

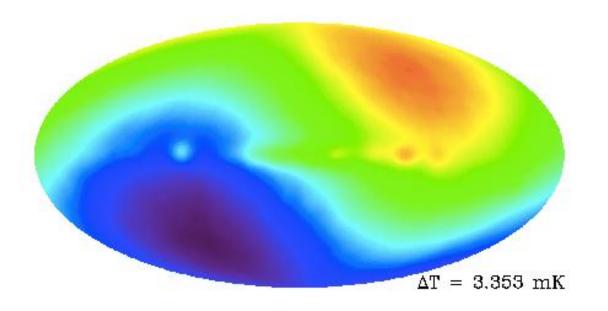




# Measuring the cosmic dipole with golden dark sirens

JCAP 07 (2025) 076 / arXiv: 2505.12678

An Chen (陈安)


International Center for Theoretical Physics (Asia-Pacific)
University of Chinese Academy of Sciences

18/10/2025

# What is cosmic dipole?

- The cosmic dipole is caused by observer's velocity relative to the background (kinetic dipole).
- Or perhaps by intrinsic anisotropy of the universe, which could mimic dark energy.

Kinetic dipole measured from CMB observation:  $|\vec{v}_o|/c = 1.2 \times 10^{-3}$ 



### Cosmic dipole tension

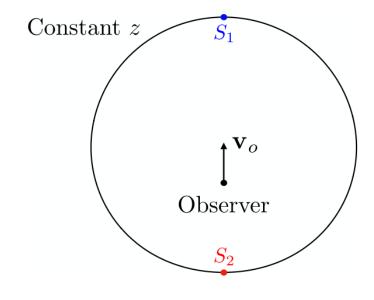
- There exists a tension up to  $\sim 5\sigma$  between the cosmic dipole measured from CMB and source number counting ( $\sim$  twice of CMB result).
- Number counting for mutiple galaxy surveys supports the existence of tension.

| dipole anisotropy              | type | redshift      | amplitude                          | l°                | $b^{\circ}$        | significance     |
|--------------------------------|------|---------------|------------------------------------|-------------------|--------------------|------------------|
| CMB solar dipole [1]           | K    | N/A           | $1.23 \pm 0.00036 \times 10^{-3}$  | $264.02 \pm 0.01$ | $48.253 \pm 0.005$ | N/A              |
| CMB temperature asymmetry* [2] | I    | N/A           | $2.3^{+0.8}_{-0.4} \times 10^{-2}$ | $220 \pm 25$      | $-5 \pm 25$        | $\sim 2.7\sigma$ |
| SNe [9] (CMB frame)            | K    | 0.01 - 1      | $8 \pm 1.7 \times 10^{-4}$         | $242 \pm 16$      | $59 \pm 19$        | 68% C.L.         |
| SNe [10] (heliocentric frame)  | K/I  | 0.01 - 1      | $5 \pm 1.6 \times 10^{-3}$         | $252 \pm 12$      | $65 \pm 9$         | $3.3\sigma$      |
| TGSS radio galaxies [7]        | K/I  | 0.01 - 4      | $7.0 \pm 0.4 \times 10^{-2}$       | $243 \pm 12$      | $45 \pm 3$         | 99.5% C.L.       |
| NVSS radio galaxies [7]        | K/I  | 0.01 - 4      | $2.3 \pm 0.4 \times 10^{-2}$       | $253 \pm 11$      | $27 \pm 3$         | 99.5% C.L.       |
| quasars [8]                    | K/I  | 0 - 3.6       | $1.5 \times 10^{-2}$               | 238               | 28                 | $4.9\sigma$      |
| $\alpha$ [11]                  | I    | 0.2 - 7.1     | $0.72 \pm 0.16 \times 10^{-5}$     | $325 \pm 17.5$    | $-11 \pm 10.3$     | $3.9\sigma$      |
| $H_0$ via galaxy clusters [12] | I    | 0.004 - 0.839 | 9% variation                       | $273 \pm 40$      | $-11 \pm 27$       | $5.4\sigma$      |

Credit: Cousins et al., 2024

•  $10^7$  GW event number counting in the 3G era can constrain the cosmic dipole to the CMB level (Grimm et al., 2023).

