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Quantum information at collider

Quantum entanglement can now be probed at the
highest scale accessible by humans

* Violation of Bell inequality measured with top-quark spins (Afik & de
Nova, 2003.02280) (ATLAS, Nature 633 (2024) 8030, 542-547)

2 2
2

Growing interest in probing Ql quantities in more
processes
* Higgs—W (Barr, 2106.01377), weak decays (Ashby-Pickering, Barr &

Wierzchucka, 2209.13990), leptons (Fabbrichesi, Floreanini & Gabrielli,
2208.11723), light quarks (Cheng & Yan, 2501.03321) ...
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Abstract

Entanglement is a key feature of quantum mechanics'22

, with applications in fields such as
metrology, cryptography, quantum information and quantum computation®*>%Z8, |t has
been observed in a wide variety of systems and length scales, ranging from the
microscopic2121L1213 to the macroscopic*1516, However, entanglement remains largely
unexplored at the highest accessible energy scales. Here we report the highest-energy
observation of entanglement, in top-antitop quark events produced at the Large Hadron
Collider, using a proton-proton collision dataset with a centre-of-mass energy of vs =13 TeV
and an integrated luminosity of 140 inverse femtobarns (fb) ! recorded with the ATLAS
experiment. Spin entanglement is detected from the measurement of a single observable D,
inferred from the angle between the charged leptons in their parent top- and antitop-quark
rest frames. The observable is measured in a narrow interval around the top-antitop quark
production threshold, at which the entanglement detection is expected to be significant. Itis
reported in a fiducial phase space defined with stable particles to minimize the uncertainties
that stem from the limitations of the Monte Carlo event generators and the parton shower
model in modelling top-quark pair production. The entanglement marker is measured to be
D=-0.537+0.002 (stat.) + 0.019 (syst.) for 340 GeV < m,; < 380 GeV.Theobserved
result is more than five standard deviations from a scenario without entanglement and hence
constitutes the first observation of entanglement in a pair of quarks and the highest-energy
observation of entanglement so far. —
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Implications of quantum information in scattering

4 N
Growth of scattering entanglement entropy
(Cheung, He & Sivaramakrishnan, 2304.13052)
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Area law” in 2—2 scattering
Entanglement entropy o cross section
(Low & Yin, 2405.08056 & 2410.22414)
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( ) [ ) () \
Positivity of EFT from 2—2 scattering
Positivity = entanglement entropy
L (Aoude, Elor, Remmen & Sumensari, 2402.16956) )
4 ] )
Entanglement suppression = emergent
spin-flavor symmetry

S (Beane, Kaplan, Klco & Savage, 1812.03138)
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Our motivation: relation closer to experiment

e.g. pole structure
How does the breakdown of EFT manifest as features of Ql
guantities in scattering?

J

Universal entanglement pattern induced by
intermediate heavy particle
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Entanglement pattern quantified by entanglement entropy

.

Entanglement entropy between two groups of final particles

Z\/@WA ®li)p = SEE = — ZP@ log p;

Scattering can cause entanglement between final particles

e Characterized by the uncertainty of quantum state, by only
knowing part of the particles (e.g. subsystem A) and neglecting
the remaining part (e.g. B)

e Quantified by the entanglement entropy
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Entanglement entropy of 2—2 scattering in the literature

The “area law” of 2—2 elastic scattering (entropy « cross section)
e (Seki, Park & Sin, 1412.7894) (Fan, Deng & Huang, 1703.07911) (Low & Yin, 2405.08056 & 2410.22414)

g(2=2) _ Pp o Pr Pk o PnF N PnFp o 1 [pem|ErEo v
EE pPe=2) 08 pie=2) | pie—=2) 08 pi=2) | pi—2) %\ T /5 by @ —
\ J \ J Pre——— —
Shannon entropy of forV\yard/non—forward scattering Size of 2-body phase space Forward scattering
(mixture part: depends on probability) (state’s part: depends on microscopic details)

D2

Non-forward scattering
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Entanglement entropy of 2—2 scattering in the literature

