

Darkogenesis via Supercooled Phase Transition

Yuichiro Nakai

T. D. Lee Institute & Shanghai Jiao Tong U.

Based on: JHEP (2020), PLB (2021), PLB (2023), PLB (2024), JHEP (2025), arXiv:2507.03747 with Fujikura, Girmohanta, Nakagawa, Sun, Suzuki, Takahashi, Yamada, Y. Zhang, Z. Zhang

Central Claims

- 1. Phase transition interpretation of PTA signal: Nano-Hz gravitational waves from a dark supercooled phase transition.
- 2. Consequence of the phase transition interpretation:
 Dilution of pre-existing dark matter and baryon asymmetry.

3. Solving the dilution problem: The same supercooled PT naturally sets a stage to create DM and baryon asymmetry.

4. **Testability**: The models can be probed by ongoing and near-future experiments!

Gravitational Waves

Gravitational waves (GWs) are small ripples over background spacetime predicted in Einstein equation.

Detection of GWs from black hole & neutron star binaries

GW astronomy has started!

Gravitational Waves

Gravitational waves (GWs) are small ripples over background spacetime predicted in Einstein equation.

Detection of GWs from black hole & neutron star binaries

GW astronomy has started!

Pulsar Timing Array

• (Millisecond) pulsars are precise clocks.

- Earth-pulsar system as GW antenna.
- GWs slightly shift the pulse-arrival time by a specific angular correlation (Hellings & Downs curve).

Recent Observations

CPTA, EPTA, InPTA, NANOGrav, PPTA have reported evidence for nano-Hz stochastic gravitational waves!

NANOGrav

PPTA

CPTA

EPTA+InPTA

Possible Sources

- ✓ Supermassive black hole binaries (However, final parsec problem?)
- ✓ Cosmological phase transitions
- ✓ Defects: cosmic strings, domain walls

Possible Sources

- ✓ Supermassive black hole binaries (However, final parsec problem?)
- ✓ Cosmological phase transitions
- ✓ Defects: cosmic strings, domain walls

Phase Transition

Phase transition occurs when there is a mismatch of true ground state at zero and non-zero temperatures.

1st order phase transition proceeds via nucleation, expansion and merger of bubbles of the true ground state.

GW Generation

The collision of bubbles and subsequent fluid flows produce shear stresses that source GWs.

Observed frequency f_0 is redshifted and associated with the epoch when GWs are produced.

$$f_0 \simeq 10^{-8} \text{ Hz} \left(\frac{T_*}{1 \text{ GeV}} \right)$$

Dark Phase Transition

- Peak frequency in the nHz implies a phase transition temperature $T_{st} \sim$ 1 GeV
- QCD phase transition is not 1st order, 1st order electroweak phase transition: $f_{\rm peak}^{\rm (EW)} \gtrsim 10^{-4}~{\rm Hz}$

Ellis, Lewicki, No (2019)

Phase transition in a dark sector

YN, Suzuki, Takahashi, Yamada (2021)

Dark Phase Transition

- Peak frequency in the nHz implies a phase transition temperature $T_* \sim 1 \text{ GeV}$
- QCD phase transition is not 1st order, 1st order electroweak phase transition: $f_{\rm peak}^{\rm (EW)} \gtrsim 10^{-4}~{\rm Hz}$

Ellis, Lewicki, No (2019)

Phase transition in a dark sector

YN, Suzuki, Takahashi, Yamada (2021)

 Generically, it is not easy to reach the strength required by the PTA signal explanation.

It is important to find a particle physics model that can generate the reported signal.

Scale Invariance

A strong first-order phase transition with a large discontinuity in the order parameter can generate a large GW amplitude.

A widely shared characteristic in theories to show a strong first order PT is the presence of an approximate scale invariance.

e.g. Radiative symmetry breaking with a classical scale invariance (via Coleman-Weinberg mechanism)

Witten (1981)

A significant amount of fine-tuning on a mass parameter is required.