# Cosmic dipole effects

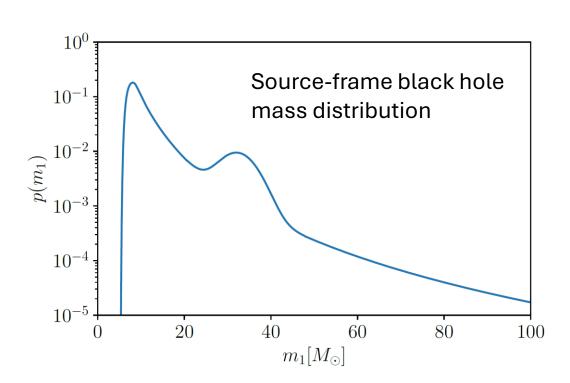

- Denote the dipole amplitude along the line-of-sight  $\hat{z}(\phi, \theta)$  as  $g(\hat{n} \cdot \hat{z})$ .
  - Dipole magnitude g , direction  $\hat{n}(\phi^{dip}, \theta^{dip})$
  - For kinetic dipole,  $g^{kin} = -|\vec{v}_o|/c$
- Modification to luminosity distance and redshift

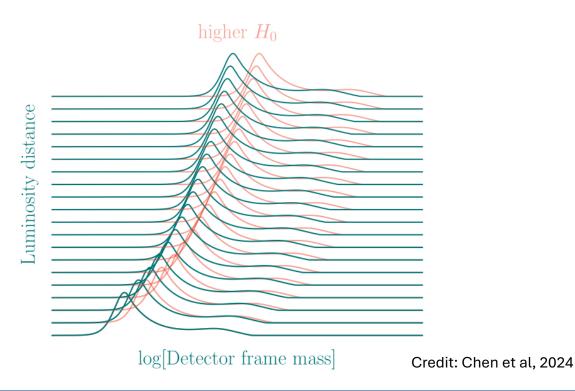
$$d_L^{\text{obs}} = d_L^0 [1 + g(\hat{n} \cdot \hat{z})]$$

$$1 + z^{\text{obs}} = (1 + z^0)[1 + g(\hat{n} \cdot \hat{z})]$$

Modification to observed binary mass

$$m^{obs} = m^s (1 + z^0)[1 + g(\hat{n} \cdot \hat{z})]$$

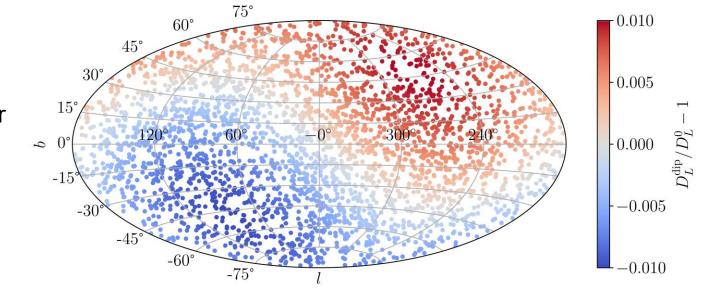




Credit: Dalang & Bonvin, 2021

# How does it affect GW cosmology?

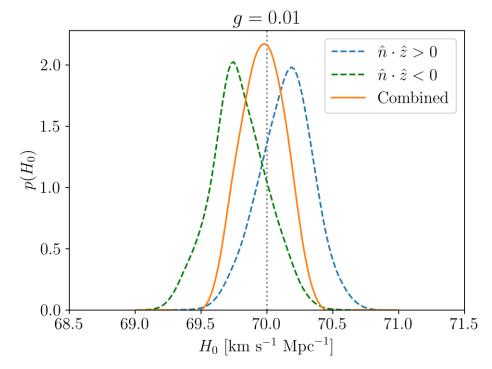
# Spectral siren analysis

- A Bayesian statistical method to measure cosmological parameters using features in BBH population model.
- Obtain  $z(d_L, H_0)$  from GW events, then obtain source-frame black hole masses  $m^s = m^{det}/(1+z)$ .
- $P(H_0)$  is obtained by the position of the peak in mass distribution.






