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Nonlinearities in black hole (BH) ringdown

P> Recently, increasing studies reveal rich phenomena arising from nonlinearities in
BH ringdown, such as quadratic QNMs and nonlinear power-law tails [see a recent
review 2505.23895].

» Not only can the quadratic QNM's amplitude be even larger than that of their linear
counterpart [Mitman et al., PRL(2023); Cheung et al., PRL(2023)],

» but the nonlinear tails can decay more slowly than the linear Price's law.
[Cardoso et al., PRD(2024); Marina et al., 2412.06887; Ma et al., PRD(2025);
Kehagias et al., PRD(2025); Ling et al., PRD(2025)]
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Motivation

Transient electromagnetic events in the astrophysical environment are typically high-
energetic, potentially responsible for some nonlinearities in ringdown.

If a neutron star has magnetic energy up to 10 ergs and a mass of about one solar
mass M), then its EM effect could surpass its second-order gravitational effect in
extreme mass ratio inspiral systems with a supermassive BH M > 10°M,.

Hence, the multi-messenger astronomy, which integrates GW detection and EM
observation, could help the interpretation of GW signals.

For example, by analysing the QNMs of GWs generated from transient high-energetic
EM waves, one can detect solitary black holes, whose number and distribution in
the Milky Way encode essential information about BH formation and the existence
of primordial BHs [Jana et al., MNRAS Letters (2024)].

“Can we further the understanding or observation of the electromagnetically sourced
nonlinearities in BH ringdown?”
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Bardeen-Press-Teukolsky (BPT) equations

We consider a Schwarzschild BH with mass M that is perturbed by a sourceless elec-
tromagnetic field

b2 =29y + O(?). (1)
Thus, the gravitational perturbation is nonlinearly sourced at the leading order

Uy =200 + 0. (2)

The system of equations under consideration reads!

LT = 1S =0, (3)
LT0? = 58680 o). (4)

!For an explicit expression of the source term _»S, the audience is referred to our paper.
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Coordinates and tetrad

To avoid complicated boundary condition problems and to extract astrophysically rele-
vant results at future null infinity, we use horizon-penetrating hyperboloidally compact-
ified coordinates {7, R, 0, ¢}, related to the Schwarzschild coordinates {t, 7,6, ¢} via

T=t—r+2MIn

r—2M T
—4AM In —
2M oM’
(5)

R=—,

r

Future null infinity ZT is located at R = 0, and future event horizon H™ is located at
Ry = L?/2M. Note that the hyperboloidal time coordinate T approaches a retarded
time u© when R — 0 and approaches an advanced time v when R — Ry.
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The hyperboloidal foliations in the Schwarzschild BH spacetime
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Coordinates and tetrad

A rotated Kinnersley tetrad, which is regular on the horizon, is used in this work

o R2 2 1 2
4MR R?
TL#: {2+_LQ7_LQ,O?O}7 (7)
R i
VT {0’0’ ’ sin@} ®
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Bardeen-Press-Teukolsky equations

In our coordinates and tetrad, the BPT equation reads
(Crrd} + Crrdrdn + Crrd} + Crdr + ;Crig + sC — &) b = 8. (9)

The relation between the rescaled scalars Szﬁ,sg and the NP scalars is

=

S s sS
2 | Uy/R | (2L*/R3) 1S
1| ¢2/R | (2L*/R3)_,8

We expand s@, as well as S, in terms of the spin-weight spherical harmonics Y7, (0, ¢),

ST, R,0,0) = 3 (T, R)Yin (0, ). (10)
lym
sAs}/lm(ea 90) = _(l - S)(l + s+ 1)8Ylm(07 90) (11)
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Analytical mesh refinement

Using only Chebyshev-Gauss-Lobatto collocation points {theb} is inefficient to get
accurate tail behaviors.

Due to the differences between the decay rates at Z™ and finite radii, growing gradients
clo[se ]to the future null infinity ZT occur in the late-time profile of the master function
51; Im]

To solve this problem, we use analytical mesh refinement

sinh[k(o +1)/2]

12
sinh k ’ (12)

R(o) = Ry

and work in {RAMRY — [R(5Cheb)] at late times.
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Analytical mesh refinement
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Figure 2: Left: With a mesh-refinement parameter x > 0, { R*"MR} are more dense near R = 0.

Right: the spectral convergence of sz[) at these two kind of points when a steep gradient occurs.
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Time-symmetric integration

The time-symmetric integration method is ideal for long time numerical evolution in BH
perturbation theory, which, compared with Runge-Kutta methods of the same order,

» is free of Courant limit,

P introduces smaller truncation error,

» and preserves Noether charges over long time periods.
We use a 4th-order time-symmetric integration method to solve an ordinary differential

equation
du - n+1 _,

a7 =T )—>un+1—un+ (13)

where the integrals are apprOX|mated by the Hermite ruIe

[ =T (G ) + OO (Fo o) w067y )

n
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Mode coupling

The mode coupling in the source term

a8l = 37 ST S (Cyliml; el (15)

lymy lama

is determined by the corresponding Gaunt coefficients

515283 GTIZ2ZS - //Slyflml 'Szyézmz 'S3Y€3m3 Sin@d@dg@. (16)

We find that the power law of second-order tails does not depend on the mode coupling
channels.
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Results

