Numerical computation of electromagnetically sourced nonlinear tails

Zhen-Tao He

University of Chinese Academy of Sciences

Oct. 18, 2025 @the Two Mountains High-Level Talents Area

Based on arXiv: 2508.20499 with Jia Du, Jiageng Jiao, Caiying Shao, Junxi Shi, Yu Tian, and Hongbao Zhang.

Introduction

Formalish

Numerical scheme

Results

Implications

Nonlinearities in black hole (BH) ringdown

- ▶ Recently, increasing studies reveal rich phenomena arising from nonlinearities in BH ringdown, such as quadratic QNMs and nonlinear power-law tails [see a recent review 2505.23895].
- Not only can the quadratic QNM's amplitude be even larger than that of their linear counterpart [Mitman et al., PRL(2023); Cheung et al., PRL(2023)],
- but the nonlinear tails can decay more slowly than the linear Price's law. [Cardoso et al., PRD(2024); Marina et al., 2412.06887; Ma et al., PRD(2025); Kehagias et al., PRD(2025); Ling et al., PRD(2025)]

Motivation

- ► Transient electromagnetic events in the astrophysical environment are typically highenergetic, potentially responsible for some nonlinearities in ringdown.
- ▶ If a neutron star has magnetic energy up to 10^{49} ergs and a mass of about one solar mass M_{\odot} , then its EM effect could surpass its second-order gravitational effect in extreme mass ratio inspiral systems with a supermassive BH $M \gtrsim 10^6 M_{\odot}$.
- ▶ Hence, the multi-messenger astronomy, which integrates GW detection and EM observation, could help the interpretation of GW signals.
- ► For example, by analysing the QNMs of GWs generated from transient high-energetic EM waves, one can detect solitary black holes, whose number and distribution in the Milky Way encode essential information about BH formation and the existence of primordial BHs [Jana et al., MNRAS Letters (2024)].
- "Can we further the understanding or observation of the electromagnetically sourced nonlinearities in BH ringdown?"

Introductio

Formalism

Numerical scheme

Results

Implications

Bardeen-Press-Teukolsky (BPT) equations

Formalism

We consider a Schwarzschild BH with mass ${\cal M}$ that is perturbed by a sourceless electromagnetic field

$$\phi_2 = \varepsilon \phi_2^{(1)} + \mathcal{O}(\varepsilon^2). \tag{1}$$

Thus, the gravitational perturbation is nonlinearly sourced at the leading order

$$\Psi_4 = \varepsilon^2 \Psi_4^{(2)} + \mathcal{O}(\varepsilon^3). \tag{2}$$

The system of equations under consideration reads¹

$$_{-1}\mathcal{T}\phi_{2}^{(1)} = _{-1}\mathcal{S} = 0,$$

Reculte

$${}_{-2}\mathcal{T}\Psi_4^{(2)} = {}_{-2}\mathcal{S}(\phi_2^{(1)}; \phi_2^{(1)}). \tag{4}$$

$${}_{-2}\mathcal{T}\Psi_4^{(2)} = {}_{-2}\mathcal{S}(\phi_2^{(1)}; \phi_2^{(1)}). \tag{4}$$

(3)

 $^{^1}$ For an explicit expression of the source term $_{-2}\mathcal{S}$, the audience is referred to our paper.

Coordinates and tetrad

To avoid complicated boundary condition problems and to extract astrophysically relevant results at future null infinity, we use horizon-penetrating hyperboloidally compactified coordinates $\{T,R,\theta,\varphi\}$, related to the Schwarzschild coordinates $\{t,r,\theta,\varphi\}$ via

$$T = t - r + 2M \ln \frac{r - 2M}{2M} - 4M \ln \frac{r}{2M},$$

$$R = \frac{L^2}{r},$$
(5)

Future null infinity \mathcal{I}^+ is located at R=0, and future event horizon \mathcal{H}^+ is located at $R_{\mathsf{H}}=L^2/2M$. Note that the hyperboloidal time coordinate T approaches a retarded time u when $R\to 0$ and approaches an advanced time v when $R\to R_{\mathsf{H}}$.

