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Nonlinearities in black hole (BH) ringdown

▶ Recently, increasing studies reveal rich phenomena arising from nonlinearities in
BH ringdown, such as quadratic QNMs and nonlinear power-law tails [see a recent
review 2505.23895].

▶ Not only can the quadratic QNM’s amplitude be even larger than that of their linear
counterpart [Mitman et al., PRL(2023); Cheung et al., PRL(2023)],

▶ but the nonlinear tails can decay more slowly than the linear Price’s law.
[Cardoso et al., PRD(2024); Marina et al., 2412.06887; Ma et al., PRD(2025);
Kehagias et al., PRD(2025); Ling et al., PRD(2025)]
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Motivation
▶ Transient electromagnetic events in the astrophysical environment are typically high-

energetic, potentially responsible for some nonlinearities in ringdown.
▶ If a neutron star has magnetic energy up to 1049 ergs and a mass of about one solar

mass M⊙, then its EM effect could surpass its second-order gravitational effect in
extreme mass ratio inspiral systems with a supermassive BH M ≳ 106M⊙.

▶ Hence, the multi-messenger astronomy, which integrates GW detection and EM
observation, could help the interpretation of GW signals.

▶ For example, by analysing the QNMs of GWs generated from transient high-energetic
EM waves, one can detect solitary black holes, whose number and distribution in
the Milky Way encode essential information about BH formation and the existence
of primordial BHs [Jana et al., MNRAS Letters (2024)].

▶ “Can we further the understanding or observation of the electromagnetically sourced
nonlinearities in BH ringdown?”
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Bardeen-Press-Teukolsky (BPT) equations

We consider a Schwarzschild BH with mass M that is perturbed by a sourceless elec-
tromagnetic field

ϕ2 = εϕ
(1)
2 + O(ε2). (1)

Thus, the gravitational perturbation is nonlinearly sourced at the leading order

Ψ4 = ε2Ψ(2)
4 + O(ε3). (2)

The system of equations under consideration reads1

−1T ϕ(1)
2 = −1S = 0, (3)

−2T Ψ(2)
4 = −2S(ϕ(1)

2 ;ϕ(1)
2 ). (4)

1For an explicit expression of the source term −2S, the audience is referred to our paper.
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Coordinates and tetrad

To avoid complicated boundary condition problems and to extract astrophysically rele-
vant results at future null infinity, we use horizon-penetrating hyperboloidally compact-
ified coordinates {T,R, θ, φ}, related to the Schwarzschild coordinates {t, r, θ, φ} via

T = t− r + 2M ln r − 2M
2M − 4M ln r

2M ,

R = L2

r
,

(5)

Future null infinity I+ is located at R = 0, and future event horizon H+ is located at
RH = L2/2M . Note that the hyperboloidal time coordinate T approaches a retarded
time u when R → 0 and approaches an advanced time v when R → RH.
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The hyperboloidal foliations in the Schwarzschild BH spacetime
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Figure 1: The hyperboloidal foliations in the Schwarzschild BH spacetime.
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Coordinates and tetrad

A rotated Kinnersley tetrad, which is regular on the horizon, is used in this work

lµ = R2

L4

{
4M2,−1

2(L2 − 2MR), 0, 0
}
, (6)

nµ =
{

2 + 4MR

L2 ,
R2

L2 , 0, 0
}
, (7)

mµ = R√
2L2

{
0, 0,−1,− i

sin θ

}
. (8)

9/27



Introduction Formalism Numerical scheme Results Implications Summary

Bardeen-Press-Teukolsky equations
In our coordinates and tetrad, the BPT equation reads(

CT T∂
2
T + CT R∂T∂R + CRR∂

2
R + sCT∂T + sCR∂R + sC − s /∆

)
sψ̂ = sŜ. (9)

The relation between the rescaled scalars sψ̂, sŜ and the NP scalars is
s sψ̂ sŜ
-2 Ψ4/R (2L4/R3)−2S
-1 ϕ2/R (2L4/R3)−1S