Conformal PT

Conformal field theory (CFT) offers a more natural way to implement scale invariance at the quantum level.

A marginally relevant deformation drives the <u>spontaneous breaking</u> of (approximate) scale invariance at a certain energy scale.

A pseudo-Nambu-Goldstone boson called dilaton.

However ...

This possibility is usually discussed without an explicit model of CFT due to its non-perturbative nature.

Conformal PT

Model of CFT

SUSY

Supersymmetric QCD

- IR fixed point gives CFT.
- SUSY makes it possible to get a handle on <u>non-</u> <u>perturbative dynamics</u>.

Fujikura, Nakagawa, YN, Sun, Zhang (2025)

5D holographic model

AdS/CFT

- It gives a concrete <u>weakly-coupled description</u>.
- Radion can be identified as dilaton.

Fujikura, Girmohanta, YN, Suzuki (2023)

Conformal PT

Model of CFT

Confinement of dark Yang-Mills drives spontaneous breaking of conformal invariance.

Fujikura, YN, Yamada (2020)

AdS/CFT

5D holographic model

- It gives a concrete <u>weakly-</u> coupled description.
- Radion can be identified as dilaton.

Fujikura, Girmohanta, YN, Suzuki (2023)

Fitting the Data

A GW background produced by the dark conformal phase transition

Fujikura, Girmohanta, YN, Suzuki (2023)

Supercooling

The phase transition takes place via a supercooling phase.

The vacuum energy dominates the energy density of the Universe and mini-inflation takes place before the phase transition is completed.

The e-folding number of mini-inflation:

$$N_e \simeq \log \left(rac{T_c}{T_n}
ight)$$
 Critical temperature Nucleation temperature

Dilution of dark matter and baryon asymmetry if they are produced before the phase transition.

Dilution factor ~10-9

We need a very large amount of dark matter and baryon asymmetry before the phase transition or <u>need to produce them after the phase transition</u>.

Cold Darkogenesis

Fujikura, Girmohanta, YN, Zhang (2024)

Supercooled phase transition naturally provides a setting of cold baryogenesis.

Konstandin, Servant (2011)

Dark sector asymmetry - Baryon asymmetry & asymmetric DM

	Dilaton stabilizati	on Cold	baryogene	esis Da	ark baryon number
	Fields	$SU(N_{ m H})$	$SU(2)_{ m D}$	$U(1)_{ m D}$	
Spin 0	$H_{ m D}$	1	2	0	Spontaneous breaking of SU(2)D
	$\left(\begin{array}{c} L_{\chi,i} \equiv \left(egin{matrix} \psi_{1,i} \\ \psi_{2,i} \end{array} \right) \end{array} ight)$	1	2	1	U(1)D anomaly
Spin 1/2	$\chi_{1,i},\chi_{2,i}$	1	1	-1	Neutron portal interaction for asymmetry sharing with SM
	f_{j}	\mathbf{N}_{H}	1	$1/N_{ m H}$	Baryon dark matter
	$ar{f}_j$	$\overline{\mathbf{N}}_{\mathrm{H}}$	1	$-1/N_{ m H}$	$i=1,\cdots,N_{D_{\rm L}}\;;\;j=1,\cdots,N_{D_{\rm B}}$

Cold Baryogenesis

- I. SU(2)D PT is triggered after the dark supercooled PT.
 - The dark Higgs field is produced.
 - The SU(2)D orientation of the Higgs field is inhomogeneous in space, abundantly producing the Higgs winding number (Nн).
- II. The configurations relax to the vacuum state, either by changing NH or the Chern-Simons number of the SU(2)D gauge field (Ncs).
 - The change of Ncs induces <u>fermion number violation via</u> anomaly.
- III. With C & CP violation, $\delta N = Ncs NH > 0$ and $\delta N < 0$ winding configurations evolve differently, generating a net fermion number.

