Probing Dark Matter with Space-based Gravitational-Wave Laser Interferometers

TANG, Yong 汤勇 University of Chinese Academy of Sciences

De to to the test

University of Chinese Academy of Sciences

BPCS, Beijing, 2025.9.25-29

Contents

Evidence for Dark Matter

- Rotation curve
- Gravitational lensing
- Bullet cluster
- Large-scale structure
- Anisotropy of CMB

Evidence for Dark Matter

Weakly Interacting Massive Particle (WIMP)

- > Theories: supersymmetry, extra dimensions,
- > Direct, indirect and collider searches
- Impressive progress

More Motivations

- Standard model is not complete
- Dark Matter and Dark Energy
- Neutrino mass
- Matter-Antimatter asymmetry
- > Theoretical Problems
 - > Strong CP problem
 - ➤ Hierarchy problem
 - > Fermion mass hierarchy
 - ➤ Unification of forces
 - **>**

Dark Matter Candidates

- Primordial black holes
- Super heavy particles
- Asymmetric DM
- Hidden sector DM
- **>**

- Weakly-interacting (WIMP)
- Strongly-interacting (SIMP)
- > Sterile neutrino
- Ultralight DM, Axion (ALP), Dark photon, dilaton etc

Since we do not know what DM is, we may explore as much as we can!

GW Laser Interferometers in Space

> LISA, Taiji, TianQin, LISAmax, Astrod-GW, μAres, DECIGO, BBO,...

Signal Response

Gravitational wave can change the structure of spacetime, and the

physical distance between objects

- $h \sim \Delta L/L \sim 10^{-12} \text{m}/10^9 \text{m} \sim 10^{-21}$
- One can measure the length/phase by laser

9 Waveform in time domain $X(t) \leftrightarrow \widetilde{X}(f)$ Power spectrum in frequency domain

GW sources and waveforms

LISA, 2402.07571

GW sources and waveforms

Main Noises

- > Laser frequency noise
 - > The laser is not perfectly monochromatic, its frequency fluctuates.
 - > Need dedicated data analysis Time-Delay Interferometry
- Secondary noises
 - \triangleright Acceleration noise of test mass, $s_{acc} \sim 10^{-15} \text{m/s}^2$
 - Residual charges, self-gravity, …
 - \triangleright Optical metrology noise, $s_{oms} \sim 10^{-12} \mathrm{m}$
 - ➤ Shot noise, relative intensity noise,...

	,		,		
	LISA	Taiji	Tianqin	BBO	DECIGO
$L (10^9 \text{ m})$	2.5	3	0.17	0.05	1×10^{-3}
$s_{\rm acc} \ (10^{-15} \ \frac{\rm m/s^2}{\rm \sqrt{Hz}})$	3	3	1	3×10^{-2}	4×10^{-4}
$s_{\rm oms} \ (10^{-12} \ \frac{\rm m}{\sqrt{\rm Hz}})$	15	8	1	1.4×10^{-5}	2×10^{-6}

LISA, 2402.07571

Sensitivity on GW

Time-Delay Interferometry

- > There are multiple combinations
- Michelson channels

$$\begin{split} X(t) &= (\eta_{2':\mathbf{322'}} + \eta_{1:\mathbf{22'}} + \eta_{3:\mathbf{2'}} + \eta_{1'}) - (\eta_{3:\mathbf{2'3'3}} + \eta_{1':\mathbf{3'3}} + \eta_{2':\mathbf{3}} + \eta_1), \\ Y(t) &= (\eta_{3':\mathbf{133'}} + \eta_{2:\mathbf{33'}} + \eta_{1:\mathbf{3'}} + \eta_{2'}) - (\eta_{1:\mathbf{3'1'1}} + \eta_{2':\mathbf{1'1}} + \eta_{3':\mathbf{1}} + \eta_2), \\ Z(t) &= (\eta_{1':\mathbf{211'}} + \eta_{3:\mathbf{11'}} + \eta_{2:\mathbf{1'}} + \eta_{3'}) - (\eta_{2:\mathbf{1'2'2}} + \eta_{3':\mathbf{2'2}} + \eta_{1':\mathbf{2}} + \eta_3). \end{split}$$

Sagnac channels

$$\alpha(t) = (\eta_{2':\mathbf{1}'\mathbf{2}'} + \eta_{3':\mathbf{2}'} + \eta_{1'}) - (\eta_{3:\mathbf{13}} + \eta_{2:\mathbf{3}} + \eta_1),
\beta(t) = (\eta_{3':\mathbf{2}'\mathbf{3}'} + \eta_{1':\mathbf{3}'} + \eta_{2'}) - (\eta_{1:\mathbf{21}} + \eta_{3:\mathbf{1}} + \eta_2),
\gamma(t) = (\eta_{1':\mathbf{3}'\mathbf{1}'} + \eta_{2':\mathbf{1}'} + \eta_{3'}) - (\eta_{2:\mathbf{32}} + \eta_{1:\mathbf{2}} + \eta_3).$$

$$\zeta(t) = (\eta_{1':\mathbf{1'}} + \eta_{2':\mathbf{2'}} + \eta_{3':\mathbf{3'}}) - (\eta_{1:\mathbf{1}} + \eta_{2:\mathbf{2}} + \eta_{3:\mathbf{3}}).$$