We expand sψ̂, as well as sŜ, in terms of the spin-weight spherical harmonics sYlm(θ, φ),

sψ̂(T,R, θ, φ) =
∑
l,m

sψ̂
[lm](T,R)sYlm(θ, φ). (10)

s /∆sYlm(θ, φ) = −(l − s)(l + s+ 1)sYlm(θ, φ) (11)
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Analytical mesh refinement

Using only Chebyshev-Gauss-Lobatto collocation points {RCheb
i } is inefficient to get

accurate tail behaviors.
Due to the differences between the decay rates at I+ and finite radii, growing gradients
close to the future null infinity I+ occur in the late-time profile of the master function
sψ̂

[lm].
To solve this problem, we use analytical mesh refinement

R(σ) = RH
sinh[κ(σ + 1)/2]

sinh κ , (12)

and work in {RAnMR
i } = {R(σCheb

i )} at late times.
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Analytical mesh refinement
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Figure 2: Left: With a mesh-refinement parameter κ > 0, {RAnMR
i } are more dense near R = 0.

Right: the spectral convergence of sψ̂ at these two kind of points when a steep gradient occurs.
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Time-symmetric integration
The time-symmetric integration method is ideal for long time numerical evolution in BH
perturbation theory, which, compared with Runge-Kutta methods of the same order,
▶ is free of Courant limit,
▶ introduces smaller truncation error,
▶ and preserves Noether charges over long time periods.

We use a 4th-order time-symmetric integration method to solve an ordinary differential
equation

du⃗
dT = f⃗(T ) → u⃗n+1 = u⃗n +

∫ Tn+1

Tn

f⃗dT, (13)

where the integrals are approximated by the Hermite rule∫ Tn+1

Tn

f⃗dT = δT

2
(
f⃗n + f⃗n+1

)
+ (δT )2

12

(
˙⃗
fn − ˙⃗

fn+1

)
+ O[(δT )5]. (14)
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Mode coupling

The mode coupling in the source term

−2Ŝ [l3m3] =
∑
l1m1

∑
l2m2

−2Ŝ(−1ψ̂
[l1,m1]; −1ψ̂

[l2,m2]) (15)

is determined by the corresponding Gaunt coefficients

s1s2s3 G
m1
ℓ1

m2
ℓ2

m3
ℓ3

=
∫ ∫

s1Yℓ1m1 · s2Yℓ2m2 · s3Yℓ3m3 sin θ dθdφ . (16)

We find that the power law of second-order tails does not depend on the mode coupling
channels.
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Results
A formal solution to the BPT equation can be obtained by the retarded Green’s function
G(T − T ′, R,R′), i.e.,

sψ̂
[l](T,R) = sψ̂

[l]
i + sψ̂

[l]
h , (17)

where the inhomogeneous and homogeneous part read

sψ̂
[l]
i =

∫ T

0

∫ RH

0
G sŜ [l](T ′, R′)dR′dT ′, (18)

sψ̂
[l]
h =

∫ RH

0

{
sP

[l](T ′, R′)G − CT T sψ̂
[l](T ′, R′)G,T ′

}
T ′=0

dR′, (19)

respectively, with an auxiliary variable

sP
[l] = CT T∂T sψ̂

[l] + CT R∂Rsψ̂
[l] + sCT sψ̂

[l]. (20)
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The power law of second-order tails for l ≥ 4

Our main result is that the late-time behav-
ior of −2ψ̂

[l], when l ≥ 4, is dominated by
the inhomogeneous part −2ψ̂

[l]
i , suggesting

a power law of the form{
T−2l−2 , at H+ and finite radii
T−l−3 , at I+.

(21)

To see the dominant position of nonlin-
ear tails over their linear counterparts more
clearly, we solve both the inhomogeneous
and homogeneous BPT equation under the
same initial data (see Fig.3).
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Figure 3: The waveform of −2ψ̂
[4] and its parent

−1ψ̂
[2], as well as −2ψ̂

[4]
h .
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The power law of second-order tails for l = 2 and 3

However, when l = 2 and 3, the late-time behavior of −2ψ̂
[l] depends on the competition

between −2ψ̂
[l]
i and −2ψ̂

[l]
h , determined by the initial data of −1ψ̂ and −2ψ̂

[l] both.
Interested in the effect of source term, we focus on results with the zero initial data for
−2ψ̂

[l] (−2ψ̂
[l]
h = 0).