# Effects in spectral siren analysis


- We generate mock BBH events detected by LVK under designed sensitivity with SNR>11.
- We use Powerlaw + Peak population model and Madau merger rate redshift evolution model using GWTC-3 estimation values.
- $d_L^{\rm obs}$  is computed from  $z^0$  with  $H_0=70~{\rm km~s^{-1}Mpc^{-1}}$ ,  $\Omega_{m0}=0.3$  with an injected dipole.
- We generate posterior samples for  $(m_1^{\text{obs}}, m_2^{\text{obs}}, d_L^{\text{obs}}, \iota, \phi, \theta)$  for each event with Fisher likelihood inference.

Cosmic dipole effects for O5 events with g=0.01 pointing at (264°, 48°).



#### O5 test

- We compute  $p(H_0)$  with the spectral siren method with 5-year mock O5 events.
- Combined posterior has little deviation, but there is  $\sim 1\sigma$  deviation between posteriors from hemispheres for opposite directions of the cosmic dipole.
- Such deviation could be larger in the 3G era as the detected event number difference increases for two hemispheres.



# How can we measure it with GWs?

#### Golden dark sirens

• Schechter function: galaxy number density in relation to luminosity.

$$\phi(L) = \left(\frac{\phi^*}{L^*}\right) \left(\frac{L}{L^*}\right)^{\alpha} e^{-L/L^*}$$

• Areal density of galaxies at distance r with luminosity greater than L:

$$N_{\rm gal} \approx 0.28 \, {\rm deg^{-2}} \left(\frac{r}{100 {\rm Mpc}}\right)^3 \left(\frac{\phi^*}{4 \times 10^{-3} {\rm Mpc^{-3}}}\right) \Gamma\left(1 + \alpha, \frac{L}{L^*}\right)$$

• Using B-band parameters:

$$\alpha = 1.25$$
,  $\phi^* = 1.2 \times 10^{-2} h^3 Mpc^{-3}$ ,  $L^* = 1.2 \times 10^{10} h^{-2} L_{\odot}$ 

Only one galaxy with  $L>L^*$  can be found within a sky area of ~0.06  $\deg^2$  for z<0.1.

It is potentially the host galaxy of a well-locallized dark siren.

#### **Detection forecast**

- 1. Obtain  $d_L^{\rm obs}$ ,  $z^{\rm obs}$ ,  $m_1^{\rm obs}$ ,  $m_2^{\rm obs}$  for different values of g and create GW injections at z<0.1.
- 2. Compute the uncertainties for ( $m_1^{
  m obs}$  ,  $m_2^{
  m obs}$  ,  $d_L^{
  m obs}$  ,  $\iota$  ,  $\phi$  , heta ) with Fisher matrix using GWDALI.
- 3. Check for the golden dark siren criteria of 0.06  $\deg^2$  with 90% sky area from  $\delta\phi$  and  $\delta\theta$ .

