Universal gravitational self-force for a point mass orbiting around a compact star

Xuefeng Feng (SIMIS)

In collaboration with Huan Yang

Peng Huanwu Innovation research Center for Theoretical Physics 2025 Gravitational Wave physics Conference

October 18th, 2025

- 1 Motivation
- 2 Gravitational flux and self-force
- 3 Tide-induced phase shift
- **4** Summary

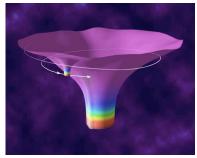
Tide-induced phase shift

- 2 Gravitational flux and self-force
- 3 Tide-induced phase shift
- 4 Summary

Extreme mass-ratio inspirals

Extreme mass-ratio inspirals (EMRIs) are compact binaries with a mass ratio $\mu/M \simeq 10^{-4}-10^{-7}$.

- Small environmental forces.
- Multipole moments of the background spacetime.
- Black hole nature of the central supermassive compact object.
-



Motivation

- Charactering the tidal effect in binary neutron star systems with the black hole perturbation approach (mass ratio expansion).
- Characterizing the tidal effect of black hole mimickers for fundamental physics tests using EMRIs.

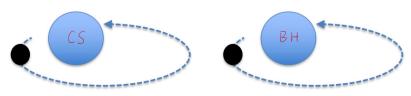


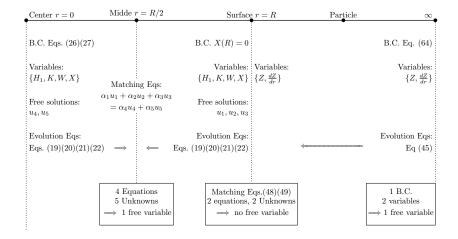
Figure 1: Compact Star

Figure 2: Black Hole

- 1 Motivation
- ② Gravitational flux and self-force Tide-induced Gravitational flux Gravitational Self-force Higher ℓ modes contributions
- 3 Tide-induced phase shift
- 4 Summary

- 1 Motivation
- ② Gravitational flux and self-force Tide-induced Gravitational flux Gravitational Self-force Higher ℓ modes contributions
- 3 Tide-induced phase shift
- 4 Summary

Numerical method



 The gravitational wave flux at infinity can be computed. We evaluate the difference in flux between a BH interior and a star interior (with same mass and the same orbital frequency):

$$P^{\text{tide}} = P^{\text{star}} - P^{\text{BH}}$$
.

 The flux can be computed for various stars and different orbital frequencies of the point mass. How to summarize the results? An ansatz:

$$P^{\mathrm{tide}} = P^{\mathrm{tide}}(\lambda_2^{\mathrm{dyn}}, P_0^{\mathrm{tide}}(\omega)), \quad \lambda_2^{\mathrm{dyn}} = \lambda_2 \frac{\omega_f^2}{\omega_f^2 - \omega^2}.$$

Motivation

Tide-induced gravitational wave flux

The flux $P^{\rm tide}$ actually falls onto a single curve when plotted against the dynamical tidal deformability $\lambda_2^{\rm dyn}$.

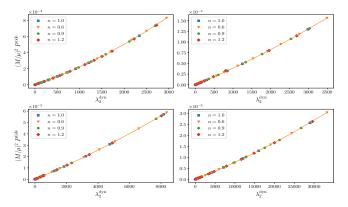


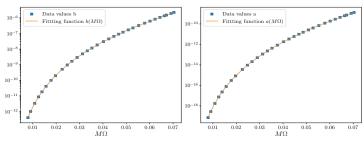
Figure 3: The values of $M\Omega$ are 0.0516, 0.0413, 0.032 and 0.0237.

→ロト → □ ト → 豆 ト → 豆 ・ り へ ○

Fitting for the flux

Nonlinearities at large λ : possibly from higher-order modes. We take one type of star, say n=0.6, vary the central density, and compute $P^{\rm tide}$.

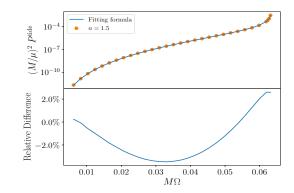
$$\begin{split} P^{\text{tide}} &= (\lambda_2^{\text{dyn}})^2 a(M\Omega) + \lambda_2^{\text{dyn}} b(M\Omega) \,, \\ a(M\Omega) &= \frac{32}{5} (M\Omega)^{30/3} \left(3.648 \, e^{40.48(M\Omega)} + 6.737 \right) , \\ b(M\Omega) &= \frac{32}{5} (M\Omega)^{20/3} \left(1.405 \, e^{30.63(M\Omega)} + 4.614 \right) . \end{split}$$



ロト 4 倒 ト 4 重 ト 4 重 ト 9 0 0 0

Check the fitting formula

Check the fitting formula with EOS not used, say n = 1.5 for fitting. Error everywhere less than 3%.