(I) Dark Higgs Production

SU(2)D PT is triggered after the dark supercooled PT.

$$V(\phi, H_{\rm D}) = V_{\rm eff}(\phi) + \frac{\lambda}{4} \left[H_{\rm D}^{\dagger} H_{\rm D} - \frac{v_{\rm D}^2}{2} \left(\frac{\phi}{\phi_{\rm min}} \right)^2 \right]^2$$

Dilaton effective potential

False vacuum

True vacuum

When bubbles collide, the dilaton field bounces and <u>oscillates around the minimum</u>.

(I) Dark Higgs Production

SU(2)D PT is triggered after the dark supercooled PT.

$$V(\phi, H_{\rm D}) = V_{\rm eff}(\phi) + \frac{\lambda}{4} \left[H_{\rm D}^{\dagger} H_{\rm D} - \frac{v_{\rm D}^2}{2} \left(\frac{\phi}{\phi_{\rm min}} \right)^2 \right]^2$$

Dilaton effective potential

When bubbles collide, the dilaton field bounces and <u>oscillates around the minimum</u>.

This very much resembles the situation of parametric resonance after inflation.

Long-wavelength modes of the dark Higgs field are abundantly produced.

(I) Dark Higgs Production

The dark Higgs field is abundantly produced whose "SU(2)D orientation" is randomly distributed by bubble dynamics.

Dark Higgs winding number:

$$N_H = \frac{1}{24\pi^2} \int d^3 \mathbf{x} \epsilon^{ijk} \text{Tr} \left[U^{\dagger}(\partial_i U) U^{\dagger}(\partial_j U) U^{\dagger}(\partial_k U) \right]$$

(II) Fermion # Violation

Gauge field configuration changes such that the gradient energy of the dark Higgs is canceled by the gauge field.

$$E_{\text{gradient}} \sim |(\partial_i - igA_i^a)\Phi|^2 \to 0$$

$$A_i^a o rac{1}{ig} (\partial_i U) U^\dagger$$

It corresponds to the change of the Chern-Simons number:

$$\Delta N_{\rm CS} = \frac{g_D^2}{32\pi^2} \int dt d^3x \, W_{\mu\nu} \tilde{W}^{\mu\nu} \neq 0$$

(II) Fermion # Violation

The change of Ncs induces fermion number violation via anomaly:

$$\partial_{\mu}j^{\mu} = \frac{g_D^2}{32\pi^2} W_{\mu\nu}^a \tilde{W}^{a\mu\nu}$$

$$\rightarrow \Delta N_L = \Delta N_{\rm CS}$$

Caution:

L asymmetry is *locally* generated, but **its average is zero** if CP violation is absent.

$$\sum \Delta N_i = 0$$

(III) CP Violation

CP violation is induced by the following operator:

$$\mathcal{O}_{\text{CPV}} = \delta_{\text{CP}} \frac{H_{\text{D}}^{\dagger} H_{\text{D}}}{\Lambda_{\text{CP}}^2} \frac{g_{\text{D}}^2}{32\pi^2} \left(W_{\text{D}}^{\mu\nu} \widetilde{W}_{\text{D},\mu\nu} \right)$$

 δ_{CP} : a dimensionless CP violating phase

 Λ_{CP} : a new physics mass scale leading to the operator

With C & CP violation, $\delta N = N_{CS} - N_{H} > 0$ and $\delta N < 0$ winding configurations evolve differently, generating a net fermion number.

Asymmetry Sharing

 The generated dark asymmetry is transferred to the SM sector via a neutron portal interaction:

$$\mathcal{L} \supset \frac{1}{\Lambda_n^2} \chi u_R d_R d_R + \text{h.c.}$$

Jet plus missing energy signature at LHC!

Equilibrium at GeV requires $\Lambda_n \lesssim 15$ TeV. Current constraint : $\Lambda_n \gtrsim 2$ TeV.