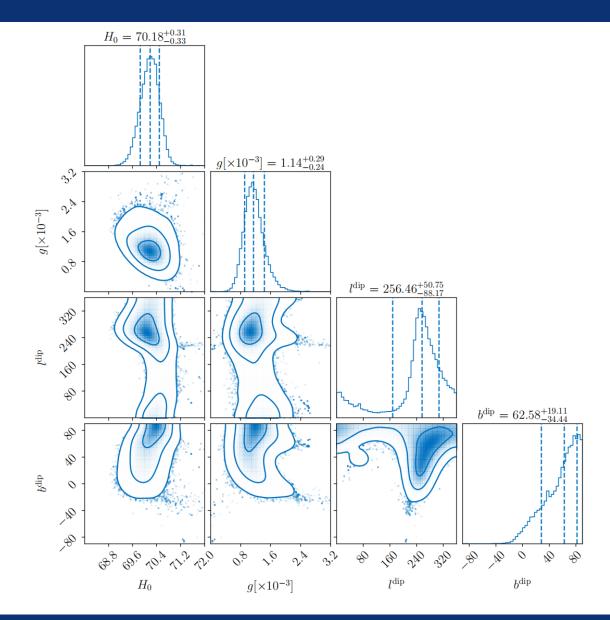
We consider 10-year observation by Einstein Telescope (ET) and LIGO detectors with Cosmic Explorer (CE) or A# sensitivity.

| Detector    | Golden dark siren number |      |     |       |  |  |
|-------------|--------------------------|------|-----|-------|--|--|
| network     | ввн                      | NSBH | BNS | Total |  |  |
| 1ET+2A#s    | 13                       | 0    | 0   | 13    |  |  |
| 1ET+1CE+1A# | 31                       | 2    | 2   | 35    |  |  |
| 1ET+2CEs    | 33                       | 3    | 3   | 39    |  |  |

# Dipole measurements

We construct the likelihood as

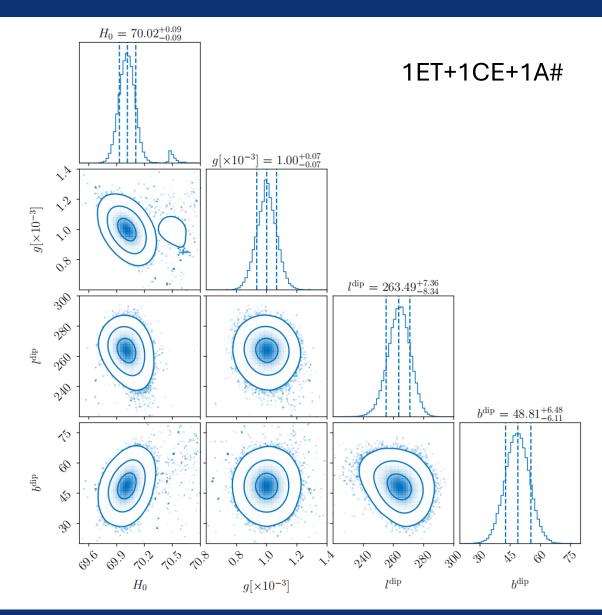
$$\log \mathcal{L} = -\frac{1}{2} \sum_{i}^{N_{\text{obs}}} \left\{ \frac{d_{L,i}^{\text{obs}} - d_{L}^{0} [z^{0} (z_{i}^{\text{obs}}, g, \hat{n}), H_{0}] [1 + g(\hat{n} \cdot \hat{z}_{i})]}{\delta d_{L,i}^{\text{obs}}} \right\}^{2}$$


Rest-frame redshift

$$z^{0}(z_{i}^{\text{obs}}, g, \hat{n}) = \frac{1 + z_{i}^{\text{obs}}}{1 + g(\hat{n} \cdot \hat{z}_{i})} - 1$$

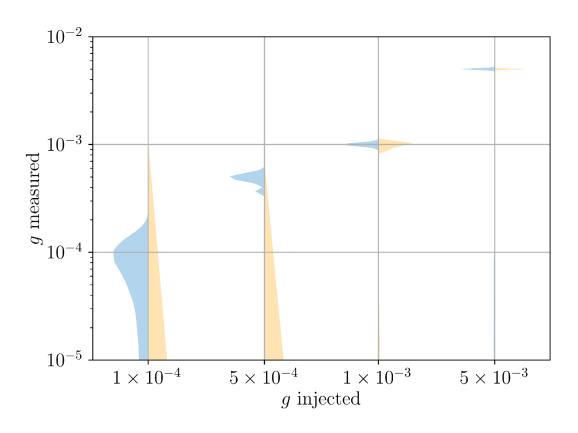
• We run MCMC sampling to jointly constrain  $H_0$ , g,  $l^{\mathrm{dip}}$ ,  $b^{\mathrm{dip}}$ .