Review by Tinto & Dhurandhar 2021

Credit: Otto 2015

Time-Delay Interferometry

Possible Effects from Dark Matter

- Direct Interact with the detector directly
 - ➤ Induce additional motion of test mass
 - > Change the size of test mass, etc
 - Modify the propagation of laser light

Refs. Pierce, Riles & Zhao 2018, Grote & Stadnik 2019, Morisaki & Suyama 2019,

- ➤ Modify the GW from astrophysical sources
- Cosmological phase transition
- ➤ As new GW sources, PBHs, ···

Refs. Eda, Itoh, Kuroyanagi & Silk 2013, Yue, Han, Chen 2017,—2-Bertone et al 2020, Cardoso et al 2022,

 $L \rightarrow L + \Delta L$

Possible Effects from Dark Matter

- Direct Interact with the detector directly
 - ➤ Induce additional motion of test mass
 - > Change the size of test mass, etc
 - ➤ Modify the propagation of laser light

Refs. Pierce, Riles & Zhao 2018, Grote & Stadnik 2019, Morisaki & Suyama 2019,

- Modify the GW from astrophysical sources
- Cosmological phase transition
- ➤ As new GW sources, PBHs, ···

Refs. Eda, Itoh, Kuroyanagi & Silk 2013, Yue, Han, Chen 2017,—2-Bertone et al 2020, Cardoso et al 2022,

 $L \rightarrow L + \Delta L$

19

Ultralight/Wave Dark Matter

- ➤ Mass < 1 eV, QCD axion, ALP, Dark Photon, ···
- > A phenomenological approach

> Scalar
$$\mathcal{L} = \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - \frac{1}{2} m_{\phi}^2 \phi^2 - C \frac{\phi}{M_P} \mathcal{O}_{\mathrm{SM}},$$

$$\qquad \qquad \textbf{Light dilaton, } \delta \mathcal{L} = \frac{\phi}{M_P} \left[-\frac{d_g \beta_3}{2g_3} F_{\mu\nu}^A F^{A\mu\nu} - \sum_{i=u,d} \left(d_{m_i} + \gamma_{m_i} d_g \right) m_i \bar{\psi}_i \psi_i \right] \\ \qquad \qquad \qquad \text{Damour \& Donoghue 2010}$$

$$ightharpoonup$$
 ho LP, $-rac{g_{a\gamma}}{4}aF_{\mu
u} ilde{F}^{\mu
u},$

$$ightharpoonup$$
 Vector $\mathcal{L}=-rac{1}{4}F^{\mu\nu}F_{\mu\nu}+rac{1}{2}m_A^2A^{
u}A_{
u}-\epsilon_DeJ_D^{
u}A_{
u},$

- \triangleright Baryon number, B-L, Dark U(1),
- Production Mechanism viable DM candidate

scalar: misalignment, ...

vector: Graham, Mardon & Rajendran 2015, Ema, Nakayama & Tang 2019, Kolb & Long 2024

20 ...

Wave Dark Matter Background

Foster, Rodd, Safdi 2018

> Number density is very large, behaves as classical wave

$$\Phi(x) = \sum_{\mathbf{v}} \frac{\sqrt{2\rho/N}}{m} e^{i(\omega t - \mathbf{k} \cdot \mathbf{x} + \theta_{\mathbf{v}})},$$

 $\vec{k} = m\vec{v}, \omega = 2\pi f \simeq m, v \sim 10^{-3},$ $f \approx 2.4 \times \left(\frac{m}{10^{-17} \text{eV}}\right) \text{mHz}$

at a specific point ~ monochromatic within τ_c .

$$\lambda_c = \frac{2\pi}{mv} \approx 1.24 \times 10^{11} \times \left(\frac{10^{-17} \text{eV}}{m}\right) \text{km}, \ \tau_c = \frac{\lambda_c}{v} \approx 4 \times 10^8 \times \left(\frac{10^{-17} \text{eV}}{m}\right) \text{s},$$

Physical Effects

- ightharpoonup Plane wave within au_c , $\phi(t, \vec{x}) = \phi_{\vec{k}} e^{i(\omega t \vec{k} \cdot \vec{x} + \theta_0)}$,
- > Scalar ϕ , $\mathcal{L} = \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi \frac{1}{2} m_{\phi}^2 \phi^2 C \frac{\phi}{M_P} \mathcal{O}_{SM}$,
- > Interaction depending on the underlying theory, e.g.

$$C rac{\phi}{M_P} m_\psi \overline{\psi} \psi \Rightarrow m_\psi o \left(1 + C rac{\phi}{M_P}
ight) m_\psi, \ S = - \int m(\phi) \sqrt{-\eta_{\mu\nu} dx^\mu dx^\nu}.$$

