Learning Left-Right Breaking from Gravitational Waves, William Searle, Csaba Balázs, Yang Xiao, Yang Zhang, 
arXiv:2506.09319

Machine Learning in Phase Transition
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Machine Learning in Phase Transition
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➤ A set of  coupled th order differential 
equations: 

➤ Convert the problem of finding a solution 
into an optimization problem: 

➤ Minimize the loss function using a neural 
network.

m j

Solving differential equations with neural networks: Applications to the calculation of cosmological phase transitions 
Maria Laura Piscopo, Michael Spannowsky, Philip Waite, arXiv:1902.05563
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Machine Learning in Phase Transition
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Machine learning for bounce calculation, Ryusuke Jinno, arXiv:1805.12153

➤ Inputs: values of the potential and 
its derivatives



Enhancing PT Calculations through Fitting and NNYang Zhang

➤ Bubble nucleation rate 

,  

➤ Nucleation temperature 

 

➤ Percolation temperature 

 

➤ Inverse duration of the phase transition 

 

➤ Ratio of latent heat to radiation density 

 

➤
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Transition parameters
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From F. P. Huang 
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Bounce action 
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➤ Bounce action  

 

    where  satisfies 

➤  

    with boundary conditions 

➤
 ,    

➤   
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From Bubbleprofiler

velocity=0

with friction velocity=0

The under/over-shooting method
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Bounce action 
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➤ Tools for calculating bounce action  

๏ CosmoTransitions 

๏ PhaseTracer2 

๏ BSMPT3 

๏ PT2GWFinder 

๏ AnyBubble 

๏ BubbleProfiler 

๏ FindBounce 

๏ SimpleBounce 

๏ … … 
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Action curve 
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Machine Learning in Phase Transition
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➤ For a polynomial potential of the type 

➤ Semi-analytical approximations of the 
bounce action:

Action curve 
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Beyond the Standard Model Cocktail, Yann Gouttenoire, arXiv:2207.01633

arXiv:2404.17632, Marco Matteini, Miha 
Nemevšek, Yutaro Shoji, Lorenzo Ubaldi
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Action curve 

➤ In general cases, especially for high-
dimensional scenarios, the action curve 
has no analytical expression. 

➤ Meanwhile, there are two main issues 
with numerical calculation of the action:  

๏ unavoidable numerical errors 

๏ excessive computational time 

➤ They will lead to 

๏ large error on the  parameter  

๏ extremely slow to get the  

β

TP
12

From
 Bubbleprofiler

V(χ) =
−4α + 3

2
χ2 − χ3 + αχ4
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➤ Bubble nucleation rate 

 

➤ Nucleation temperature 

 

➤ Percolation temperature 

 

➤ Inverse duration of the phase transition 

 

➤ Ratio of latent heat to radiation density 
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Action curve 

➤ The action curve always diverges at .T = TC

14

Thin-wall limit 

This divergent behavior is independent of the 
dimensionality of the potential
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Action curve 
➤ In the thin-wall approximation, the potential difference  is 

much smaller than the height of the barrier, so we neglect the viscous damping term in 
the bounce equation: 

      

Define the surface tension of the bubble 

 

 

where R is the radius of the critical bubble and can be calculated by minimization of , 

 As  
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TC

Thin-wall 

Thick-wall 

Thick-wall 

Thin-wall 
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Action curve 
➤ Therefore, it is reasonable to use the polynomial 

fitting formula 

 

➤ And one can get the expression for the inverse 
phase transition duration time 

SE =
1

(T − Tc)2

norder

∑
i=0

qiTi

β
H

=
1

T(T − Tc)3 [
norder

∑
i=1

qiiTi(T − Tc) −
norder

∑
i=0

qiTi(3T − Tc)]
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Action curve for one-dimensional toy model

➤ To validate the polynomial fitting approach, we utilize a 1D toy model in which 
the action can be accurately computed. 

 

➤ It mimics a simple model that includes high-temperature corrections.

Veff(ϕ; T) = (cT2 − m2)ϕ2 + κϕ3 + λϕ4

 
 
c = 0.1, m2 = 100,
κ = − 10, λ = 0.1

17
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Action curve for one-dimensional toy model

➤ The fitting results align very well 
with the raw data. 

➤ We utilize the root mean square 
error (RMSE) to quantify the 
degree of agreement, 

 

➤ With the factor of , the 
MSE drops quickly with the 
increasing of .

RMSE =
1
n

n

∑
i=1 ( SE(Ti)

Ti
−

̂SE(Ti)
Ti )

2

(T − TC)2

norder

18



Enhancing PT Calculations through Fitting and NNYang Zhang

Action curve for one-dimensional toy model

➤ A random scan in 

 

 

➤ The majority of samples 
exhibit an MSE below 1, 
with a maximum value of 
4.2. 

 

➤ The RMSE exceeds 1 only 
for  GeV

c ∈ [0,2], m2 ∈ [0,200],

λ ∈ [0,2], κ ∈ [−30,0] .

SE /Tnuc ≃ 140

ΔT < 2
19

99.987%
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Action curve for one-dimensional toy model

➤ With the action curve function, we can calculate the percolation temperature  fairly quick.  TP

P(TP) = exp −
64π

3
ξ4 ∫

Ttra

Tper

dT′￼

Γ(T′￼)
T′￼6 ( 1

TP
−

1
T′￼)

3

= 70 %
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➤ Without action fit: Each integration step requires multiple evaluations of 
the action, and we need several integration to determine the temperature 
corresponding to 70%. 

