# GW experiments and collider synergies: unveiling first-order phase transitions

2025 Biejing Particle Physics and Cosmology Symposium

(Beijing, Sept. `25)

Germano Nardini



#### Why is SGWB search so exciting for fundamental physics?

A source-independent direct probe of the pre-BBN universe



#### SGWB from the inflationary epoch

- Inflation: standard single-field slow-roll, inflation with spectators, preheating, ... very model dependent!
  - Signal from vanilla scenario is very small



#### **GWs from symmetry breaking (cosmic strings)**

**Cosmic strings**: stable 1-dim. topological objects from (topologically non-trivial) spontaneous symmetry breakings



10- $10^{-9}$  $G\mu = 10^{-10}$  $G\mu = 10^{-}$  $10^{-11}$  $10^{-13}$  $10^{-15}$  $10^{-6}$ 10-9 10-3 10<sup>3</sup>  $10^{6}$ 1 frequency (Hz)  $10^{-8}$ LISA  $10^{-10}$  $\Omega_{\rm GW} h^2$ DECIGO n = 4 $10^{-12}$ n=4 $10^{-14}$ BBO  $10^{-6}$  $10^{-8}$ f[Hz]LISA CosWG (Blanco Pillado+) '20

LISA CosWG (Blanco Pillado+) '24

#### GWs from symmetry breaking (bubble nucleation)

First-order phase transitions: bubbles produced in spontaneous symmetry

breakings via tunnelings or thermal jumps







[credits: D. Cuttings and M. Hindmarsh]

LISA CosWG (Caprini+) '15

LISA CosWG (Caprini+) '19

LISA CosWG (Caprini+) '24

## First-order phase transitions in SM particle physics/cosmology?



No FOPT in the SM of particles/cosmology, but ...

## First-order phase transitions in SM particle physics/cosmology?





#### Large lepton asymmetry Schwarz+Stuke '10, Wigas+ '18



## First-order phase transitions in SM particle physics/cosmology?





- EW-sector extensions: the barrier can be achieved via:
  - Temp. radiative corrections with scalar interactions, or/and
  - new dynamical fields (i.e. scalars) coupled to the Higgs

#### **New TeV-scale scalars**

- New fermions → no large T-effects → no large barrier → no 1st order
- Very heavy fields → Boltzmann suppressed and small low-energy effects → no 1st order'
- New largely-coupled fields → Large T effects but also changes in collider pheno
- New dynamical scalar fields → Mixing → Higgs signal strengths + heavy-Higgs pheno
- New dynamical scalar fields with negligible mixing (due to symmetry) → rather clean
- Beyond EW-sector extension: extra scalar sector in hidden sectors, at high scales, ...

## Examples of EW-scale BSM with loud FOPT GW signal



But also 2HDM, B-L model, .... all talks here!!!

Many models with different pheno!

Figs. from: Konstandin+GN+ '10 Huber+GN+'15 Chala, GN+'16

More examples in: LISA CosWG (Caprini+)'16 LISA CosWG (Caprini+.)'20

#### FOPT GW signal = stochastic GW background (SGWB)

Contrary to LVK events detected so far, the GW signal from the early-universe is (in first approximation)

- sourced by events that are intrinsically non-localized and uniformly distributed in the sky dome
  - → **isotropic** signal
- sourced by a huge number of uncorrelated events
  - → Gaussian stochastic signal



#### FOPT SGWB signal: frequency shape

When the transition is of first order...



LISA CosWG (Caprini+) '15

LISA CosWG (Caprini+) '19

LISA CosWG (Caprini+) '24



Main peak due to
SOUND WAVES
CONTRIBUTION
and/or
BUBBLE COLLISION
CONTRIBUTION

M.Hindmarh,S.Huber, K.Rummukainen,D.Weir,'13,'15 Peak due to
TURBULENCE
CONTRIBUTION

P.Binetruy+,'12 Roper Pol+, '22

#### FOPT SGWB signal: frequency shape

When the transition is of first order...