Additional gradient or force

$$\delta x^{i}(t, \vec{x}) = \mathcal{M}_{s} \hat{k}^{i} e^{im_{\phi}(t - v\hat{k} \cdot \vec{x})}, \mathcal{M}_{s} \propto \phi_{\vec{k}} |\vec{k}| / m_{\phi}^{2}$$

Vector
$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \frac{1}{2}m_A^2A^{\nu}A_{\nu} - \epsilon_D e J_D^{\nu}A_{\nu}, \vec{A}(t,\vec{x}) = |\vec{A}|\hat{e}_A e^{i(\omega t - \vec{k} \cdot \vec{x})},$$

$$\delta x^i(t,\vec{x}) = \mathcal{M}_v \hat{e}_A^i e^{im_A(t - v\hat{k} \cdot \vec{x})}, \mathcal{M}_v \propto \epsilon_D e q_{D,j} |\vec{A}| / m_A M_j$$

Axion – laser propagation

Ultralight/Wave DM - Signal Response

- > DM couples to SM particles, inducing oscillations of test mass, effectively changing the length $L \rightarrow L + \Delta L$
- One-way Doppler shift

$$\frac{\delta\nu_{rs}}{\nu_0} = \frac{\nu_{rs} - \nu_0}{\nu_0} = -\frac{d\,\delta t_{rs}}{dt}.$$

Fractional frequency change
$$y_{rs}(t) \equiv \frac{\delta \nu_{rs}}{\nu_0} = \mu_{rs} \left[h(t, \vec{x_r}) - h(t - L, \vec{x_s}) \right], \ h(t, \vec{x}) \propto e^{im(t - v\hat{k} \cdot \vec{x})}$$

$$\rho_{rs} = \begin{cases} \hat{k} \cdot \hat{n}_{rs} & \text{for scalar field,} \\ \hat{e}_A \cdot \hat{n}_{rs} & \text{for vector field,} \\ \frac{\hat{n}_{rs}^i \hat{n}_{rs}^j e_{ij}(\hat{k}, \psi)}{2(1 + \hat{n}_{rs} \cdot \hat{k})} & \text{for gravitational wave,} \end{cases}$$

 $\delta t_{rs} = -\hat{n}_{rs} \cdot [\delta \vec{x}(t, \vec{x}_r) - \delta \vec{x}(t - L, \vec{x}_s)],$

Yu,姚跃辉, Tang, Wu, 2307.09197

Transfer Functions

$$\mathbf{m} \qquad h(t) = \frac{\sqrt{T}}{2\pi} \int_0^\infty \tilde{h}(\omega) e^{i\omega t} d\omega$$

$$ightharpoonup$$
 One-way single link $u_{rs}(t) = u_{rs} \frac{\sqrt{T}}{\sqrt{T}} \int_{-\infty}^{\infty} d\omega \, \tilde{h}(t)$

$$ightharpoonup$$
 One-way single link $y_{rs}(t) = \mu_{rs} \frac{\sqrt[4]{T}}{2\pi} \int_{0}^{\infty} d\omega \ \tilde{h}(\omega) e^{i\omega t} \left[e^{-i\vec{k}\cdot\vec{x}_r} - e^{-i(\tau + \vec{k}\cdot\vec{x}_s)} \right],$

$$ilde{y}_{rs}(\omega)=\mu_{rs}~ ilde{h}(\omega)\left[e^{-i(ec{k}\cdotec{x}_r)}-e^{-i(au+ec{k}\cdotec{x}_s)}
ight].~~ au=2\pi fL$$

Transfer function, sky and polarization averaged

$$R(\omega) = \overline{\left|rac{ ilde{y}_{rs}(\omega)}{ ilde{h}(\omega)}
ight|^2},$$
 $I_s \equiv rac{1}{4\pi} \int_{-1}^1 d\cos heta_1 \int_0^{2\pi} d\epsilon_1 \cdots,$
 $I_v \equiv rac{1}{16\pi^2} \int_{-1}^1 d\cos heta_1 \int_0^{2\pi} d\epsilon_1 \int_{-1}^1 d\cos heta_2 \int_0^{2\pi} d\epsilon_2 \cdots$
 $I_{GW} \equiv rac{1}{8\pi^2} \int_{-1}^1 d\cos heta_1 \int_0^{2\pi} d\epsilon_1 \int_0^{2\pi} d\psi \cdots.$

Transfer Functions

- > Different channels have different transfer functions
- > DM is also different from gravitational wave, velocity effect, ...

