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The Standard Model

The Standard Model has been winning since its birth . . .
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Physics Beyond the Standard Model

However, there are lots of indirect evidences of BSM:
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Search for Anomaly

Lack of New Physics signals and the Ambulance-Chasing game:

The 750 GeV diphoton anomaly

W boson mass anomaly

Muon g − 2 anomaly

Muon Theory Initiative [2505.21476]
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The Approach of Effective Field Theory

Paradigm shift Experimentalist Theorist
On-Shell New Physics bump hunting model building

EFT New Physics precision measurement effective operators

LEFT(Λ) = LSM +
∑
d>4

ci

Λd−4O
(d)
i

肖明磊 (SYSU,Shenzhen) EFT& Amplitude 5 / 41



The Approach of Effective Field Theory

LEFT(Λ) = LSM +
∑
d>4

ci

Λd−4O
(d)
i

肖明磊 (SYSU,Shenzhen) EFT& Amplitude 5 / 41



Outline

1 Effective Operators in the On-Shell Way

2 Construction of Operator Basis

3 Partial Wave Amplitudes

4 Summary

肖明磊 (SYSU,Shenzhen) EFT& Amplitude 6 / 41



Effective Operators in the On-Shell Way

Outline

1 Effective Operators in the On-Shell Way

2 Construction of Operator Basis

3 Partial Wave Amplitudes

4 Summary

肖明磊 (SYSU,Shenzhen) EFT& Amplitude 7 / 41



Effective Operators in the On-Shell Way

Higher Dimensional Operators

Dim-6 operators are the main concerns in the new physics searches,

LWarsaw =
63∑

i=1

ci

Λ2Oi

[Grzadkowski,et al., 2010]

[Ellis,et al., 2021]
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Effective Operators in the On-Shell Way

Higher Dimensional Operators

Leading contribution beyond dim-6:
absent at dim-6: e.g. nTGC [Ellis, He, Xiao, 2020]

non-interference [Degrande, Li, 2023]

SM∗ O(6)

= 0

flat directions [Boughezal, Petriello, Wiegand, 2021]

loop-level generation [Guedes, Olgoso, Santiago, 2023]

FµνF
ν
ρF

ρµ , (H†H)FµνF
µν , Bµν(L̄σµνe)H
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Effective Operators in the On-Shell Way

Bases of Effective Operators

The EFT analysis should be based on a complete and independent set of
effective operators: the operator basis

The first such dim-6 basis, Warsaw basis, was constructed in 2010
(the last update of the paper is actually 2017).
Historically, there were bases of operators invented for convenient
characterization of certain class of processes or UV models: SILH
basis, Higgs basis,. . . but they are not complete and does not
consistently apply to theory outside the range of its presumption.
After the Warsaw basis, lots of work on higher dimensional operator
basis

dimension-7 Liao,Ma,2016
dimension-8 Murphy,2020; Li,Shu,Ren,Xiao,Yu,Zheng,2020
dimension-9 Li,Ren,Xiao,Yu,Zheng,2020; Liao,Ma,2020

Due to a number of redundancy relations, the choice of operator basis is
arbitrary

In the presence of repeated fields and number of flavors, additional
redundancy due to permutation symmetry (flavor symmetry).

In practice, whatever we get from matching and running should be
converted to the combination of operator basis.
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Due to a number of redundancy relations, the choice of operator basis is
arbitrary

Equation of Motion (EOM)

Covariant Derivative Commutator (CDC), Bianchi Identity, . . .

Integration by Part (IBP of Lagrangian)

All sorts of group identities (Lorentz, gauge)

In the presence of repeated fields and number of flavors, additional
redundancy due to permutation symmetry (flavor symmetry).

In practice, whatever we get from matching and running should be
converted to the combination of operator basis.
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Effective Operators in the On-Shell Way

On-shell Basis
An easy rule to get rid of EOM (and CDC) redundancy: simply avoid the
“kinetic term” of EOM (D2Φ, /Dψ, DµFµν) and assuming symmetries
among the covariant derivatives

Dµ1Dµ2 · · ·DµmΦ ' Dµσ(1)Dµσ(2) · · ·Dµσ(m)Φ , ∀σ ∈ Sm

This is exactly a rule that the Warsaw-like operator bases follow, which
can be interpreted as a simple principle:

Amplitude/Operator Correspondence
An independent set of operators is isomorphic to an independent set of
on-shell local amplitudes, or their leading form factors.