 $\begin{array}{c} K(\alpha) \\ \beta/H \\ T_* \\ \xi_w \\ \kappa_i \end{array} \ \, \begin{array}{c} \text{thermodyn.-parameter} \\ \text{inputs} \\ \end{array} \,$ 

Main peak due to
SOUND WAVES
CONTRIBUTION
and/or
BUBBLE COLLISION
CONTRIBUTION

M.Hindmarh,S.Huber, K.Rummukainen,D.Weir,'13,'15 Peak due to
TURBULENCE
CONTRIBUTION

P.Binetruy+,'12 Roper Pol+, '22

#### FOPT SGWB signal: frequency shape in bubble coll. regime



$$K(\alpha)$$
 $\beta/H$ 
 $T_*$ 
 $\xi_w \simeq 1$ 
 $\kappa_i \simeq (1,0,0)$ 

Inputs for the BUBBLE WALL thermodyn.-parameter templates

• 2 out 5 thermodyn. param. fixed for bubble collisions

LISA CosWG (Caprini+) '24

## FOPT SGWB signal: frequency shape in bubble coll. regime



$$f_{peak} \sim \text{mHz}\left(\frac{\beta/H}{100}\right) \left(\frac{T_n}{100 \text{GeV}}\right)$$

$$h_0^2 \Omega_{peak} \sim 10^{-10} K^2(\alpha) \left(\frac{100}{\beta/H}\right)^2 \left(\frac{\alpha}{\alpha+1}\right)^2$$

$$\Omega_{\text{GW}}^{\text{BPL}}(f) = \Omega_b \left(\frac{f}{f_b}\right)^{n_1} \left[\frac{1}{2} + \frac{1}{2} \left(\frac{f}{f_b}\right)^{a_1}\right]^{\frac{n_2 - n_1}{a_1}}$$

$$n_1 = 2.4$$
,  $n_2 = -2.4$ ,  $a_1 = 1/2$ 

Inputs for the BUBBLE WALL geometric.-parameter templates



## FOPT SGWB signal: frequency shape in bubble coll. regime



$$K(\alpha)$$
 $\beta/H$ 
 $T_*$ 
 $\xi_w \simeq 1$ 
 $\kappa_i \simeq (1,0,0)$ 

Inputs for the BUBBLE WALL thermodyn.-parameter templates

Degeneracies !!!

Inputs for the BUBBLE WALL geometric.-parameter templates

 $\int f_b \ \Omega_b$ 

#### **Gravitational Waves Detectors**

Pulsar timing arrays: GWs with 10<sup>-9</sup>–10<sup>-6</sup> Hz

Space-based interferometers: GWs with 10<sup>-5</sup>–1 Hz

Ground-based interferometers: GWs with 1–10<sup>4</sup> Hz









#### **GW** experiment and FCC timelines



### SGWB status at Hz experiments (brutally brief and biased)



LVK

- Observations compatible with "expected" astronomy
- Recast observations give weak upper bounds on BSM physics at ~10<sup>6-10</sup> GeV
- Likely, no huge progress before ET due to the soonishemerging binary foreground





#### SGWB status at nHz experiments (brutally brief and biased)



#### SGWB status at nHz experiments (brutally brief and biased)



### MAYBE A BSM HINT, MAYBE NOT

- Compatible with SMBBH-only SGWB (non-circular binaries with environmental effects)
- > A few sub-threshold SMBBHs + SMBBH SGWB (?)
  (anisotropic contribution boosts the signal at some frequencies + weaker SGWB)
- If no BSM hint, low progress on BSM physics (you need to dig out the BSM signal from a strong SOBBH SGWB)

#### What about mHz experiments? LISA mission targets





O(10<sup>4</sup>) resolv. galac. binaries O(10) extragal. BBHs of 10<sup>0</sup>–10<sup>2</sup>  $M_{\odot}$  O(1 - 10) extreme mass-ratio inspirals O(10 - 100) merging BBHs of 10<sup>5</sup>–10<sup>8</sup>  $M_{\odot}$ 







### SGWB from a FOPT: parameter reach in bubble coll. regime



Taking SNR > 10 as detection/non-detection criterion

(Goshal) Megias, GN, Quiros, '18, ('24) LISA CosWG (P. Auclair+) '22

Knowing the parameter reach is nice, but it is the reconstruction accuracy that matters in understanding the underlying physics

#### **SGWB** reconstruction at LISA



#### SGWB from a FOPT : LISA search based on template



#### LISA is a signal-dominated experiment



- Too many parameters to fit.
- Heavy-memory waveforms.

No hope to reach convergence in the parameter estimate by standard methods

Iterative global fit.

