Phase Transition Gravitational Waves as a Unique Discriminant for Warm Inflation

Xiao-Bin Sui

School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences

October 19, 2025

Outline

- 1. Cold Inflation vs Warm Inflation
- 2 2. Thermal History of Warm Inflation
- 3 3. First-Order Phase Transitions & GWs
- 4. Summary

Inflationary

Why Inflation?

- Solves Big Bang cosmology puzzles: horizon, flatness, monopole problems
- Generates primordial perturbations for large-scale structure formation

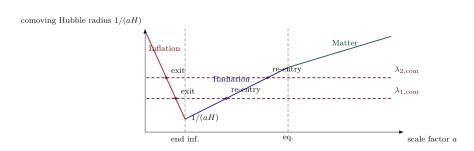


Fig. 1: Cosmic scale factor evolution

Inflationary

Fundamental Assumptions

- \bullet Isolated Inflaton: No interactions between inflaton ϕ and other fields during inflation
- **②** Potential Dominance: Energy density dominated by inflaton potential: $\rho_{\phi} \approx V(\phi) \gg \rho_r$ (radiation negligible)
- Post-Inflation Reheating: Particle production (reheating) occurs only after inflation ends

Cl Inflaton Evolution Equation

Inflaton Dynamics From Einstein equations + inflaton action, inflaton follows:

$$\ddot{\phi} + 3H\dot{\phi} + V_{,\phi} = 0 \tag{1}$$

Where:

- $\ddot{\phi}$: Inflaton acceleration
- $3H\phi$: Hubble damping

 $V(\phi)$

• $V_{,\phi}$: Potential force

To sustain inflation, $\ddot{\phi} \ll 3H\dot{\phi}, V_{,\phi} \rightarrow$ requires ultra-flat potential $(V_{,\phi} \ll 3H\dot{\phi})$.

Inflationary

1. η -Problem (Mass Crisis)

- ullet Inflaton mass $m_{\phi}\sim \sqrt{V_{,\phi\phi}}$; quantum corrections easily push $m_{\phi}>H$
- Spoils slow-roll: $3H\dot{\phi}$ cannot balance $V_{,\phi}$, terminating inflation prematurely
- Example: Quadratic potential $V=\frac{1}{2}m_{\phi}^2\phi^2$ needs $m_{\phi}\ll H$, but corrections give $m_{\phi}\sim H$ (contradiction)

2. Super-Planckian Field Excursion

- Monomial potentials ($V \propto \phi^n$) require $\Delta \phi > M_{Pl}$ for $N \sim$ 60 e-folds
- Violates EFT constraints (EFT breaks down above M_{Pl}) and swampland distance conjecture

3. Reheating Uncertainty

- CI needs inflaton decay to radiation post-inflation, but no robust microphysical model
- Reheating efficiency, temperature, and timescale are highly uncertain

Warm Inflation (WI): Motivation

Core Insight

Introduce *dissipative interactions* between inflaton and a thermal bath during inflation:

- ullet Enables concurrent particle production o no separate reheating phase
- Thermal bath provides extra damping

Key Distinction from cold inflation (CI)

CI

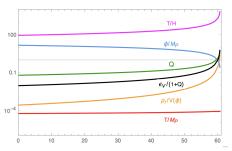
- $T \ll H$ (negligible thermal bath)
- Only quantum fluctuations
- Reheating required post-inflation

WI

- T > H (sustained thermal bath)
- Thermal + quantum fluctuations
- Smooth radiation transition

WI Fundamental Equations

1. Inflaton Evolution


$$\ddot{\phi} + (3H + \Upsilon)\dot{\phi} + V_{,\phi} = 0 \tag{2}$$

The $\Upsilon\dot{\phi}$ term describes energy loss from inflaton to thermal bath.

2. Radiation Energy Conservation

$$\dot{\rho}_r + 4H\rho_r = \Upsilon \dot{\phi}^2 \tag{3}$$

Where ρ_r is radiation energy density during WI .

Dissipation & Regimes

1. Dissipation Ratio Q

 $Q=\Upsilon_{\overline{3H}}$, where $\Upsilon=$ dissipative coefficient (energy transfer rate from ϕ to thermal bath).

2. Two Dissipative Regimes

Weak Dissipation (Q < 1)

- Hubble damping $(3H\dot{\phi})$ dominates
- Background dynamics similar to CI
- Thermal fluctuations affect perturbations

Strong Dissipation (Q > 1)

- Dissipative damping $(\Upsilon\dot{\phi})$ dominates
- Allows $m_{\phi} > H$ (solves η -problem)
- Sub-Planckian inflaton excursion $(\phi < M_{Pl})$

Overview of Warm Inflation Models

- 1. Two-Stage Dissipation Model Inflaton doesn't directly feed the thermal bath: first, it passes energy to heavy intermediate fields. These heavy fields then decay into light particles.
- 2. Warm Little Inflaton (WLI) Model Inflaton is a "pseudo-Nambu-Goldstone boson" (from broken symmetry). It couples to fermions with bounded masses (masses never get too big). These fermions thermalize easily, keeping the bath warm.
- **3. Axion-Like Inflaton Model** Inflaton acts like an axion (has a "shift symmetry" that stops unwanted mass growth). It twists gauge fields (e.g., photon-like fields) via a special interaction.
- **4. Scalar-Driven Thermal Bath Model** Inflaton directly couples to light scalar fields. As the inflaton rolls, it excites these light scalars. .