Sensitivity – Michelson Interferometer

 $S_{oms}\left(f\right) = \left(s_{oms} \frac{2\pi f}{c}\right)^{2} \left[1 + \left(\frac{2 \times 10^{-3} \text{ Hz}}{f}\right)^{4}\right] \frac{1}{\text{Hz}},$

$$ightharpoonup$$
 Defined by $S_O(f) = \frac{N_O(f)}{R_O(f)}$, $N_X = 16 \sin^2(\tau) \{ [3 + \cos(2\tau)] S_{acc} + S_{oms} \}$, $\tau = 2\pi f L$

LISA: $s_{oms} = 15 \times 10^{-12} \text{ m}, s_{acc} = 3 \times 10^{-15} \text{ m/s}^2,$

$$S_{acc}(f) = \left(\frac{s_{acc}}{2\pi f c}\right)^2 \left[1 + \left(\frac{0.4 \times 10^{-3} \text{ Hz}}{f}\right)^2\right] \left[1 + \left(\frac{f}{8 \times 10^{-3} \text{ Hz}}\right)^4\right] \frac{1}{\text{Hz}}, \quad \text{TianQin}: \quad s_{oms} = 8 \times 10^{-12} \text{ m, } s_{acc} = 3 \times 10^{-15} \text{ m/s}^2, \\ \text{TianQin}: \quad s_{oms} = 1 \times 10^{-12} \text{ m, } s_{acc} = 1 \times 10^{-15} \text{ m/s}^2.$$

Sensitivity – Other Interferometers

Prince, Tinto, Larson & Armstrong

Sensitivity on scalar DM

> At nucleus level,

Shao, Wex, Kramer 2019

$$ightharpoonup Strong\ sector \qquad \delta \mathcal{L} = rac{\phi}{M_P} \left[-rac{d_g eta_3}{2g_3} F_{\mu
u}^A F^{A \mu
u} - \sum_{i=u,d} \left(d_{m_i} + \gamma_{m_i} d_g
ight) m_i ar{\psi}_i \psi_i
ight]$$
 Damour & Donoghue

 10^{-18}

 10^{-17}

 10^{-16}

 10^{-15}

m(eV)

 10^{-14}

Yu, 姚跃辉, Tang, Wu, 2307.09197

fifth force

 10^{-12}

 10^{-13}

Statistical Effects

Velocity distributions, likelihood analysis

$$S_O(\lambda_{\min}) = \left(\frac{\ln \alpha}{\ln \gamma} - 1\right) N_O, \ \ \lambda_{\min}^2 = \frac{N_O}{\Gamma_O S_\Phi} \left(\frac{\ln \alpha}{\ln \gamma} - 1\right).$$

 $S_O(\lambda_{\min}) = \left(\frac{\ln \alpha}{\ln \gamma} - 1\right) N_O, \quad \lambda_{\min}^2 = \frac{N_O}{\Gamma_O S_\Phi} \left(\frac{\ln \alpha}{\ln \gamma} - 1\right). \qquad \gamma = \int_{P_*(\alpha)}^{\infty} dP \; \mathcal{L}_{\mathrm{stoch}} \left(\tilde{d} \middle| S_O(\lambda_{\min}), N_O\right), \; \text{detection probability}$ $\alpha = \int_{P_*}^{\infty} dP \; \mathcal{L}_{\mathrm{stoch}} \left(P \middle| \lambda = 0, N_O\right). \qquad \text{false alarm rate}$

Sensitivity on vector DM

For example, vector fields couple to baryon number B, or B-L, effectively neutron number. Sensitivity on ratio $\epsilon_D = e_D/e$

Correlation

Network of detectors

$$\gamma_{ab}(f,v) := \int d\hat{k} \; \chi_{ab}(f,\hat{k},v), \;\;\; \lambda_{\min}^2 = \frac{N}{2\Gamma_X S_{\Phi}} \left(\frac{\ln \alpha}{\ln \gamma} - 1 \right).$$

- Correlation length is larger
- ightharpoonup Sensitivity is enhanced by \sqrt{n}
- \blacktriangleright Different from SGWB searches which has \sqrt{T} enhancement.
- > How to distinguish them.
- Anisotropy and TDI

姚跃辉, Tang, 2404.01494(PRD)

Axion-photon coupling

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}\partial_{\mu}a\partial^{\mu}a - \frac{1}{2}m^2a^2 - \frac{g_{a\gamma}}{4}aF_{\mu\nu}\tilde{F}^{\mu\nu},$$

ightharpoonup Modifies Maxwell's eqs $\nabla \cdot {m E} = -g_{a\gamma} \nabla a \cdot {m B},$

$$rac{\partial m{E}}{\partial t} -
abla imes m{B} = -g_{a\gamma} \left(rac{\partial a}{\partial t} \cdot m{B} +
abla a imes m{E}
ight), \; \left(rac{\partial^2}{\partial t^2} -
abla^2
ight) m{B} = g_{a\gamma} \dot{a}
abla imes m{B}.$$

- ightharpoonup Dispersion relation for two polarizations, $\omega^2-k^2=\pm g_{a\gamma}\dot{a}k$ Birefringence
- Axion dark matter background affects the phase speed of laser with different polarization, $v_{\pm} = \frac{\omega}{k} \simeq 1 \pm \frac{g_{a\gamma}\dot{a}}{2\omega}$.
- Equivalent phase changes
- > Might be detected by LISA and Taiji detectors, etc
- Need modifications

Melissinos 2009, DeRocco & Hook 2018

Nagano+2019

DarkGEO 2024 LIDA 2024, ...