The “area law” of 2—2 elastic scattering (entropy « cross section)

e (Seki, Park & Sin, 1412.7894) (Fan, Deng & Huang, 1703.07911) (Low & Yin, 2405.08056 & 2410.22414)
(2-2) _ Pp | Pp PnF 1 PnF N Pnp | 1 [pom|Er By v
EE T p(2—2) 08 p(2—2) p(2—2) 08 pi—2) ' p(2—2) 08 T /s Jo | ey @ — |,
\ J \ J pre—— —
Shannon entropy of forV\yard/non—forward scattering Size of 2-body phase space Forward scattering
(mixture part: depends on probability) (state’s part: depends on microscopic details)
PnF PnF
= p2—2) log P(2—2) +0(4)
\ J
| P2
Non-forward probability scales with cross section Non-forward scattering

e Assume isotropic scattering for simplicit : :
P g P y T < Interaction time

. . . . _ A= -
The discretization factor of the 2-body phase space 1B FrV < Volume P
)
(

* For Rényi or Tsallis entropies, they are directly proportional to cross section (without log =)
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Entanglement entropy of decay in the literature

Entanglement from 1—2 decay of heavy particle
 The Wigner-Weisskopf method approximating time-dependent evolution (Lello, Boyanovsky & Holman, 1304.6110)

Decay rate Dy
vom | E1E
SO =log (F |pClel 2v> ——————
s
\ ) M )
Y 2

Size of 2-body phase space around M ~ E{ + E5
(state’s part: depends on microscopic details)

» Contrast to the 2—2 elastic scattering (only relies on mixture part), the entanglement structure is only related to the
microscopic details

* Practically, itis included in a larger scattering process, where the initial and final asymptotic states are well-defined
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Entanglement entropy of decay in the literature

Entanglement from 1—2 decay of heavy particle
 The Wigner-Weisskopf method approximating time-dependent evolution (Lello, Boyanovsky & Holman, 1304.6110)

Decay rate Dy
vom | E1E
SO =log (F |pClel 2v> ——————
s
\ ) M )
Y 2

Size of 2-body phase space around M ~ F{ + E>
(state’s part: depends on microscopic details)

» Contrast to the 2—2 elastic scattering (only relies on mixture part), the entanglement structure is only related to the
microscopic details

* Practically, itis included in a larger scattering process, where the initial and final asymptotic states are well-defined

[ Motivation: investigate entanglement structure in more general scatterings ]
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Outline of our results

b1
1. The novel entanglement structure from heavy particle in m—n -

(n23) inelastic scattering
* Bipartition n-body phase space into decay products and other particles
* Universal entropy suppression from on-shell heavy particle
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Outline of our results

b1
1. The novel entanglement structure from heavy particle in m—n -

(n23) inelastic scattering
* Bipartition n-body phase space into decay products and other particles
* Universal entropy suppression from on-shell heavy particle

2. Universal entanglement feature from low-energy EFT to high

energy theory
* “Dip” feature of entanglement suppression when total energy reaches |
the heavy mass 2 //\‘
. . N R / —— exact
* Verify in simple 2—3 and 2—4 models ~ v onshell
on-—sne
E,
LogM

Entanglement features from intermediate heavy particle in scattering
arXiv:2507.03555

Chon Man Sou 71{Z& X (Tsinghua University)

BPCS 2025



Outline of our results

b1
1. The novel entanglement structure from heavy particle in m—n -

(n23) inelastic scattering
* Bipartition n-body phase space into decay products and other particles
* Universal entropy suppression from on-shell heavy particle

2. Universal entanglement feature from low-energy EFT to high

energy theory
* “Dip” feature of entanglement suppression when total energy reaches |
the heavy mass 2 ,,,/‘\‘
. . N R / —— exact
* Verify in simple 2—3 and 2—4 models ~ v onshell
on-—sne
E,
LogM