Dissipation Coefficient Υ

1. Distributed Mass Model (DMM)

$$\Upsilon^F(T) = \sum_{j=1}^{N_{th}} C_T^F T,$$

2. Two-Stage Mechanism Model

$$\Upsilon = C_{\phi} \frac{T^3}{\phi^2},$$

3. Warm Little Inflaton (WLI) Model

$$\Upsilon = C_T T$$
,

4. Axion-Like Inflaton Model

$$\Upsilon = C_{\Upsilon} \frac{T^3}{f^2},$$

Warm Inflation: Core Evolution Stages

1. Cold Inflation Initial Stage - Inflaton field: $\phi \gg \phi_i$ - Thermal bath: $T = T_i \ll H_{inf}$ - No significant interactions; universe expands in cold regime

2. Transition at $\phi=\phi_i$ - Interactions between inflaton and other fields become prominent - Thermal bath starts to form and heat up

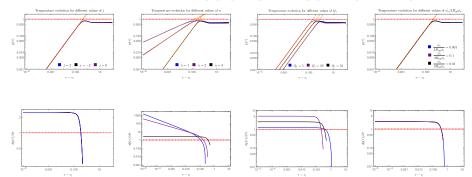
3. Warm Inflation Final Stage

- Thermal bath: Stabilizes at constant $T=T_{\rm e}$ - Warm infltion

$$\Upsilon(\phi,T)=C_{\Upsilon}T^n\phi^jM^{1-p-c}$$
 $V(\phi)$ 16-9

Cold Inflation Warm Inflation ϕ_i T_e (constant)

Equations


Original Core Equations

$$\ddot{\phi} + (3H + \Upsilon)\dot{\phi} + V_{,\phi} = 0$$
$$\dot{\rho}_r + 4H\rho_r = \Upsilon\dot{\phi}^2$$

Reparametrization Definitions: $x = \frac{\dot{\phi}}{\dot{\phi}_s}$, $p = \frac{\overline{T}}{\sqrt{\dot{\phi}_s}}$, $y = \frac{\phi}{\phi_i}$, and $au = 3H_{\rm inf}t, \quad (\epsilon_V = \frac{M_{Pl}^2}{2} \left(\frac{V_{,\phi}}{V}\right)^2)$ $\ddot{\phi} + (3H + \Upsilon)\dot{\phi} + V_{,\phi} = 0 \implies \frac{dx}{d\tau} + (1+Q)x + \frac{v_{\phi}}{3H_{col}}$ $\dot{\rho}_r + 4H\rho_r = \Upsilon \dot{\phi}^2 \implies \frac{dp}{d\tau} = \frac{1}{4} \frac{Qx^2}{r^3} - \frac{1}{3}p$ $\frac{dy}{d\tau} = x \frac{\dot{\phi_s}}{3H_{\text{tot}}\phi_s}, \quad Q(\tau, p) = Q_1 y^j p^n$

Heating Process During WI

Thermal Evolution Stages: $p(\tau)$ (Top) & $dp(\tau)/d\tau$ (Bottom)

Note: Black solid line: j=-2, n=3, $Q_1=10$, $\dot{\phi}_s/(3H_{inf}\phi_s)=0.01$;

Blue/purple lines: Other parameter sets.

Summary: Temperature Evolution Key Parameter Dependence

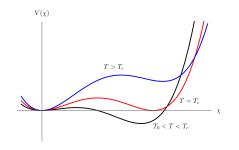
1. Temperature Evolution Pattern

- Heating phase: Temperature rises with *increasing rate*; Near asymptotic maximum: Rise rate slows rapidly, then stabilizes;
- Most stages: Follows approximate power-law behavior.

2. Dominant Influential Parameters

- Q_1 (Energy Transfer Efficiency)
- Larger $Q_1 o$ Faster temperature rise rate (higher energy transfer
- efficiency);
- From $T_e^4 \propto \frac{Q}{(1+Q)^2}$ $(p \approx 1, y \approx 1$ post-heating): $Q_1 \approx 1 o \mathsf{Max}$ T_e ; $Q_1 > 1 o \mathsf{Larger}$ $Q_1 \to \mathsf{Lower}$ $Q_1 \to \mathsf{Lower}$

- *n* (Model-Specific Exponent) -
- Typical range: $0 < n \le 3$ (most WI models);
- Smaller $n \to Faster$ temperature rise rate;
- Special case: $n = 3 \rightarrow \text{Constant}$ temperature change rate (most heating stages).