- ightharpoonup Signal response $L = \int_{t-\Delta T_{\pm}}^{t} dt \; v_{\pm} = \Delta T_{\pm} \pm \frac{g_{a\gamma}}{2\omega} \left[a(t) a(t-\Delta T_{\pm}) \right],$
- Equivalent phase changes

$$\Delta T_{\pm} \simeq L \mp \frac{g_{a\gamma}}{2\omega} \left[a(t) - a(t - L) \right].$$

$$\eta_{rs}(t) = -\frac{d \left(\Delta T_{\pm} \right)}{dt} = \pm \frac{i m g_{a\gamma}}{2\omega} \left[a(t) - a(t - L) \right],$$

$$\text{Linearly polarized - pol angle}$$

$$E_{r}(t) = \begin{bmatrix} 1 \\ i \end{bmatrix} \frac{e^{i\omega(t - \Delta T_{+})}}{2} + \begin{bmatrix} 1 \\ -i \end{bmatrix} \frac{e^{i\omega(t - \Delta T_{-})}}{2}.$$

$$E_{x} = +\cos \left[g_{a\gamma} \frac{a(t) - a(t - L)}{2} \right] \cos[\omega(t - L)]$$

$$E_{y} = -\sin \left[g_{a\gamma} \frac{a(t) - a(t - L)}{2} \right] \cos[\omega(t - L)]$$

Need modifications

姚跃辉, Jiang, YT, 2410.22072

- Signal response
- Equivalent phase changes

$$\Delta T_{\pm} \simeq L \mp \frac{g_{a\gamma}}{2\omega} \left[a(t) - a(t-L) \right].$$

$$\eta_{rs}(t) = -\frac{d\left(\Delta T_{\pm}\right)}{dt} = \pm \frac{img_{a\gamma}}{2\omega} \left[a(t) - a(t-L)\right],$$

Linearly polarized – pol angle

$$m{E}_r(t) = egin{bmatrix} 1 \ i \end{bmatrix} rac{e^{i\omega(t-\Delta T_+)}}{2} + egin{bmatrix} 1 \ -i \end{bmatrix} rac{e^{i\omega(t-\Delta T_-)}}{2}.$$

$$E_x = +\cos\left[g_{a\gamma}\frac{a(t) - a(t-L)}{2}\right]\cos[\omega(t-L)]$$

$$E_y = -\sin\left[g_{a\gamma}\frac{a(t) - a(t-L)}{2}\right]\cos[\omega(t-L)]$$

Need modifications

Orbital Modulation

 $ightharpoonup ext{Spectral split} \ y_{rs}(t) \supset \hat{n}_{rs}: rac{oldsymbol{h}(t_s - \hat{k} \cdot \mathbf{x}_s) - oldsymbol{h}(t - \hat{k} \cdot \mathbf{x}_r)}{2(1 - \hat{k} \cdot \hat{n}_{rs})}: \hat{n}_{rs}, \ y_{rs}(t) \supset g\hat{n}_{rs} \cdot [\mathbf{A}(t, \mathbf{x}_r) - \mathbf{A}(t_s, \mathbf{x}_s)],$ induced test mass motion binary inspiral heliocentric orbit Sun **GWs** time series laser beams **ULDM** power spectrum GWs or ULDM? **GWs ULDM** background spectral harmonics

frequency

姚跃辉 et al, 2508.14655

Orbital Modulation

$$X(t) = (y_{13} + y_{31,2} + y_{12,22} + y_{21,322}) - (y_{12} + y_{21,3} + y_{13,33} + y_{31,233}),$$

We adopt the Keplerian orbit

$$x_i(t) = r_{\odot} \cos \alpha + rac{1}{2} e r_{\odot} \left[\cos(2\alpha - eta_i) - 3\cos eta_i
ight] \hspace{1cm} e \hspace{1cm} ext{is the orbital eccentricity,} \ + rac{1}{8} e^2 r_{\odot} \left[3\cos(3\alpha - 2eta_i) - 10\cos \alpha - 5\cos(\alpha - 2eta_i)
ight], \hspace{1cm} lpha = 2\pi f_m t + \kappa \ y_i(t) = r_{\odot} \sin \alpha + rac{1}{2} e r_{\odot} \left[\sin(2\alpha - eta_i) - 3\sin eta_i
ight] \hspace{1cm} f_m = 1/ ext{yr}, \hspace{1cm} eta_i = 2\pi (i-1)/3 + \lambda \$$

(A1)

$$+ \frac{1}{8}e^{2}r_{\odot}[3\sin(3\alpha - 2\beta_{i}) - 10\sin\alpha + 5\sin(\alpha - 2\beta_{i})],$$

$$z_{i}(t) = -\sqrt{3}er_{\odot}\cos(\alpha - \beta_{i})$$

$$+ \sqrt{3}e^{2}r_{\odot}\left[\cos^{2}(\alpha - \beta_{i}) + 2\sin^{2}(\alpha - \beta_{i})\right],$$
(A