D2Φ ' p2 = m2, /Dψ ' /pu(p) = mu(p) , DµFµν ' p2εν−(p·ε)pν = m2εν

Dµ1Dµ2 · · ·DµmΦ ' pµ1pµ2 · · · pµm
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Effective Operators in the On-Shell Way

Relation with On-shell Bootstrap

Two ways to compute the scattering amplitude
Operators → Feynman Diagrams → Amplitudes
On-shell amplitude seeds RR−→ Amplitudes

A Brief Review of Recursion Relation
Momentum shift A(p̂(z)) ≡ Â(z) where p̂µ(z) = pµ + zrµ

A(p) = Â(0) = 1
2πi

∮
z=0

Â(z)
z

=
∑

I

1
P 2

I

ÂL(zI)× ÂR(zI) +B∞

while the residues are determined recursively by the amplitude seeds
(e.g. the 3-pt amplitudes in YM).
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Effective Operators in the On-Shell Way

Relation with On-shell Bootstrap

A theory is said to be on-shell constructible if there is a way to do the
recursion with B∞ = 0.

What is B∞?
A contribution to the amplitude with no poles (local).
Why is it constructible when B∞ = 0?
The amplitude can be fully determined by the residues.
Why is it NOT constructible when B∞ 6= 0?
There is information NOT determined by the residues
(local contributions coming from local operators).

A(φ, φ, φ, φ) in scalar QED due to a possible operator λφ4.
Most EFT’s are not constructible.

The missing information is encoded in the set of Wilson coefficients.
Effective Operators ⇔ Possible Terms in B∞
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Effective Operators in the On-Shell Way

Spinor-Helicity Variables

It is convenient to construct the amplitude basis in terms of {|i〉, |i]}.
Both momenta and on-shell wave functions can be expressed

pµ
i = 1

2〈i|σ
µ|i] , u(pi) =

(
|i〉
|i]

)
, εµL(pi) = 〈i|σ

µ|r]√
2[ir]

Extension to massive particles {|i〉, |i]} Arkani-Hamed,Huang,Huang,2017

pµ
i = 1

2〈i|
[Iσµ|i]J ] , uI(pi) =

(
|i〉I
|i]I

)
, εµ(IJ)(pi) = 〈i

(I |σµ|iJ)]√
2m

Lorentz invariant amplitudes expressed in terms of spinor brackets

M(〈ij〉, [ij]) independent of |r] due to gauge invariance
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Effective Operators in the On-Shell Way

Examples of Amplitude Basis

Counting helicities M(. . . , hi, . . . ) ∼ |i〉ni |i]2hi−ni

3-point amplitudes (special kinematics: either 〈ij〉 = 0 or [ij] = 0)

M(0, 0,−1) = 〈13〉〈23〉
〈12〉 , M(+1,−1− 1) = 〈23〉3

〈12〉〈13〉

The denominators represent spurious poles.
The more derivatives, the more degeneracy: e.g. ψ1ψ2ψ3ψ

†
4D

M1 = 〈12〉〈13〉[14] ' O1 = −(Dµψ1ψ2)(ψ3σ
µψ†

4) ,

M2 = 〈12〉〈23〉[24] ' O2 = −(ψ1Dµψ2)(ψ3σ
µψ†

4) ,

M3 = 〈13〉〈23〉[34] ' O3 = (ψ1Dµψ3)(ψ2σ
µψ†

4) .
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Effective Operators in the On-Shell Way

Example: SMEFT at dim-6

Steps to get the operator basis [Shu,Ma,Xiao,2019]

Enumerate all the types ((d, {hi}, {ri}))
The corresponding operators are written in terms of chiral basis fields:

ψ = PLΨ , ψ†
c = PRΨ , FL = σµνFµν , FR = σ̄µνFµν

For each type of operators, find all the independent Lorentz structures
M(d)({hi}) and gauge structures T ({ri}) (invariant tensors).
In the presence of identical particles, find combinations that satisfy
the Bose/Fermi-statistics.

nf = 1 : Oqqq = εabcεilεjk(QaiQbj)(QckLl) '
∑

i

MiTi
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For each type of operators, find all the independent Lorentz structures
M(d)({hi}) and gauge structures T ({ri}) (invariant tensors).
e.g. type QaiQbjQckLl:

M1 = 〈12〉〈34〉 , M2 = 〈13〉〈42〉 , M3 = 〈14〉〈23〉 ,
T1 = εabcεijεkl , T2 = εabcεikεlj , T3 = εabcεilεjk .
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Effective Operators in the On-Shell Way

Problems Solved and Unsolved

Solved
All redundancy relations from EOM, CDC, Bianchi Identity are
encoded in the anti-symmetric spinor brackets 〈ii〉 = [ii] = 0.
Lorentz invariance and gauge invariance are built-in.
D = 4 identities (Gram determinant) are built-in.