The hyperboloidal foliations in the Schwarzschild BH spacetime

Coordinates and tetrad

A rotated Kinnersley tetrad, which is regular on the horizon, is used in this work

$$l^{\mu} = \frac{R^2}{L^4} \left\{ 4M^2, -\frac{1}{2}(L^2 - 2MR), 0, 0 \right\},\tag{6}$$

$$n^{\mu} = \left\{ 2 + \frac{4MR}{L^2}, \frac{R^2}{L^2}, 0, 0 \right\},\tag{7}$$

$$m^{\mu} = \frac{R}{\sqrt{2}L^2} \left\{ 0, 0, -1, -\frac{i}{\sin \theta} \right\}. \tag{8}$$

Bardeen-Press-Teukolsky equations

In our coordinates and tetrad, the BPT equation reads

$$\left(C_{TT}\partial_T^2 + C_{TR}\partial_T\partial_R + C_{RR}\partial_R^2 + {}_sC_T\partial_T + {}_sC_R\partial_R + {}_sC - {}_s\Delta\right)_s\hat{\psi} = {}_s\hat{\mathcal{S}}.$$
 (9)

The relation between the rescaled scalars $_s\hat{\psi},_s\hat{\mathcal{S}}$ and the NP scalars is

\overline{s}	$_s\hat{\psi}$	$_s\hat{\mathcal{S}}$
-2	Ψ_4/R	$(2L^4/R^3)_{-2}S$
-1	ϕ_2/R	$(2L^4/R^3)_{-1}S$

We expand $_{s}\hat{\psi}$, as well as $_{s}\hat{S}$, in terms of the spin-weight spherical harmonics $_{s}Y_{lm}(\theta,\varphi)$,

$$_{s}\hat{\psi}(T,R,\theta,\varphi) = \sum_{s} \hat{\psi}^{[lm]}(T,R)_{s}Y_{lm}(\theta,\varphi).$$
 (10)

$${}_s \Delta_s Y_{lm}(\theta, \varphi) = -(l-s)(l+s+1){}_s Y_{lm}(\theta, \varphi)$$
(11)

Introductio

Formalish

Numerical scheme

Results

Implications

Analytical mesh refinement

Using only Chebyshev-Gauss-Lobatto collocation points $\{R_i^{\sf Cheb}\}$ is inefficient to get accurate tail behaviors.

Due to the differences between the decay rates at \mathcal{I}^+ and finite radii, growing gradients close to the future null infinity \mathcal{I}^+ occur in the late-time profile of the master function ${}_s\hat{\psi}^{[lm]}$.

To solve this problem, we use analytical mesh refinement

$$R(\sigma) = R_{\mathsf{H}} \frac{\sinh[\kappa(\sigma+1)/2]}{\sinh \kappa},\tag{12}$$

and work in $\{R_i^{\mathsf{AnMR}}\} = \{R(\sigma_i^{\mathsf{Cheb}})\}$ at late times.

troduction Formalism Numerical scheme Results Implications Summary 00 00000 00000 00000 0000 0000

Analytical mesh refinement

Figure 2: Left: With a mesh-refinement parameter $\kappa>0$, $\{R_i^{\text{AnMR}}\}$ are more dense near R=0. Right: the spectral convergence of $\hat{s\psi}$ at these two kind of points when a steep gradient occurs.

Time-symmetric integration

The time-symmetric integration method is ideal for long time numerical evolution in BH perturbation theory, which, compared with Runge-Kutta methods of the same order.

Numerical scheme

0000

- is free of Courant limit.
- introduces smaller truncation error.
- and preserves Noether charges over long time periods.

We use a 4th-order time-symmetric integration method to solve an ordinary differential equation

$$\frac{\mathrm{d}\vec{u}}{\mathrm{d}T} = \vec{f}(T) \to \vec{u}_{n+1} = \vec{u}_n + \int_{T_n}^{T_{n+1}} \vec{f} \,\mathrm{d}T,\tag{13}$$

where the integrals are approximated by the Hermite rule

$$\int_{T_n}^{T_{n+1}} \vec{f} dT = \frac{\delta T}{2} \left(\vec{f}_n + \vec{f}_{n+1} \right) + \frac{(\delta T)^2}{12} \left(\dot{\vec{f}}_n - \dot{\vec{f}}_{n+1} \right) + \mathcal{O}[(\delta T)^5].$$
 (14)