A formal solution to the BPT equation can be obtained by the retarded Green's function
G(T—-T,R,R), ie.,

s&[l] (Ta R) - s&i[l] + s Ar[,l]a (17)
where the inhomogeneous and homogeneous part read
21 T [P A1) (ot ) 1!
s = / G ST, R"dRaT, (18)
0o Jo
R Ry R
A= [P RG - Crr N RYG ), R (9)

respectively, with an auxiliary variable
oPU = Crror )l + Crrop 9l + Crgill, (20)
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The power law of second-order tails for [ > 4

Our main result is that the late-time behav- U e
ior of _opl!l, when [ > 4, is dominated by )
the inhomogeneous part _gzﬁim, suggesting 10

a power law of the form

)
(T, R =0)|
|9=4(T, R = 0)| , Source free

1010

T72=2 at H* and finite radii
T3 atIt.

1015 |-

To see the dominant position of nonlin-

ear tails over their linear counterparts more el
. 0 100 200 300 400 500 600 700 800 900 1000
clearly, we solve both the inhomogeneous /M
and homogeneous BPT equation under the . A .
g q Figure 3: The waveform of _y2[¥ and its parent

same initial data (see Fig.3). 9B, as well as 72&[14]_
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The power law of second-order tails for [ = 2 and 3

However, when [ = 2 and 3, the late-time behavior of _21/3[” depends on the competition

between _ggﬁim and _QQA[‘”, determined by the initial data of _11[1 and _215[” both.
Interested in the effect of source term, we focus on results with the zero initial data for

_oll (—zﬂ,l] =0).

> For ,ﬂﬁ with the compact support initial data, ,21,?4“] decays as

T-273  at HT and finite radii
(22)

T4 atIT.

» The non-compact support initial data of ,11@ forming an extended source at the
beginning, lead to a slower tail of _glﬁi[l] that conforms to the power law (21).
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Comparison with recent analytical results

It was shown that the inhomogeneous part of Regge-Wheeler/Zerilli master function ¥,
induced by a compact outgoing source term @ ~ 1/r?, decays as

7=t for f=0,1,
7272 for2<pB<I+2, (23)
723 for B>1+3,

at fixed spatial position [Ling et al., 2503.19967]°.

Our numerical result, i.e., the power law T~2~2 at fixed spatial position when | > 4 for

compact support 711/;(T = 0, R), coincides with this analytical prediction (23) for the
case 8 = 0.

?The same result for more general setup is empirically obtained by [Cardoso et al., 2405.12290].
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Implications for multi-messenger observations

» Despite still being strongly suppressed by the QNMs and neglected by any near-
future observatories, the source-driven tails can be significantly amplified for binary
BHs with high eccentricities, prospectively reaching the detection threshold of up-
coming detectors.

» The electromagnetically sourced nonlinear tails differ from gravitationally sourced
nonlinear tails when [ = 2,3, because the latter, with a source ) ~ 1/7‘2, are
dominated by the inhomogeneous part when | > 2, decaying as 7722 at fixed
spatial position.

» This difference, combined with the analysis of quadratic QNM, could help to identify
astrophysical origins of GWs in the multi-messenger observations and offers a novel
and complementary mechanism to detect black holes in the Milky Way.
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» It is the decay rate at null infinity Z+

that is relevant for astronomical obser-
vations, due to extremely distant astro-
nomical distances.

The point closest to Z in the numer-
ical grid is located at L2?/RAMR ~
1.2 x 105M, where the decay rate is
almost the same as that at Z™.

the closest candidate for a supermas-
sive black hole, Sgr A*, with a mass
M = 3.7x10M, is about 26000 light
years away, which roughly corresponds
to 1.8 x 10°M in the geometric units.

Implications
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Implications for multi-messenger observations
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Figure 4: The distance-dependence of decay

rates p(T, R) for the second-order tails for I = 4.
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Implications for multi-messenger observations
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» We find that the peaks of GW wave-
form typically arrive at Z" later than
those of their parent EM waveform
in our simulations, indicating that EM

0.2

01

events could be a forecast of their off- o1f
spring GW events. oz}

» The time difference AT ~ 10M of o3l
_11ﬂ's peak and _giﬁ’s peak roughly il
corresponds to 103 sec., if we set M = PR g
10° M.

Figure 5: The waveform of ,gqﬁ and its parent

_11 extracted at 7.
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Summary

» Motivated by the desire to understand BH ringdown nonlinearities, we solve the
inhomogeneous BPT equation numerically and find second-order gravitational tails
induced by an electromagnetic source.

» Accurate numerical results are obtained by efficient numerical methods, including
AnMR and time-symmetric integration.

» Qur results suggest that the second-order tails of curvature perturbations with
multipole numbers [ > 4 decay as t~2~2 at fixed spatial position and u '3 in
retarded-time w at null infinity, slower than their linear counterparts.

» Qur results can play a role in multi-messenger observations, e.g., identifying astro-
physical origins of GWs and offering a novel mechanism to detect black holes in the
Milky Way.

26/27



Thanks for your attention!
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