Still problems
IBP is equivalent to momentum conservation

∑
i |i〉[i| = 0

Lorentz group identities are equivalent to the Schouten Identities

|i〉〈jk〉+ |j〉〈ki〉+ |k〉〈ij〉 = 0 , |i][jk] + |j][ki] + |k][ij] = 0 .

Repeated fields (flavor) is equivalent to statistics of identical particles.
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Construction of Operator Basis
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Construction of Operator Basis

Young Tensor Method
Total momentum Pµ =

∑N
i=1〈i|σµ|i] is invariant under the SU(N)

|i〉 →
∑

j

Uij |j〉 , |i]→
∑

j

U†
ij |j] .

The seed amplitudes M transform under some representation R

〈ij〉 → UikUjl〈kl〉 ∈ , [ij]→ U†
ikU

†
jl[kl] ∈ ...

 N
−

2

Types of the same (N,n, ñ) may transform to each other

(4, 2, 0) : {ψ4, FLψ
2φ, F 2

Lφ
2}

RN,n,ñ = PN,n,ñ ⊕ R̄N,n,ñ︸ ︷︷ ︸
IBP non-redundant
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Types of the same (N,n, ñ) may transform to each other
(4, 2, 0) : {ψ4, FLψ

2φ, F 2
Lφ

2}
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Construction of Operator Basis

Young Tensor Method

The independent set of Lorentz structures
forms primary irrep. R̄N,n,ñ of SU(N)
[Henning, Melia, 2019]

dim-8⇐⇒

[Li, Ren, Xiao, Yu, Zheng, 2020-2022]
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Construction of Operator Basis

Young Tensor Method

Amplitude Basis ⇐⇒ Semi-Standard Young Tableau of R̄N,n,ñ

1 1 2 3
2 2 4 4
4 4

' [35]2〈24〉〈34〉 ' φ1(ψ2σ
µν /Dσ̄ρλψ

†
3)FL4,µνF

ρλ
R5

A given set of numbers to fill in the Young diagram corresponds to a given
type of operators, e.g. φ1ψ2ψ

†
3FL4FR5D:

{1, 1, 2, 2, 2, 3, 4, 4, 4, 4}
with basis of SSYT:

{
1 1 2 2
2 3 4 4
4 4

,
1 1 2 3
2 2 4 4
4 4

}
y-basis

#i = ñ− 2hi

[Li,Shu,Ren,Xiao,Yu,Zheng,2020]
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Construction of Operator Basis

Amplitude Reduction
How to reduce a given Lorentz structure to the amplitude basis?

In mathematics, the reduction of Young tableau is called “straightening algorithm”, in
which the basic relation applied (Garnir relations) actually correspond to the amplitude
relations of IBP and Schouten Identities.
Step 1 Remove all the p1 (pairs of |1〉 and |1]);

p1 = −
∑

i 6=1
pi

Step 2 Remove as many p2 and p3 as possible without generating p1

e.g. 〈12〉[2j] = −
∑

i
〈1i〉[ij]

Step 3 Apply Schouten Identities to the Lorentz contractions

〈il〉〈jk〉 = 〈ik〉〈jl〉 − 〈ij〉〈kl〉 , [il][jk] = [ik][jl]− [ij][kl] .
[Li, Ren, Xiao, Yu, Zheng, 2201.04639;

in progress for massive amplitudes and the full operator reduction.]
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Construction of Operator Basis

Amplitude Reduction

How to reduce a given Lorentz structure to the amplitude basis?
In mathematics, the reduction of Young tableau is called “straightening algorithm”, in
which the basic relation applied (Garnir relations) actually correspond to the amplitude
relations of IBP and Schouten Identities.

[35][15]〈14〉〈24〉 = −[35][25]〈24〉2 − [35]2〈24〉〈34〉

=M1 −M2 '
(

1
−1

)

in general: M =
∑N (type)

i=1
ciM(y)

i

Obtain the coordinate of any given Lorentz structure under the y-basis.
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Construction of Operator Basis

Permutation Symmetry

Bose/Fermi statistics enforces permutation symmetry among identical
particles.
Although {M(y)

i } (all particles distinguishable by the labels) are
independent, their symmetrizations are usually not independent
(matrix Kλ usually not full-rank):

Yλ ◦Mi
reduce=

∑
j
Kλ

ijMj , λ ` m

By finding linearly-independent rows of Kλ, we can obtain the
independent Lorentz structures in any representation λ of the
permutation group Sm for m identical particles.
In practice, we need to put gauge structure T together and perform
the symmetrization.
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Construction of Operator Basis

Permutation Symmetry

We can perform symmetrization only for the exactly identical
particles, or for the particles from the same flavor multiplet.
e.g. type QQQL for nf = 3 SMEFT, m = 3 for the flavor multiplet Qp.