Key demonstration
Pole structure in amplitude => Entanglement feature
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m—n inelastic scattering with

intermediate heavy particle




Setup of m—n (n=3) inelastic scattering with intermediate heavy particle

4 ) 4 )
Initial unentangled m particles with Intermediate heavy particle with
momenta momentum
{kl, ce e km} q
o J o J

» All particles are distinguishable for simplicity

* Focus on momentum space for simplicity, ignoring internal degrees of freedom (e.g. spin, polarization ...)
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Setup of m—n (n=3) inelastic scattering with intermediate heavy particle

4 ) 4 ) 4 ] )
Decay products with momenta
Initial unentangled m particles with Intermediate heavy particle with {p1 D }
momenta momentum IR &
and other final particles
{kla ) km} q {p 11 D }
N\ J N\ J N\ Jrbe b J
P1
p2
Pj—1
Dj

» All particles are distinguishable for simplicity

* Focus on momentum space for simplicity, ignoring internal degrees of freedom (e.g. spin, polarization ...)
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Entanglement in the n-body final state
? ~

The n-body final state is a superposition according to the amplitude

> momentum-space entanglement

fim=m)y = /dHn(K;pl, oy Dr)IM(m = n)|p1) @ |p2) ® - - @ |pp)

1
L A /N(m—)n)

J

p3 Pj—2
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Entanglement in the n-body final state
? ~

The n-body final state is a superposition according to the amplitude

> momentum-space entanglement

fim=m)y = /dHn(K;pl, oy Dr)IM(m = n)|p1) @ |p2) ® - - @ |pp)

1
L A /N(m—)n)

_J

Subsystem A?

Subsystem B?

For (simplest) bipartite entanglement, which bipartition is non-trivial and utilizes
features with heavy pole?
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Key points for bipartite entanglement entropy in scattering

Entanglement entropy from the Schmidt decomposition

Z\/EMA ®li)p = SEE = — sz' log p;

~\
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Key points for bipartite entanglement entropy in scattering

~
Entanglement entropy from the Schmidt decomposition

Z\f\ )A® i) = Spp = — szl()gpz

) \ \ )
l Bipartition the full

— Counting the states Probability distribution — system

n-body phase space Determined by the amplitude with pole Bipartition by decay products and

Momenta of n final particles other Iight particles
ZM(m — ’I'L) p1

/dHn<K7plaapn) 1 P2
n ) ~—iMm—n—j+1) 2—Af2+iF]VfM(1—>j) Z; 2 -

n q '1
/ (H 32E ) (2m)%6" (K - Db t o e
i=1 T =1 Breit-Wigner formula Fom s

Total initial momentum Pn
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Key points for bipartite entanglement entropy in scattering

~
Entanglement entropy from the Schmidt decomposition

Z\f\ )A® i) = Spp = — szl()gpz

) \ \ )
l Bipartition the full

— Counting the states Probability distribution — system

n-body phase space Determined by the amplitude with pole Bipartition by decay products and

Momenta of n final particles other Iight particles
ZM(m — ’I'L) p1

/dHn<K7plaapn) 1 P2
. " ) ~—iMm—n—j+1) 2 2 —|—ZT]WM(1 — ) :; Es pi-

q .1
/ (H 32E ) (2m)%6" (K - Db t o e
i=1 T =1 Breit-Wigner formula Fom s

Total initial momentum Pn

I—}[ Bipartition of n-body phase space ]4—'
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Bipartition of n-body phase space

and entanglement structure




Decomposition of the n-body phase space

Recursive relation of n-body phase space

dq2 b2
/dﬂn(K;pl,.--,pn)=/gdﬂn—jﬂ(K;q,pg’H,---,pn)dﬂj(q;pl,---,pg’) pfl

Dj
. . ] . . . . k /
e g is the intermediate four momentum with integrating out its square b S
(“invariant mass”) ; C) ;
km—l Pn—1
kTTL pTL

Decompose the phase space with (g?, g)
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The reduced density matrix of decay products

r

The entanglement between the decay products and other particles is
characterized by the entropy of the reduced density matrix

A = oy (ST D))

[What is the basis of this matrix?]
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The reduced density matrix of decay products