Computational expensive!!! Simplified test: 50.000\$

#### SGWB from a FOPT : LISA search based on template





#### LISA is a signal-dominated experiment



We build the search and run it on data with

- The (faint) unresolved binaries
- The instrumental noise
- The cosmological SGWB

#### Simplifications:

- We neglect the likelihood correlations/systematics with the transient sources
- Same template model for injection and recovery (no. theory systematics)

#### SGWB from a FOPT : LISA search based on template



#### LISA is a signal-dominated experiment



We build the search and run it on data with

- The (faint) unresolved binaries
- The instrumental noise
- The cosmological SGWB

FOPT: LISA CosWG (Caprini+) '24

Cosmic strings: LISA CosWG (Blanco Pillado+) '24

Inflation: LISA CosWG (Braglia+) '24,

LISA CosWG (El Gammal+) '25

Agnostic searches: LISA CosWG (Caprini+) '19

LISA CosWG (Flauger+) '21

#### LISA reconstruction accuracy: FOPT in bubble coll. regime

Params of "Bubble coll. Regime"

(  $\xi_w \simeq 1; \;\; \kappa = 1; \;\; {\sf free} \;\; eta/H$  ,  $\; T_*$  ,  $\; K$  )



$$\Omega_{\text{GW}}^{\text{BPL}}(f) = \Omega_b \left(\frac{f}{f_b}\right)^{n_1} \left[\frac{1}{2} + \frac{1}{2} \left(\frac{f}{f_b}\right)^{a_1}\right]^{\frac{n_2 - n_1}{a_1}}$$



$$n_1 = 2.4$$
,  $n_2 = -2.4$ ,  $a_1 = 1/2$ 

LISA CosWG (Caprini+) '24

## LISA reconstruction accuracy: FOPT in bubble coll. regime

#### Noise + astro. SGWB + FOPT thermodynamic parameters



See also: Gowling+ '23 Hindmarsh+, '24

#### Z<sub>2</sub> singlet model's param. space predicting FOPT



$$-\mathcal{L} = \dots - m_s^2 S^2 + \lambda_s S^4 + \lambda_{sh} S^2 |H|^2$$

#### Z<sub>2</sub> singlet model's param. space predicting FOPT







- Synergy/complementarity between LISA and colliders
- LISA reconstruction accuracy is rather good

Singlet is just an example. In general:

- Does the synergy efficiently break degeneracies?
- Ways to improve the FCC design if LISA sees the signal in ~2036 ?

#### **Conclusions and priorities (TBD)**

- PTA now, LVK soon, and LISA in 10 yr can probe FOPT at 10<sup>-5</sup>–10<sup>8</sup> TeV scale
- FOPT detection → BSM discovery
- LISA accurately reconstructs a FOPT signal from EW scale and above
  - → great constraints on BSM parameters (assuming a model)
- Results based on simplifications. More realistic results in late 2026 (official data challenge "Mojito")
- Reconstruction interpretation done only for a few BSM models. Rationale can be followed for other models

- Clear synergy/complementarity with colliders. With more models and FCC simulations:
  - How much does LISA constrain the param. space of a model? And the FCC? And LISA and FCC together?
  - Are there "structural" bottlenecks limiting the synergy? Feasible ways to improve them? Still on time to implement them if LISA sees a signal?

#### **Conclusions and priorities (TBD)**

- PTA now, LVK soon, and LISA in 10 yr can probe FOPT at 10<sup>-5</sup>–10<sup>8</sup> TeV scale
- FOPT detection → BSM discovery
- LISA accurately reconstructs a FOPT signal from EW scale and above
  - → great constraints on BSM parameters (assuming a model)
- Results based on simplifications. More realistic results in late 2026 (official data challenge "Mojito")
- Reconstruction interpretation done only for a few BSM models. Rationale can be followed for other models

- On the other hand, if we focus on the GW detection side only, the priorities IMO:
  - 1) Reduce the (systematic) errors of the geometrical template of the FOPT signal below the LISA reconstruction accuracy. Risky to correct it in the post-processing phase
  - 2) Reduce the (systematic) errors of the map "Thermody. Params. ↔ Geom. Params.". Possible to change it in the post-processing phase.
  - 3) Mapping the Lagrangian params of a specific BSM setup to the SGWB spectrum