For the latter, λ does not have to be total symmetric/anti-symmetric;
only the length of the partition λ is lower bounded by the number of
flavor nf .

Type QQQL : {M}⊗{T } =

nf =3︷ ︸︸ ︷
nf =2︷ ︸︸ ︷

nf =1︷ ︸︸ ︷
⊕ ⊕

counting irreducible tensors: 2 × 2 = 1 + 2 + 1
counting flavor components: 10 + 8 + 1 = 19
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Construction of Operator Basis

Non-Linear Symmetry and Adler Zero Condition

How about Goldstone bosons with non-linear constraints? [Low,2014]

L(2) = |∂µφ|2 −

∣∣∣φ∗←→∂ µφ
∣∣∣2

4|φ|2

(
1− f2

|φ|2
sin2 |φ|

f

)

All the vertices with φ2n+2∂2/f2n are controlled by a single parameter f
Representation under the unbroken group H (in this case U(1))
Shift symmetry or equivalently Adler’s Zero condition

φ→ φ+ ε ⇔ lim
pi→0

M(· · ·φi · · · ) = 0
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Construction of Operator Basis

On-Shell Construction of ChPT

It is known for more than half a century that the non-linear constraint
can be reproduced in the amplitude by Adler Zero: limpi=0M = 0

Extended to arbitrary n: Soft Recursion Relation [Cheung et al.15’]

M(p1, . . . , pn) = M̂n(0) =
∑
I,±

1
sI

M̂(I)
L (z±

I )M̂(I)
R (z±

I )
Fn(z±

I )(1− z±
I /z

∓
I )

,

How about higher derivatives? Need new inputs (LEC)! [Low&Yin 19’]

Single Trace: S(4)
1 (1, 2, 3, 4) = c1

Λ2f2 s2
13, S(4)

2 (1, 2, 3, 4) = c2

Λ2f2 s13s23,

Double Trace: S(4)
1 (1, 2|3, 4) = d1

Λ2f2 s2
13, S(4)

2 (1, 2|3, 4) = d2

Λ2f2 s13s23.

(1) All soft blocks S satisfy Adler Zero.
(2) 1-to-1 correspond to Lagrangian terms L(4) =

∑4
i=1

L4,i

Λ2f2Oi.
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Construction of Operator Basis

Lorentz Structures in ChPT
Imposing Adler’s Zero condition on the combinations of y-basis lim

pi→0

∑
j

cjM(y)
j = 0


i=1,...,n

⇒ soft coordinates Kα
i = c

(α)
i

Example of n = 6 at O(p6):

The advantage of spinor-helicity variables
The D = 4 constraints — Schouten Identity,
Gram determinant — are taken into account by
the independence of the y-basis amplitudes.
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Construction of Operator Basis

Trace Structures in ChPT

Goldstones ∈ adj. of H = SU(Nf ), the independent flavor structures

For each Nf , there are the Cayley-Hamilton relations:

e.g. Nf = 3 C-H theorem : trA4 = 1
2
[
trA2

]2
⇒∑

σ∈S3

tr
[
T aT σ(b)T σ(c)T σ(d)

]
= tr

[
T aT b

]
tr
[
T cT d

]
+ cyclic(b, c, d)
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Construction of Operator Basis

Construction of Soft Blocks

The soft blocks should be totally symemtric among the flavor multiplets:

Bαβ = Y ◦ (T αMβ) = 1
n!

∑
σ∈Sn

(σ ◦ T α)(σ ◦Mβ)

=
dT∑
i=1

dM∑
j=1

 1
n!

∑
σ∈Sn

cα
i(σ)Kβ

j(σ)


︸ ︷︷ ︸

coordinate

×(TiM(y)
j ),

n = 6 soft blocks:

Unbroken Group H SU(2) SU(3) SU(4) SU(5) SU(6)

O(p6) P -even 3 8 13 14 15
P -odd 0 3 4 4 4

O(p8) P -even 9 40 68 74 76
P -odd 2 20 33 35 35
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Construction of Operator Basis

Electroweak Chiral Effective Theory

Add external sources and construct Chiral Effective Theory (ChEFT)

[Sun, Xiao, Yu, 2206.07722, 2210.14939]
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Partial Wave Amplitudes
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Partial Wave Amplitudes