- 1ET + 2LIGOs (A#)
- Injected  $g = 10^{-3}$ ,  $(l^{\rm dip}, b^{\rm dip}) = (264^{\circ}, 48^{\circ}).$


- $\sim 0.5\%$  constraint on  $H_0$ .
- $\sim$ 27% constraint on the dipole magnitude g.
- Weak constraint on the dipole direction.



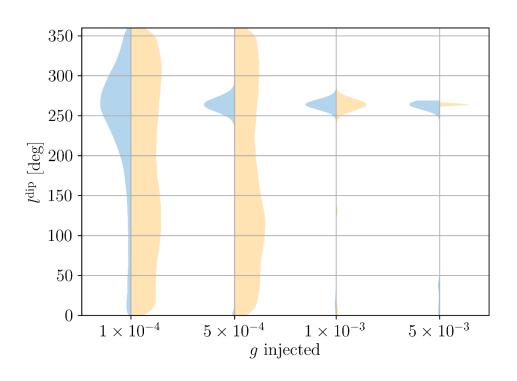
• Injected  $g = 10^{-3}$ ,  $(l^{\rm dip}, b^{\rm dip}) = (264^{\circ}, 48^{\circ}).$ 

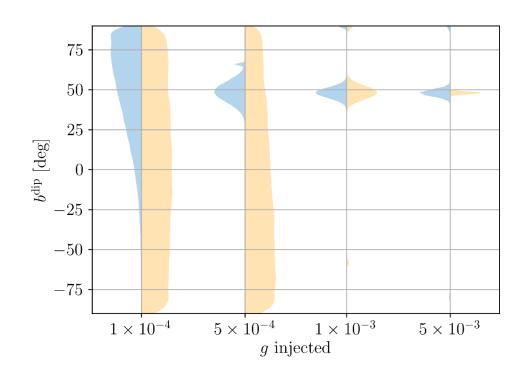

| Detector network | $1\sigma$ uncertainty |     |              |              |  |
|------------------|-----------------------|-----|--------------|--------------|--|
| Detector network | $H_0$                 | g   | $l^{ m dip}$ | $b^{ m dip}$ |  |
| 1ET+2A#s         | 0.46%                 | 27% | 69°          | $27^{\circ}$ |  |
| 1ET+1CE+A#       | 0.13%                 | 7%  | 8°           | 6°           |  |
| 1ET+2CEs         | 0.11%                 | 6%  | 6°           | $5^{\circ}$  |  |

• At least two 3G detectors in a threedetector network can constrain the cosmic dipole well.



• We check constraints for different injected values of g.


• g cannot be constrained in order of  $10^{-4}$  when jointly measured with  $H_0$ , but it can be constrained when fixing  $H_0$ .




Blue: fixing  $H_0$ 

Orange: jointly measured with  $H_0$ 

• Constraints on  $(l^{\rm dip}, b^{\rm dip})$  can be obtained down to  $g \sim 10^{-4}$  when fixing  $H_0$ .





Blue: fixing  $H_0$ 

Orange: jointly measured with  $H_0$ 

#### Conclusions

- The cosmic dipole may cause biases in precise  ${\cal H}_0$  measurement with spectral siren analysis for future detections.
- ~35 golden dark sirens observed by a three-detector network that includes more than one 3G detector can constrain  $g=10^{-3}$  (CMB level) with ~7% error, and jointly constrain  $H_0$  with <0.2% error at the same time.
- Constraint on the dipole can be enhanced by an order of magnitude when fixing  $H_0$ .

# Thank you!

arXiv: 2505.12678 chena@ucas.ac.cn