Finite-Temperature Potential for PTs

Potential Form

$$V(\chi, T) = \frac{\mu^2}{2} (T^2 - T_0^2) \chi^2 - \frac{A}{3} T \chi^3 + \frac{\lambda}{4!} \chi^4$$
 (4)

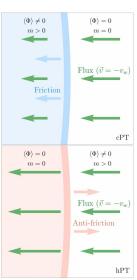
Where:

ullet μ, A, λ are model parameters; T_c : critical temperature

- Heating Phase Transition (hPT): During warm inflation heating, temperature rises above T_c (from $T_s < T_c$ to $T_e > T_c$).
- Cooling Phase Transition (cPT): During radiation-dominated era, temperature cools below T_c .

GW Generation from First-Order PTs

Three Primary Sources of GWs

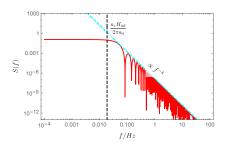

Bubble Collisions

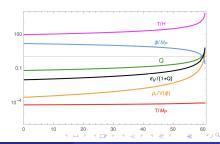
- Energy derived from expanding bubble walls
- Dominant contribution for hPT (due to runaway bubble expansion)

Sound Waves

- Plasma pressure waves triggered by bubble motion
- Dominant contribution for cPT

hPT




hPT GW Power Spectrum

$$h^{2}\Omega_{GW,hPT}(f) = h^{2}\hat{\Omega}_{GW}(f \exp(N_{*})) \frac{H_{inf}^{2}}{\pi^{2}g_{*}/90 \cdot T_{e}^{4}/M_{Pl}^{2}} S(f)$$
 (5)

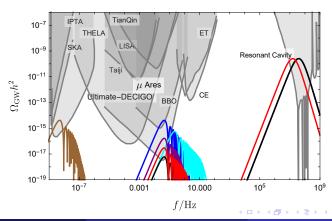
Key Features

- Redshifted by inflation: $f \to f \exp(-N_*)$ ($N_* = \text{e-folds since hPT}$)
- Oscillatory structure: From S(f)
- Low-frequency band

cPT GW Power Spectrum

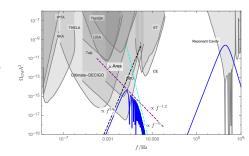
Key Features

- No inflationary redshift (post-inflationary)
- Smooth peak: Dominated by sound waves
- High-frequency band


Spectrum Formula

$$h^{2}\Omega_{GW,cPT}(f) = 2.56 \times 10^{-6} \left(\frac{H_{*}}{\beta_{cPT}}\right) \left(\frac{\kappa_{cPT}\alpha_{cPT}}{1 + \alpha_{cPT}}\right)^{2} \times \left(\frac{100}{g_{*}}\right)^{1/3} v_{cPT} \left(\frac{f}{f_{cPT}}\right)^{3} \left(\frac{7}{4 + 3(f/f_{cPT})^{2}}\right)^{7/2}$$
(6)

GW Detectability & WI-CI Discrimination


Double-Peak SGWB: Unique WI Signature

- ullet hPT peak: Low frequency o T_e , N_* and H_{inf}
- ullet cPT peak: High frequency $o T_c$

GW Generation from First-Order PTs

- for $f < \frac{a_* H_{\rm inf}}{2\pi a_0}$, $\Omega_{\rm GW,hPT} \propto f^{2.8}$;
- for $rac{a_* H_{\mathrm{inf}}}{2\pi a_0} < f < f_{\mathrm{hPT}} \exp(-N_*),$ $\Omega_{\mathrm{GW,hPT}} \propto f^{-1.2}$
- for $f > f_{\rm hPT} \exp(-N_*)$, $\Omega_{\rm GW,hPT} \propto f^{-5}$.

two constraints

- $rac{a_*H_{
 m inf}}{2\pi a_0}\propto \exp(-N_*)rac{T_0}{T_e}H_{
 m inf}$ and $f_{
 m hPT}\proptorac{eta_{
 m hPT}}{H_{
 m inf}}T_e$
- the peak of the GW signal from the hPT depends on $\frac{H_{\text{inf}}}{\beta_{\text{hPT}}} \frac{\alpha^2}{\mathcal{R}^2} \frac{H_{\text{inf}}^2 M_{\text{pl}}^2}{T^4}$
- these constraints exactly help us determine the value of $\frac{\beta_{\rm hPT}}{H_{\rm inf}}$.
- distinguish whether inflation is WI but also gain deeper insights into the generation of the thermal bath.

Summary: WI Dual PTs GW Signatures

- 1. Phase transition gravitational waves can be used to determine inflation models, WI or CI.
- 2. Phase transition gravitational waves can be used to determine the warm inflation parameter ^{β_{hPT}}/_{H_{inf}}.
- ullet 3. The constraints on the not strong dissipation region, $Q\sim 1$, can be supplemented.

Thank You!