~ : :
The entanglement between the decay products and other particles is tM(1 _;J)
characterized by the entropy of the reduced density matrix ng
m—n m—n m—n a Pt
die = (S ) o
[What is the basis of this matrix?] kp
4[ Decomposing phase space with (g2 q) ] iMm = n—j+1)

For fixed “invariant mass” g2, the basis is the scattered j-particle state B ()

7175 (gP) o / Al 41 [M(m = n = + DR () W77 () o [ MmO i p)
. q j-particle state
ko / Dj+1
km Dn
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The reduced density matrix of decay products

-
The entanglement between the decay products and other particles is tM(1 _;J)
characterized by the entropy of the reduced density matrix ng
(m—n) g P
P1—; — Trpjﬂ,---,pn (|f(m_m)><f(m_m) |) ) C b
ko //q Dj+1
[What is the basis of this matrix?] s & .
km Pn
4[ Decomposing phase space with (g2 q) ] iMm = n—j+1)
r 0 0 . 3 L] o L]
For fixed “invariant mass” g2, the basis is the scattered j-particle state B ()
7175 (gP) o / Al 41 [M(m = n = + DR () W77 () o« [ a (i pips.....m)
\ J
r ) — ) o ) N | j-particle state
Finally, probabilistic mixture (linear combination) of the basis of g2 k
P o / dg® Pr,a (q2) L= =74 (g2 2029) (¢2)a 7™ (¢?)
J = -
e Cauchy distribution by heavy propagator F7ZT\4 & M2)12 e Phase-space integral Z(* % = / dIT,| M(a — b)?
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Universal entanglement structure from the mixture of quantum states

Theorem (Nielsen & Chuang, 2010): for a mixture of quantum states (linear combination of density matrices
on orthogonal subspaces)
P = Z P;o;
i
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Universal entanglement structure from the mixture of quantum states

Theorem (Nielsen & Chuang, 2010): for a mixture of quantum states (linear combination of density matrices
on orthogonal subspaces)
P = Z P;o;

The entropy is decomposed into: (1) Classical Shannon entropy (mixture part, probability) and (2) averaged
guantum non-Neumann entropy (state’s part, microscopic details)

S(p) = H(P;) + ZPiS(Ui>

e Recall that for 2—2 scattering, it is a mixture of forward and non-forward scatterings, leading to the “area law”
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Universal entanglement structure from the mixture of quantum states

Theorem (Nielsen & Chuang, 2010): for a mixture of quantum states (linear combination of density matrices
on orthogonal subspaces)
P = Z P;o;

The entropy is decomposed into: (1) Classical Shannon entropy (mixture part, probability) and (2) averaged
guantum non-Neumann entropy (state’s part, microscopic details)

S(p) = H(P;) + ZPiS(Ui>

e Recall that for 2—2 scattering, it is a mixture of forward and non-forward scatterings, leading to the “area law”

/ The entanglement entropy includes a mixture part related to the heavy pole \
(Sou, Wang & Zhang, 2507.03555)

P / dg? P (2)o ™™ (g2)

— Sk (p§_f )) = r (P )) +/dq2P1(_f (¢%)s (ULT )(q2)) + log (—)

/v 27

Shannon entropy of distribution with pole '\
(o Cauchy distribution)Pfo”) o< Proar(q?) Differential (continuous) entropy From discretizing phase space
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Entanglement suppression at the

on-shell limit




Intuition for the entanglement entropy with heavy-field propagator

Since the entanglement entropy is determined by a probability

distribution with pole )

(qz _ M2)2 —|—F2M2 SEE

P (¢?) o
we expect the following variations

* For total energy E, <« M, all kinematically allowed final states
contribute evenly, with multiplicity grows with energy, so
increasing entropy

v
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Intuition for the entanglement entropy with heavy-field propagator

Since the entanglement entropy is determined by a probability
distribution with pole
(m—n), 2 1
Pl—j (q7) o