➤ With action fit: 30 times evaluations of the action to get the data for fit.
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Action curve for SSM
➤ Now we turn to a physical model, the singlet scalar extensions of the Standard Model, which is 

wildly used in instructional studies of phase transition: 

 

 

    We choose the OS-like scheme, the Landau gauge and the Parwani method: 
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Action curve for SSM

22

➤ For some of the samples, the fitting results also align very well with the calculated action. 

➤ Half of the samples have large RMSE, because of incorrect . SE
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Action curve for SSM

23

➤ We removes the abnormal points using  

 

➤ As temperature decreases, the action should decrease monotonically, and the rate of decrease should slow.

S(Ti) − S(Ti−1) < 0 and |S(Ti) − S(Ti−1) | < |S(Ti−1) − S(Ti−2) |

94.83%
RMSE <5
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Action curve for SSM

➤ It is doable to model the 
action curve using polynomial 
fitting. 

➤ For one benchmark point, we 
only need to calculate action 
about 30 times, then we can  

๏ Precisely calculate the   

๏ Improve the calculation of 
 

๏ Rapidly calculate the  
and  .

β

A(T)

Tnuc
Tper

24

h = 1 h = 0.1 h = 0.01 h = 0.001 Fititng
1 1621.95 1573.90 1530.38 1461.57 1500.25
2 1622.96 1534.27 1915.43 901.45 1500.24
3 1622.34 1533.25 1505.82 991.253 1499.92
4 1618.56 1503.12 1278.73 -1502.6 1500.33
5 1621.08 1466.95 1202.39 5570.78 1500.12
6 1579.43 1503.90 1635.98 845.765 1500.00
7 1622.35 1506.99 1691.52 1728.72 1499.98
8 1623.08 1517.53 1077.92 2533.38 1500.44
9 1620.85 1503.17 1171.85 -380.135 1500.08

10 1622.14 1523.33 1812.96 1863.13 1500.13
Mean 1617.47 1516.64 1482.30 1401.33 1500.15

Uncertainty 12.74 26.46 273.30 1769.83 0.15

Calculate one  for 10 times with different β/H h

df(x)
dx

=
f(x + h) − f(x − h)

2h
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Action curve fit in PhaseTracer2
➤ We have added the action fitting in the "fit_action" branch of PhaseTracer2, and will merge to 

the master branch soon.

25
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Neural network for action curve
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Model 
Parameters

SE =
1

(T − Tc)2

norder

∑
i=0

qiTi
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Neural network for action curve

27

๏ Step 1: distinguish parameter regions 
where valid first-order phase transition 
occurs. 

๏ Step 2: predict the overlap temperature 
range of the two phases, i.e.  and . 

๏ Step 3: predict the  polynomial 
coefficients. 

๏ Step 4: validate the accuracy using a few 
point in the curve. 

➤ We employ the conventional fully 
connected neural network for the first 
two step, and the Kolmogorov-Arnold 
Network (KAN) for step 3.

TC Tmin
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Neural network for action curve

➤ Step 1: Distinguish the parameter space that has valid action curve 

➤ We utilize the 1D toy model to illustrate the performance of machine learning.

A fully connected network (4-32-32-32-2) 
trained on 512k samples, validated on 
130k samples. 

228 out of 130,320 validation samples 
were misclassified (accuracy: 99.8%).

28
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Neural network for action curve

➤ Step 2: Predict  and TC Tmin
A fully connected network 
(4-32-32-32-2) trained on 
512k samples, validated on 
56k samples. 

 : 97.9% samples in 2% 

 :98.9% samples in 2%

TC

Tmin

 TC Tmin
29
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Neural network for action curve

➤ Step 3: Predict the polynomial coefficients 

➤ The variation of some coefficients with the input parameters is not smooth, 
covering a wide range and occasionally switching sign.

30

SE =
1

(T − Tc)2

norder

∑
i=0

qiTi
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Neural network for action curve

➤ Step 3: Predict the polynomial coefficients 
๏ We have to predict the function as a whole, rather than predicting the coefficients 

separately. 

๏ The difference between two functions can be measured using 

 

      which is the Euclidean distance in a Hilbert space. 

๏ Thus, we construct an orthogonal function set by subtracting the projection of the original 
function onto the existing orthogonal basis, following the Gram-Schmidt 
orthogonalization process. 

๏ We use a fast KAN network with architecture 13−64−64−64−64−64−1

ϵ = ∫
x1

x0

dx (f1(x) − f2(x))2

31
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Neural network for action curve

➤ Step 3: Predict the polynomial coefficients

32

๏ Network-1: predict the sign of the 
coefficients 

➡ 96.69% accurate 

๏ Network-2: predicts the direction 
 of the polynomial in the 

Hilbert space 

➡ 96.59% accurate 

๏ Network-3: predicts the length of 
the polynomial in the Hilbert space 

➡ 71.48% accurate

|ni |

1

2
3
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Neural network for action curve

➤ Step 3: Predict the polynomial coefficients

33

๏ Network-1: predict the sign of the 
coefficients 

➡ 96.69% accurate 

๏ Network-2: predicts the direction 
 of the polynomial in the 

Hilbert space 

➡ 96.59% accurate 

๏ Network-3: predicts the length of 
the polynomial in the Hilbert space 

➡ 71.48% accurate

|ni |
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Summary

➤ Using machine learning to predict action curve function is more practical than 

predicting isolated action value or observable. It provides the flexibility to 

perform subsequent calculations derived from the action curve.  

➤ Neural networks, particularly KANs, show promise in achieving this objective, 

although their predictive accuracy requires further improvement.  

➤ With action curve fitting, we can calculate the  and  quickly, and the  

more accurately. This is independent of machine learning, and can be used in 

PhaseTracer now.

TP TN β

34



Thanks !