Introductio

Formalish

Numerical scheme

Results

Implications

Mode coupling

The mode coupling in the source term

$${}_{-2}\hat{\mathcal{S}}^{[l_3m_3]} = \sum_{l_1m_1} \sum_{l_2m_2} {}_{-2}\hat{\mathcal{S}}({}_{-1}\hat{\psi}^{[l_1,m_1]}; {}_{-1}\hat{\psi}^{[l_2,m_2]})$$
(15)

is determined by the corresponding Gaunt coefficients

$$s_1 s_2 s_3 G_{\ell_1 \ \ell_2 \ \ell_3}^{m_1 m_2 m_3} = \int \int s_1 Y_{\ell_1 m_1} \cdot s_2 Y_{\ell_2 m_2} \cdot s_3 Y_{\ell_3 m_3} \sin \theta \, d\theta d\varphi.$$
 (16)

We find that the power law of second-order tails does not depend on the mode coupling channels.

Results

A formal solution to the BPT equation can be obtained by the retarded Green's function $\mathcal{G}(T-T',R,R')$, i.e.,

$$_{s}\hat{\psi}^{[l]}(T,R) = {}_{s}\hat{\psi}^{[l]}_{\mathsf{h}} + {}_{s}\hat{\psi}^{[l]}_{\mathsf{h}},$$
 (17)

where the inhomogeneous and homogeneous part read

$$_{s}\hat{\psi}_{i}^{[l]} = \int_{0}^{T} \int_{0}^{R_{\mathsf{H}}} \mathcal{G}_{s}\hat{\mathcal{S}}^{[l]}(T', R') \mathrm{d}R' \mathrm{d}T',$$
 (18)

$${}_{s}\hat{\psi}_{\mathsf{h}}^{[l]} = \int_{0}^{R_{\mathsf{H}}} \left\{ {}_{s}P^{[l]}(T', R')\mathcal{G} - C_{TTs}\hat{\psi}^{[l]}(T', R')\mathcal{G}_{,T'} \right\}_{T'=0} \mathrm{d}R', \tag{19}$$

respectively, with an auxiliary variable

$$_{s}P^{[l]} = C_{TT}\partial_{Ts}\hat{\psi}^{[l]} + C_{TR}\partial_{Rs}\hat{\psi}^{[l]} + _{s}C_{Ts}\hat{\psi}^{[l]}.$$
 (20)

The power law of second-order tails for $l \geq 4$

Our main result is that the late-time behavior of $_{-2}\hat{\psi}^{[l]}$, when $l\geq 4$, is dominated by the inhomogeneous part $_{-2}\hat{\psi}^{[l]}_{\mathbf{i}}$, suggesting a power law of the form

$$\begin{cases} T^{-2l-2} & \text{, at } \mathcal{H}^+ \text{ and finite radii} \\ T^{-l-3} & \text{, at } \mathcal{I}^+. \end{cases}$$
 (21)

To see the dominant position of nonlinear tails over their linear counterparts more clearly, we solve both the inhomogeneous and homogeneous BPT equation under the same initial data (see Fig.3).

Figure 3: The waveform of $_{-2}\hat{\psi}^{[4]}$ and its parent $_{-1}\hat{\psi}^{[2]}$, as well as $_{-2}\hat{\psi}^{[4]}$.

The power law of second-order tails for l=2 and 3

However, when l=2 and 3, the late-time behavior of $-2\hat{\psi}^{[l]}$ depends on the competition between $-2\hat{\psi}_{:}^{[l]}$ and $-2\hat{\psi}_{h}^{[l]}$, determined by the initial data of $-1\hat{\psi}$ and $-2\hat{\psi}_{h}^{[l]}$ both. Interested in the effect of source term, we focus on results with the zero initial data for $-2\hat{\psi}^{[l]} \left(-2\hat{\psi}^{[l]}_{1} = 0\right).$

▶ For $_{-1}\hat{\psi}$ with the compact support initial data, $_{-2}\hat{\psi}_{i}^{[l]}$ decays as

$$\begin{cases} T^{-2l-3} & \text{, at } \mathcal{H}^+ \text{ and finite radii} \\ T^{-l-4} & \text{, at } \mathcal{I}^+. \end{cases} \tag{22}$$

▶ The non-compact support initial data of $_{-1}\hat{\psi}$, forming an extended source at the beginning, lead to a slower tail of $-2\hat{\psi}_{i}^{[l]}$ that conforms to the power law (21).