(¢2 — M2)2 + T2 M?2 SeE |
we expect the following variations

* For total energy E, <« M, all kinematically allowed final states

contribute evenly, with multiplicity grows with energy, so
increasing entropy

« When E, > M, the on-shell configuration ¢° ~ /M dominates the

contribution, leading to a reduction of entropy (uncertainty of
effective region in phase space)

v
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Intuition for the entanglement entropy with heavy-field propagator

Since the entanglement entropy is determined by a probability
distribution with pole
(m—n), 2 1
Pl—j (q7) o

(¢2 — M2)2 + T2 M?2 SeE |
we expect the following variations

* For total energy E, <« M, all kinematically allowed final states

contribute evenly, with multiplicity grows with energy, so
increasing entropy

« When E, > M, the on-shell configuration ¢° ~ /M dominates the

contribution, leading to a reduction of entropy (uncertainty of
effective region in phase space)

* When E; > M, the multiplicity of effective region grows with
energy, so increasing entropy

Chon Man Sou 71{Z& X (Tsinghua University)
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On-shell approximation with the Cauchy distribution

The entanglement suppression by the on-shell heavy particle can be proved with complex analysis

* Entropy for distribution with poles . .

Factorized into X
. P2 —M2+ilM = @—M?—il'M

+0o0
_ / dq® Prar () f(q2) 1og(Prar (62) f(42))

— 0
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On-shell approximation with the Cauchy distribution

The entanglement suppression by the on-shell heavy particle can be proved with complex analysis

* Entropy for distribution with poles . .

Factorized into X
. P2 —M2+ilM = @—M?—il'M

+0o0
_ / dq® Prar () f(q2) 1og(Prar (62) f(42))

— 00
A q2 A q2 " q2
M T @  \  aaees P ® s °
— 5 v I'M
. o M2 g —I_ — M2 il + - 5 >
|---_-,Ii]:-M--| ------- @ —iI'M L ® —iT'M 1 ]\{
Branch cut from log

~ F(MP)log(xTM) — (M) log(f (M) + O @)
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On-shell approximation with the Cauchy distribution

The entanglement suppression by the on-shell heavy particle can be proved with complex analysis

* Entropy for distribution with poles . .

Factorized into X
. P2 —M2+ilM = @—M?—il'M

+0o0
_ / dq® Prar () f(q2) 1og(Prar (62) f(42))

— 00
2

A q A q2 " q2

T M - @  \ aeus FM N B ® s °

p— . t ZFM

. o M2 g —I_ — M2 il _|_ - 5 >

|---_-,Ii]:-M--| ------- @ —iI'M L ® —iT'M | ]\{

Branch cut from log

~ f(M2)log(47rFM) — f(MQ)IOg(f(Mz)) L0 (L)

M
L h
The entanglement entropy from on-shell heavy particle is suppressed by decay rate
(Sou, Wang & Zhang, 2507.03555) . .
(m—n)\ (m—n), 2 v L
L SEE (P1—j ) Nlog(47TFM)—|—s(01_j (q )> q2:M2—|—log(27T) -I—(’)(M) )
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Examples: entanglement features

in 2—3 and 2—4 scatterings




Concrete model of 2—3 scattering

ASgg

r
8t ]
6, ]
m
q 4 ]
2 /V’ exact
I e EFT
0 . on-shell
-2 ‘ . ‘ ‘ ]
-15 -10 -05 0.0 0.5 1.0 1.5
Logj%’
r
1T4=0'005
10F T o
8,
6
Eul ) / /"’H
3 2 '
0-
V exact
-2 EFT
_4, on—-shell
15 -10 -05 00 05 10 15
Logf—l’

ASgg
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=0.01

1057
8,
6,
4,
2_
0= V’ exact
=21 EFT
on—shell
—4L. . ‘ . ‘ ‘ L]
-15 -10 -05 0.0 0.5 1.0 1.5
Logf—l’
=0.001
10-
5_
0 -
exact
EFT
-5 on-—shell 1
15 -10 -05 00 05 10 15
Logf—l’
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S