- Motivation
- ② Gravitational flux and self-force Tide-induced Gravitational flux Gravitational Self-force Higher ℓ modes contributions
- 3 Tide-induced phase shift
- 4 Summary

Tide-induced phase shift

Motivation

Small body perturbs a spacetime:

$$g_{\mu\nu} = g_{\mu\nu}^0 + \epsilon h_{\mu\nu}^{(1)} + \epsilon^2 h_{\mu\nu}^{(2)} + \dots$$

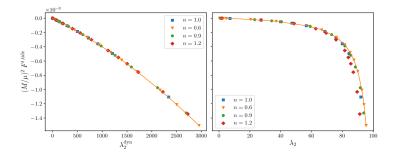
where $\epsilon \propto \mu/M$.

• This deformation of the geometry affects μ 's motion (gravitational self-force)

$$\frac{D^2 z^{\mu}}{d\tau^2} = \epsilon F_{(1)}^{\mu} + \epsilon^2 F_{(2)}^{\mu} + \dots$$

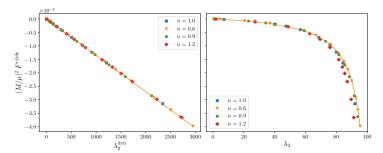
t-component self force $F^{ m t,tide}$

- ullet t-component of gravitational SF $F^{
 m t,tide}$ agrees with the flux.
- If we replace λ_2^{dyn} with the equilibrium tidal deformability λ_2 , this nice universal relation is broken.



r-component self force $F^{r,\text{tide}}$

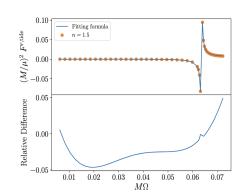
The r-component self-force $F^{r, \mathrm{tide}}$ satisfies a rather linear relation with the dynamical tidal deformability.



Comparison of $F^{ m r,tide}$

Fitting formula for $F^{\mathrm{r,tide}}$

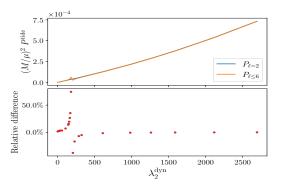
$$\begin{split} F^{\mathrm{r,tide}} &= \lambda_2^{\mathrm{dyn}} c(M\Omega) \,, \\ c(M\Omega) &= (M\Omega)^{14/3} \big(-7.6023 \\ &- 3.6672^3 (M\Omega)^2 \\ &+ 1.1071^6 (M\Omega)^4 \\ &- 1.1531 \times 10^7 (M\Omega)^5 \big) \,. \end{split}$$



- Motivation
- ② Gravitational flux and self-force Tide-induced Gravitational flux Gravitational Self-force Higher ℓ modes contributions
- 3 Tide-induced phase shift
- 4 Summary

Higher ℓ modes for $P^{ ext{tide}}$ I

Higher ℓ modes contribute (< 3% away from resonance) to the flux at $M\Omega=0.0516$. Some noticeable deviations due to resonance with the $\ell=3$ f-mode are shown.



Higher ℓ modes for $P^{ ext{tide}}$ II

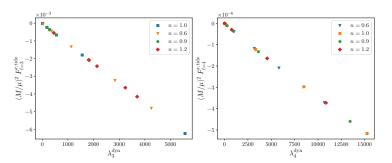
Higher ℓ modes contribute (< 3% away from resonance) to the flux at $M\Omega=0.0392$. None of the $\ell=2,3,4$ f-modes are resonantly excited.



Higher ℓ modes $F^{ m r,tide}$

Higher-order tidal deformations (higher- ℓ contributions may not be negligible):

$${\mathcal F}^{
m r,tide} = \sum_{\ell \geq 2} \lambda_\ell^{
m dyn} c_\ell(\Omega) \,, \quad \lambda_\ell^{
m dyn} = \lambda_\ell rac{\omega_{\ell,f}^2}{\omega_{\ell,f}^2 - \omega^2} \,.$$

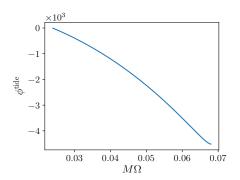


- 1 Motivation
- 2 Gravitational flux and self-force
- 3 Tide-induced phase shift
- **4** Summary

Tide-induced phase shift

Tidal phase correction to the waveform representing a four-year inspiral of an EMRI system which has masses $(M,\mu)=(10^6,10)M_{\odot}$. Consider a star-like BH mimicker with polytropic EOS

$$\rho_c = 1.4 \times 10^6 \,\mathrm{g/cm^3}, \quad \kappa = 1.608 \times 10^9 \,\mathrm{km^2}, \quad n = 1.5.$$



- Motivation
- 2 Gravitational flux and self-force
- Tide-induced phase shift
- **4** Summary

Summary

- Tide-induced self-force can be well characterized by the dynamical tidal deformability of the central object.
- Tide-induced phase shift can be significant for BH mimickers.
- Maybe be useful to check for more EOS, other BH mimickers and more general orbits.

Thank you for listening!