Comparison with recent analytical results

It was shown that the inhomogeneous part of Regge-Wheeler/Zerilli master function Ψ , induced by a compact outgoing source term $Q\sim 1/r^{\beta}$, decays as

$$\begin{cases} t^{-\beta - l} & \text{for } \beta = 0, 1, \\ t^{-2l - 2} & \text{for } 2 \le \beta \le l + 2, \\ t^{-2l - 3} & \text{for } \beta \ge l + 3, \end{cases}$$
 (23)

at fixed spatial position [Ling et al., 2503.19967]².

Our numerical result, i.e., the power law T^{-2l-2} at fixed spatial position when $l \geq 4$ for compact support $_{-1}\hat{\psi}(T=0,R)$, coincides with this analytical prediction (23) for the case $\beta=6$.

²The same result for more general setup is empirically obtained by [Cardoso et al., 2405.12290].

Introductio

Formalish

Numerical scheme

Results

Implications

Implications for multi-messenger observations

- Despite still being strongly suppressed by the QNMs and neglected by any near-future observatories, the source-driven tails can be significantly amplified for binary BHs with high eccentricities, prospectively reaching the detection threshold of upcoming detectors.
- ▶ The electromagnetically sourced nonlinear tails differ from gravitationally sourced nonlinear tails when l=2,3, because the latter, with a source $Q\sim 1/r^2$, are dominated by the inhomogeneous part when $l\geq 2$, decaying as T^{-2l-2} at fixed spatial position.
- ▶ This difference, combined with the analysis of quadratic QNM, could help to identify astrophysical origins of GWs in the multi-messenger observations and offers a novel and complementary mechanism to detect black holes in the Milky Way.

Implications for multi-messenger observations

- It is the decay rate at null infinity T⁺ that is relevant for astronomical observations, due to extremely distant astronomical distances.
- ▶ The point closest to \mathcal{I}^+ in the numerical grid is located at $L^2/R_{N'-1}^{\mathsf{AnMR}} \simeq 1.2 \times 10^6 M$, where the decay rate is almost the same as that at \mathcal{I}^+ .
- ▶ the closest candidate for a supermassive black hole, Sgr A*, with a mass $M=3.7\times 10^6 M_{\odot}$ is about 26000 light years away, which roughly corresponds to $1.8\times 10^9 M$ in the geometric units.

Figure 4: The distance-dependence of decay rates p(T,R) for the second-order tails for l=4.

Implications for multi-messenger observations

- We find that the peaks of GW waveform typically arrive at \(\mathcal{I}^+ \) later than those of their parent EM waveform in our simulations, indicating that EM events could be a forecast of their offspring GW events.
- ▶ The time difference $\Delta T \sim 10 M$ of $_{-1}\hat{\psi}$'s peak and $_{-2}\hat{\psi}$'s peak roughly corresponds to 10^3 sec., if we set $M=10^6 M_{\odot}$.

Figure 5: The waveform of $_{-2}\hat{\psi}$ and its parent $_{-1}\hat{\psi}$ extracted at \mathcal{I}^+ .

Introductio

Formalism

Numerical scheme

Results

Implications

- ▶ Motivated by the desire to understand BH ringdown nonlinearities, we solve the inhomogeneous BPT equation numerically and find second-order gravitational tails induced by an electromagnetic source.
- Accurate numerical results are obtained by efficient numerical methods, including AnMR and time-symmetric integration.
- Our results suggest that the second-order tails of curvature perturbations with multipole numbers $l \geq 4$ decay as t^{-2l-2} at fixed spatial position and u^{-l-3} in retarded-time u at null infinity, slower than their linear counterparts.
- Our results can play a role in multi-messenger observations, e.g., identifying astrophysical origins of GWs and offering a novel mechanism to detect black holes in the Milky Way.

Summary 000

Thanks for your attention!