▶ For −1ψ̂ with the compact support initial data, −2ψ̂
[l]
i decays as{

T−2l−3 , at H+ and finite radii
T−l−4 , at I+.

(22)

▶ The non-compact support initial data of −1ψ̂, forming an extended source at the
beginning, lead to a slower tail of −2ψ̂

[l]
i that conforms to the power law (21).
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Comparison with recent analytical results

It was shown that the inhomogeneous part of Regge-Wheeler/Zerilli master function Ψ,
induced by a compact outgoing source term Q ∼ 1/rβ, decays as

t−β−l for β = 0, 1,
t−2l−2 for 2 ≤ β ≤ l + 2,
t−2l−3 for β ≥ l + 3,

(23)

at fixed spatial position [Ling et al., 2503.19967]2.
Our numerical result, i.e., the power law T−2l−2 at fixed spatial position when l ≥ 4 for
compact support −1ψ̂(T = 0, R), coincides with this analytical prediction (23) for the
case β = 6.

2The same result for more general setup is empirically obtained by [Cardoso et al., 2405.12290].
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Implications for multi-messenger observations

▶ Despite still being strongly suppressed by the QNMs and neglected by any near-
future observatories, the source-driven tails can be significantly amplified for binary
BHs with high eccentricities, prospectively reaching the detection threshold of up-
coming detectors.

▶ The electromagnetically sourced nonlinear tails differ from gravitationally sourced
nonlinear tails when l = 2, 3, because the latter, with a source Q ∼ 1/r2, are
dominated by the inhomogeneous part when l ≥ 2, decaying as T−2l−2 at fixed
spatial position.

▶ This difference, combined with the analysis of quadratic QNM, could help to identify
astrophysical origins of GWs in the multi-messenger observations and offers a novel
and complementary mechanism to detect black holes in the Milky Way.
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Implications for multi-messenger observations

▶ It is the decay rate at null infinity I+

that is relevant for astronomical obser-
vations, due to extremely distant astro-
nomical distances.

▶ The point closest to I+ in the numer-
ical grid is located at L2/RAnMR

N ′−1 ≃
1.2 × 106M , where the decay rate is
almost the same as that at I+.

▶ the closest candidate for a supermas-
sive black hole, Sgr A∗, with a mass
M = 3.7×106M⊙ is about 26000 light
years away, which roughly corresponds
to 1.8 × 109M in the geometric units.
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Figure 4: The distance-dependence of decay
rates p(T,R) for the second-order tails for l = 4.
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Implications for multi-messenger observations

▶ We find that the peaks of GW wave-
form typically arrive at I+ later than
those of their parent EM waveform
in our simulations, indicating that EM
events could be a forecast of their off-
spring GW events.

▶ The time difference ∆T ∼ 10M of
−1ψ̂’s peak and −2ψ̂’s peak roughly
corresponds to 103 sec., if we set M =
106M⊙.
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Figure 5: The waveform of −2ψ̂ and its parent
−1ψ̂ extracted at I+.
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Summary

▶ Motivated by the desire to understand BH ringdown nonlinearities, we solve the
inhomogeneous BPT equation numerically and find second-order gravitational tails
induced by an electromagnetic source.

▶ Accurate numerical results are obtained by efficient numerical methods, including
AnMR and time-symmetric integration.

▶ Our results suggest that the second-order tails of curvature perturbations with
multipole numbers l ≥ 4 decay as t−2l−2 at fixed spatial position and u−l−3 in
retarded-time u at null infinity, slower than their linear counterparts.

▶ Our results can play a role in multi-messenger observations, e.g., identifying astro-
physical origins of GWs and offering a novel mechanism to detect black holes in the
Milky Way.
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Thanks for your attention!
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