Orbital Modulation

$$> \text{Spectral split} \ y_{rs}(t) \supset \hat{n}_{rs} : \frac{\boldsymbol{h}(t_s - \hat{k} \cdot \mathbf{x}_s) - \boldsymbol{h}(t - \hat{k} \cdot \mathbf{x}_r)}{2(1 - \hat{k} \cdot \hat{n}_{rs})} : \hat{n}_{rs}, \ \boxed{y_{rs}(t) \supset g\hat{n}_{rs} \cdot [\mathbf{A}(t, \mathbf{x}_r) - \mathbf{A}(t_s, \mathbf{x}_s)], }$$

$$X(t) = (y_{13} + y_{31,2} + y_{12,22} + y_{21,322}) - (y_{12} + y_{21,3} + y_{13,33} + y_{31,233}),$$

For GWs, it can be rewritten as

$$X(t) \simeq 16\pi^2 f^2 L^2 \sum_{n=-\infty}^{+\infty} e^{i2\pi(f+nf_m)t} \times \sum_{l=-2j}^{2j} \mathcal{D}^{(n-l)}(f,\hat{k}) \sum_{p=+,\times} G_p^{(l)}(\hat{k}) H_p,$$

> For ULDM, it is

$$X(t)\simeq -2im^3L^3\sum_{m=-i}^j e^{i2\pi(f_c+nf_m)t}\sum_{m}\mathcal{G}_p^{(n)}a_p(\mathbf{x}_1),$$

Orbital Modulation

 $ightharpoonup ext{Spectral split} \left| y_{rs}(t) \supset \hat{n}_{rs} : rac{oldsymbol{h}(t_s - \hat{k} \cdot \mathbf{x}_s) - oldsymbol{h}(t - \hat{k} \cdot \mathbf{x}_r)}{2(1 - \hat{k} \cdot \hat{n}_{rs})} : \hat{n}_{rs}, \right| y_{rs}(t) \supset g\hat{n}_{rs} \cdot \left[\mathbf{A}(t, \mathbf{x}_r) - \mathbf{A}(t_s, \mathbf{x}_s) \right],$

$$X(t) = (y_{13} + y_{31,2} + y_{12,22} + y_{21,322}) - (y_{12} + y_{21,3} + y_{13,33} + y_{31,233}),$$

$$\frac{n \mid G_{+}^{(n)} \mid G_{+}^{(n)} \mid G_{\times}^{(n)} \mid G_{$$

For a source from some direction, we construct a null-response channel that is insensitive to ULDM or GWs.

$$\tilde{\eta} = a_1 \tilde{\alpha} + a_2 \tilde{\beta} + a_3 \tilde{\gamma}.$$

➤ The Signal-to-Noise Ratio (SNR)

$$SNR_{\eta}^{2} = \int df \, \frac{\left| a_{1}\tilde{\alpha}_{s} + a_{2}\tilde{\beta}_{s} + a_{3}\tilde{\gamma}_{s} \right|^{2}}{\mathbf{a}^{\dagger}\mathbf{S}_{\alpha}(f)\mathbf{a}},$$

 \triangleright SNR = 0 gives

$$a_1\tilde{\alpha}_s + a_2\tilde{\beta}_s + a_3\tilde{\gamma}_s = 0.$$

In GR, two polarizations of GW, the response can be written as

$$\tilde{\alpha}_s = \alpha_+^{\mathrm{gw}}(f, \hat{k})\tilde{h}_+(f) + \alpha_\times^{\mathrm{gw}}(f, \hat{k})\tilde{h}_\times(f),$$

ightharpoonup The condition $a_1\tilde{lpha}_s+a_2\tilde{eta}_s+a_3\tilde{\gamma}_s=0$ can be satisfied by

$$\left(\mathbf{a}\cdot\mathbf{x}_{+}^{\mathrm{gw}}(\hat{k})
ight) ilde{h}_{+}+\left(\mathbf{a}\cdot\mathbf{x}_{ imes}^{\mathrm{gw}}(\hat{k})
ight) ilde{h}_{ imes}=0,$$

Where

$$\mathbf{x}_p^{\mathrm{gw}}(\hat{k}) = [lpha_p^{\mathrm{gw}}(\hat{k}), eta_p^{\mathrm{gw}}(\hat{k}), \gamma_p^{\mathrm{gw}}(\hat{k})]^T$$

This can be solved by

$$\mathbf{a}_c^{\mathrm{gw}}(\hat{k}) = \mathbf{x}_+^{\mathrm{gw}}(\hat{k}) imes \mathbf{x}_ imes^{\mathrm{gw}}(\hat{k}).$$

ightharpoonup So NRC is given by $\tilde{\eta}_c^{\mathrm{gw}}(f,\hat{k};\hat{k}_c) = \mathbf{a}_c^{\mathrm{gw}}(\hat{k}_c) \cdot [\tilde{\alpha},\tilde{\beta},\tilde{\gamma}]$