Low-energy EFT
Lint = g19APBX + g2 X0 P3 + gop1 P2

Heavy particle

 Dip feature of sharp entanglement
suppression

e The smaller the decay rate, the more
accurate the on-shell approximation
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Concrete model of 2—4 scattering

| | | A%=O.05 | | | | | | A%=0.01 | | |
[ ; p1
10‘ / 10: /’_ D2
2| N = '/\/ i M
2) 5, - ,2) 5 g exact ]
[ exact EFT Ps3
: EFT ’ on-shell
0' . on-shell 0 - Pa
: Low-energy EFT
15 -10 -05 00 05 10 15 15 -10 -05 00 05 10 15
Logy LogZ
L0005 I 0001 Lint = g10APBX + g2X0 P304 + goP102
M M
Heavyparticle
10- 1 10 (
i} /\/ _— . — ~_— | * Dip feature of sharp entanglement
Rl "‘/"/ - exact A 7 - ] g
2 o 2 ) suppression
0" on-shell 0 | = The smaller the decay rate, the more
exact 1
5 BT . accurate the on-shell approximation
-5 | | | . R | | | | onmsel ]
-15 -10 -05 00 05 1.0 1.5 -15 -10 -05 0.0 05 1.0 1.5
Logf—l’ Logf—l’
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Comments on measuring the entanglement features

For the simplest 2—3 scattering, the entanglement entropy can be 7
complementarily obtained by tracing out the decay products (1 and 2) /\
* Reduced density matrix of particle 3 oy 4 P2
g1 92//6]
ko \
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Comments on measuring the entanglement features

For the simplest 2—3 scattering, the entanglement entropy can be
complementarily obtained by tracing out the decay products (1 and 2)
* Reduced density matrix of particle 3

o7 = Ty, (P29 (279

m/ﬂMKmmmmHMﬂﬁﬁﬂwm%
\ ) 2E3V

f

Marginalizing p; and p, = Coefficients of the matrix for p;

=> Entanglement entropy Si (p:(f%g)) = SEE (pff‘”)
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Comments on measuring the entanglement features

For the simplest 2—3 scattering, the entanglement entropy can be 7
complementarily obtained by tracing out the decay products (1 and 2) /\
g
b

* Reduced density matrix of particle 3 oy

g1 92//(]

o7 = Ty, (P29 (279 |
ko

OC/dH3(K;p1,p2,p3) |M(2_>3)|2|p3><p3‘ Ps3

f

Marginalizing p; and p, = Coefficients of the matrix for p;

=> Entanglement entropy Si (p§2%3)> = SEE (p§22_>3))

The entanglement feature may be measured by suitably marginalizing
the phase-space distribution of final particles
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Conclusion

1. Universal entanglement features mediated by heavy particle in inelastic scatterings
with n>3 particles

* Dip feature (sharp reduction) of entanglement entropy when total energy reaches the mass scale
* The entanglement suppression comes from the on-shell heavy particle, analytically suppressed by decay rate
* Go beyond the “area law” derived for 2—2 scatterings
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Conclusion

1. Universal entanglement features mediated by heavy particle in inelastic scatterings
with n>3 particles

* Dip feature (sharp reduction) of entanglement entropy when total energy reaches the mass scale
* The entanglement suppression comes from the on-shell heavy particle, analytically suppressed by decay rate
* Go beyond the “area law” derived for 2—2 scatterings

2. Demonstration of pole structure in amplitude = entanglement feature
* Potential constraints for EFT based on quantum-information quantities?
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Conclusion

1. Universal entanglement features mediated by heavy particle in inelastic scatterings
with n>3 particles

* Dip feature (sharp reduction) of entanglement entropy when total energy reaches the mass scale
* The entanglement suppression comes from the on-shell heavy particle, analytically suppressed by decay rate
* Go beyond the “area law” derived for 2—2 scatterings

2. Demonstration of pole structure in amplitude = entanglement feature
* Potential constraints for EFT based on quantum-information quantities?

3. In practice, the entanglement features may be probed by suitably marginalizing the
phase-space distribution of final particles

* Potential guide for quantum-information observables at collider
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