- Dark baryon DM (Z₂ odd, ~5 GeV) : $p_D \sim fff$
- DM relic density is set by the dark baryon asymmetry just like the baryonic relic density.

$$p_D = \frac{1}{\Lambda_D^2} p_D p_D \chi \chi + \text{h.c.}$$

Phenomenology

• Higgs portal operator is introduced so that $\pi_{\rm D}$ decays before BBN :

$$\mathcal{L} \supset \lambda_h |H|^2 |H_{\rm D}|^2$$

 $\lambda_h \lesssim 0.1$ from Higgs invisible decay.

Lower bound from **BBN**, Upper bound from **DM direct detection**.

PTA signal explanation leads us to the prediction for DM direct detection!

Girmohanta, YN, Zhang (2025)

It is natural to ask if the decay of some GeV-scale Majorana fermion in a dark sector can account for BAU and DM after a dark supercooled PT.

Such a Majorana fermion *usually* needs to be **very heavy**, which does not fit the present exploration.

However, ...

If a dark supercooled PT provides an environment for out-of-equilibrium dynamics to abundantly produce a GeV-scale Majorana fermion (ψ), successful production of BAU and DM may be possible!

$$\begin{split} V_{\mathrm{DS}} &= \bar{\chi} \mu \chi \eta + m_{\chi} \bar{\chi} \chi + \frac{1}{2} m_{\psi} \bar{\psi}^c \psi + \frac{1}{2} m_{\eta}^2 \eta^2 \\ &+ \bar{\psi} y \eta \chi + \mathrm{h.c.} \;, \\ \uparrow & \qquad \qquad \\ \mathsf{CPV} \qquad \mathsf{DM} \qquad \mathsf{Portal scalar} \end{split}$$

Fields	$U(1)_{ m D}$
ψ_i	-1
$\mathcal{O}(1)$ GeV χ_j	-1
η	0

$$N_{\psi} = 2$$
 $N_{\chi} = 2$

 ψ is produced via parametric resonance induced by dilaton oscillation.

 ψ decays generate asymmetry

- χ_2 transfers dark asymmetry to the visible sector via neutron portal $\frac{1}{\Lambda_n^2} \chi u da$
- χ₁ acts as asymmetric DM

Effective fermion mass vanishes during dilaton coherent oscillation.

Fermion parametric excitation Greene, Kofman (1999)

$$\left(i\gamma^{\mu}\partial_{\mu} - m_{\psi}^{\text{eff}}(t)\right)\psi = 0$$

$$\left(i\gamma^{\mu}\partial_{\mu}-m_{\psi}^{\text{eff}}(t)\right)\psi=0 \qquad m_{\psi}^{\text{eff}}(t)=m_{\psi}\left[\frac{\{1+\xi(t)\cos(m_{\varphi}t)\}^{2b}-r}{1-r}\right]$$

• Produced ψ decays, generating dark asymmetry

Oscillation amplitude

Model dependent

Dark asymmetry is transferred to the visible sector through neutron portal

Higgs portal operator is introduced so that η decays before BBN :

U(1)D is violated by Majorana mass

Summary

- ✓ <u>Dark first-order phase transition</u> is a promising interpretation of the observed PTA signal.
- ✓ Confining nearly conformal phase transition can realize
 a supercooled phase transition to explain the data.
- ✓ Strong supercooling significantly dilutes away pre-existing baryon asymmetry and DM, calling for a new paradigm of their productions.
- ✓ Supercooled phase transition naturally provides a setting of baryogenesis & asymmetric dark matter.
- ✓ The model is probed by mono-jet searches at the LHC and DM direct detection ($+ n \bar{n}$ oscillation).

Discussion

The scenario is consistent with SUSY GUT framework.

No apparent obstacle to consider a supersymmetric version which gives an automatic gauge coupling unification.

Dark sector

The scenario is motivated by string theory.

Can we build a concrete stringy setup of a dark supercooled PT?

Discussion

Confirmation of PT dynamics for baryogenesis.

Finally, numerical simulation is needed.

- Coincidence between QCD and dark sector mass scales.
- Neutron portal interaction predicts a TeV-scale colored particle.