43

➤ For a source from some direction, we construct a null-response channel that is insensitive to ULDM or GWs,

徐恒弢,姚跃辉, Tang, Wu, 2506.09744

> For a source from some direction, we construct a null-response channel that is insensitive to ULDM or GWs

- > Can we probe DM with gravitational interaction in solar system
- What if dark matter has only gravitational interaction?
- > Motivations from theories of gravity, particle physics, ...
- Viable scenarios in cosmology
 - > Axion or axion-like particle, misalignment
 - ➤ Dark photon, vacuum fluctuation
 Graham, Mardon, Rajendran,1504.02102(PRD)
 Ema, Nakayama, Tang, 1903.10973(JHEP),
 Ahmed, Grzadkowski, Socha, 2005.01766(JHEP)
 Kolb, Long, 2009.03828(JHEP), ···

Metric perturbation in solar system

$$ds^{2} = -(1+2\Psi)dt^{2} + (1-2\Phi)\delta_{ij}dx^{i}dx^{j} + h_{ij}dx^{i}dx^{j}$$

Einstein equations

$$\partial_i \partial^i \Phi = 4\pi G T_{00},$$

$$3\ddot{\Phi} + \partial_i \partial^i (\Psi - \Phi) = 4\pi G T_k^k,$$

$$\ddot{h}_{ij} = 16\pi G \left(T_{ij} - \frac{1}{3} \delta_{ij} T_k^k \right),$$

$$\Psi^{j} \simeq \Phi^{j} \simeq \pi G \frac{\rho}{m^{2}} = \frac{7 \times 10^{-26} \rho}{0.4 \text{ GeV/cm}^{3}} \left(\frac{10^{-18} \text{eV}}{m}\right)^{2},$$

$$m^2 = 0.4 \, {
m GeV/cm}^3 \; (m)$$
 $h^v_{ij} \propto h_0 \simeq rac{8}{3} \pi G rac{
ho}{m^2} = rac{2 imes 10^{-25}
ho}{0.4 \, {
m GeV/cm}^3} \left(rac{10^{-18} {
m eV}}{m}
ight)^2,$
 $h^s_{ij} \simeq h_0 v^2/2$

> Perturbation for scalar is suppressed.

H. Kim 2023

> Tensor perturbation

$$S_{\Phi}^{s} \simeq \frac{64}{15} \kappa^{4} \rho^{2} v^{2} L^{4} T \left[v^{2} \sin^{2} \gamma + 5 m^{2} L^{2} \sin^{2} \frac{\gamma}{2} \right],$$

$$S_h^v(\epsilon_{ij}) \simeq \frac{256}{9} \kappa^4 \rho^2 L^4 T [(\hat{n}_{12}^i \hat{n}_{12}^j - \hat{n}_{13}^i \hat{n}_{13}^j) \epsilon_{ij}]^2$$

scalar

vector

TABLE I. Arm lengths and instrumental noises of several planned laser interferometers in space. In the last row we give the sensitivities on vector ULDM with mass 5.0×10^{-19} eV. Here L is the nominal arm length of triangle constellation, while $s_{\rm acc}$ and $s_{\rm oms}$ are the acceleration noise of test mass and noise from optical metrology system, respectively. Note that LISA/LISAmax/ Taiji/Tianqin adopt frequency-dependent noise power spectra [101], $s_{\rm acc}^2 \propto [1 + (0.4 \times 10^{-3} \, \text{Hz}/f)^2][1 + (f/8 \times 10^{-3} \, \text{Hz})^4]$ and $s_{\rm oms}^2 \propto 1 + (2 \times 10^{-3} \, \text{Hz}/f)^4$.

	LISA	Taiji	Tianqin	BBO	DECIGO	μAres	LISAmax	ASTROD-GW
$L (10^9 \text{ m})$	2.5	3	0.17	0.05	1×10^{-3}	395	260	260
$s_{\rm acc} \ (10^{-15} \ \frac{\rm m/s^2}{\sqrt{\rm Hz}})$	3	3	1	3×10^{-2}	4×10^{-4}	1	3	3
$s_{\rm oms} \ (10^{-12} \ \frac{\rm m}{\sqrt{\rm Hz}})$	15	8	1	1.4×10^{-5}	2×10^{-6}	50	15	100
$\frac{\rho}{\rho_0}$ (5.0 × 10 ⁻¹⁹ eV)	7.95×10^2	6.53×10^2	3.82×10^3	2.00×10^{2}	1.34×10^2	0.44	7.67	4.32

> Tensor perturbation

48

Yu, Cao, Tang, Wu, 2404.04333

WIMP DM Spikes around Black Holes

- ➤ WIMP DM particles accretion around BH → DM spike
- ➤ NFW profile → spiky density profile Gondolo & Silk (1999)

$$\rho(r) \propto r^{-\gamma}, 0 \leq \gamma \leq 2 \implies \rho_{\text{spike}}(r) = \rho_{\text{sp}} \left(\frac{r_{\text{sp}}}{r}\right)^{\alpha}, \quad \alpha = \frac{9 - 2\gamma}{4 - \gamma}$$