Partial Wave Amplitudes

Effective operators can be obtained by integrating out heavy resonance states

∼ 1
p2 −M2 ≈ −

1
M2 −

p2

M4 − · · · ∼

The UV couplings can be written as 1-massive-n-massless on-shell amplitudes

M(h1, h2, . . . , hn; J) = CJ(h1, . . . , hn)α1...α2J (λI
α)⊗2J

Putting the left and right couplings together and summing over the polarizations
{I}, the resulting effective local amplitude should be a partial wave amplitude
with total angular momentum J [Shu, Xiao, Zheng, 2111.08019]

MJ = CJ
L(h1, . . . , hn) · CJ

R(h′
1, . . . , h

′
m)

When n = m = 2, it reduces to the Wigner-d matrix MJ ∼ dJ
h1−h2,h′

1−h′
2
(θ).
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Partial Wave Amplitudes

Operators that Produce Partial Waves

The on-shell correspondence is not only useful for basis construction

4-fermion
couplings


O(S) = (ψ̄ψ)(χ̄χ) ' B(S) ∼ dJ=0

0,0 (θ)
O(V ) = (ψ̄γµψ)(χ̄γµχ) ' B(V ) ∼ dJ=1

1,±1(θ)
O(T ) = (ψ̄σµνψ)(χ̄σµνχ) ' B(T ) ∼ dJ=1

0,0 (θ)

Operators can be classified by the angular momentum in certain channel

Partial Wave Operator Basis (J-Basis) ' Partial Wave Amplitudes

The J-basis operators can be generalized to include gauge group rep. R

e.g. O(1)/(8)
qu = (q̄γµTAq)(ūγµT

Au)

肖明磊 (SYSU,Shenzhen) EFT& Amplitude 34 / 41



Partial Wave Amplitudes

Selection Rules

Partial wave amplitudes are powerful in the phase space integration, as the
angular momentum conservation makes it block diagonal∫

dLIPSn CJ(h1, . . . , hn)CJ ′(h1, . . . , hn)∗ ∼ δJJ ′

1 Non-interference
2 Vanishing loop diagrams
3 Vanishing ADM element
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Partial Wave Amplitudes

Phase Space Integration

Also a tool to compute phase space integration.∫
dLIPSn CJ(h1, . . . , hn)CJ ′(h1, . . . , hn)∗ ∼ δJJ ′

Diagonalize and normalize CJ,a :∫
dLIPSn CJ,a(Φn)CJ,b(Φn)∗ ≡ 〈CJ,a, CJ ′,b〉 = π

2(2J + 1)δ
JJ ′
δab

Example: Wigner-D matrix DJ
σiσf

(Ω) = CJ
σi

(0) · CJ
σf

(Ω)∗

1
8

∫
dΩDJ

σiσf
(Ω)DJ ′

σiσ′
f
(Ω)∗ = CJ

σi
(0) · 8〈CJ

σ′
f
, CJ

σf
〉 · CJ

σi
(0)∗

= 4π
2J + 1δ

JJ ′
δσf σ′

f
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Partial Wave Amplitudes

Partial Wave Decomposition

Partial wave decomposition：

A(n→ m) =
∑

J

∑
a,b

aJ
ab CJ,a

n · CJ,b
m

∗︸ ︷︷ ︸
MJ,ab

For local amplitudes A ∈ span{M(y)}
Need a complete set of partial wave amplitudes.
They are eigenstates of angular momentum operator (J2?)
1. Lorentz invariant notion; 2. Acting on spinor variables

For arbitrary amplitudes A∫
dLIPSn CJ,a

n
∗A ≡ 〈A, CJ,a

n 〉 = π

2(2J + 1)
∑

b

aJ
abCJ,b

m
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Partial Wave Amplitudes

Implication of UV Resonances

Analysing J-basis in all channels, get all tree-level UV origin:

⇒ Three types of seesaw models for O(5) = (HL)TC(HL)
Completely bottom-up search
Does NOT apply to loop-level origins
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Partial Wave Amplitudes

Implication of UV Resonances

47 UV resonances responsible for Dim-6 SMEFT! [Li, Ni, Xiao, Yu, 2204.03660]

19 scalars


14 fermions


14 vectors


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Summary

Summary and Outlook

The significance of Effective Field Theory is emphasized.

The on-shell classification of effective operators: pheno impact?

Young Tensor Method: a systematic method to construct the
operator basis in various EFT.

Generalization of partial wave amplitudes and operators, and its
application to calculations.

With amplitude basis, can we perform bootstrap for general EFT?

Thank you for your attention!
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