➤ Dynamical friction → Gravitational wave

$$mrac{d^2\mathbf{x}}{dt^2} = \mathbf{F}_{\mathrm{G}} + \mathbf{F}_{\mathrm{DF}}$$
 $h_{ij} \sim rac{G}{d} rac{d^2 Q_{ij}}{dt^2},$ $Q_{ij} \sim m \left(x_i x_j - rac{1}{3} x^2 \delta_{ij}
ight)$

Eda, Itoh, Kuroyanagi & Silk, Yue & Cao, Yue, Han & Chen, Gong, Bertone et al

WIMP DM Spikes around Black Holes

- ➤ WIMP DM particles accretion around BH → DM spike
- ➤ NFW profile → spiky density profile Gondolo & Silk (1999)

$$\rho(r) \propto r^{-\gamma}, 0 \leq \gamma \leq 2 \implies \rho_{\text{spike}}(r) = \rho_{\text{sp}} \left(\frac{r_{\text{sp}}}{r}\right)^{\alpha}, \quad \alpha = \frac{9 - 2\gamma}{4 - \gamma}$$

➤ Dynamical friction → Gravitational wave

Extreme-mass-ratio Inspiral (EMRI)

M

m

$$mrac{d^2\mathbf{x}}{dt^2} = \mathbf{F}_{\mathrm{G}} + \mathbf{F}_{\mathrm{DF}}$$
 $h_{ij} \sim rac{G}{d} rac{d^2 Q_{ij}}{dt^2},$
 $Q_{ij} \sim m \left(x_i x_j - rac{1}{3} x^2 \delta_{ij}
ight)$

Eda, Itoh, Kuroyanagi & Silk, Yue & Cao, Yue, Han & Chen, Gong, Bertone

Density and Velocity Distribution

Relativistic treatment (Will et al)

$$\rho(r, \alpha = 1) = \frac{\kappa}{(r/GM)^{\omega}} \left(1 - \frac{4GM}{r}\right)^{\eta}.$$

Dark Matter Spike

Universal profile
$$\rho(r) = \frac{\kappa(\text{GeV} \cdot \text{cm}^{-3})}{(r/GM)^{\omega}} \left(1 - \frac{4GM}{r}\right)^{\eta}$$

$$\log \left(\kappa/(\text{GeV} \cdot \text{cm}^{-3})\right) = a \cdot \log(M/M_{\odot}) + b \qquad (a,b) = (-1.62, 31.5).$$

Velocity Distribution

> Fitted with Maxwell-Boltzmann distribution

Effects on EMRI

Phase shift of the waveform of GW

Effects on Early EMRIs

In Milky Way center, SMBH with mass $4 \times 10^6 M_{\odot}$, possible many EMRIs at early stages, GW background Feng, Tang, Wu, 2506.02937

$$ho(r) =
ho_{
m c} \left(rac{r_{
m c}}{r}
ight)^{\gamma}, \, \gamma = rac{9-2eta}{4-eta},$$

$$\left\langle \frac{da}{dt} \right\rangle = \left\langle \frac{da}{dt} \right\rangle_{\rm df} + \left\langle \frac{da}{dt} \right\rangle_{\rm gw},$$

$$\left\langle \frac{de}{dt} \right\rangle = \left\langle \frac{de}{dt} \right\rangle_{\rm df} + \left\langle \frac{de}{dt} \right\rangle_{\rm gw}.$$

Effects on Early EMRIs

In Milky Way center, SMBH with mass $4\times 10^6 M_{\odot}$, possible many EMRIs at early stages, GW background Feng, Tang, Wu, 2506.02937

Effects on Early EMRIs

In Milky Way center, SMBH with mass $4 \times 10^6 M_{\odot}$, possible many EMRIs at early stages, GW background Feng, Tang, Wu, 2506.02937

Summary

- > We discuss how GW laser interferometers in space may help to understand the nature of dark matter.
- Wave/Ultralight Dark Matter
 - induce the oscillation of test masses, leading to signals in detectors. Also sensitive to axion-photon coupling
 - ➤ Metric perturbation by vector ULDM may be detectable in next-generation interferometers.
- Weakly-interacting massive particles
 - compact objects, imprinting on the waveform of GW.

中国科学: 物理学 力学 天文学 **SCIENCE CHINA Physics, Mechanics & Astronomy**

Editor's Focus: highlighted by experts, fast channel

Full-text HTML and timely publication (online immediately)

- Two-month free access at Springer
- Highlighted at EurekAlert and other public media

- 100 Outstanding Academic Journals of China
- Indexed in Scopus, ESCI, etc.
- Special topic is encouraged, published over 70 special topics

Editor-in-Chief:

Prof. XinCheng Xie

