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Motivation

precision prediction

[Wen, Yang, Hjalte's talks]

0, (a, {x}) = chFn

F,: Feynman Integrals

formal side: /' =4
sYM,
super Gravity, string...

Motives? Number Theory...

Mathematics
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What are Feynman Integrals (Mom.)
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> g; is made of loop momenta and external momenta, {p,, py, -, p, }: 5;; = (p; +pj)2

» Dep. on dimensionless kinematics: e.g., u? = S|y =~ X = ml.z/slz, cee }s

» Numerators will not increase the essential (analytical) complexity.
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Generic Features of Feynman Integrals

Il/le""Vn (8; {xi} )

I, .., isalways alinear combination of a finite basis (master integrals):
L., = Z rational, X M.,
i=1
D -2 D -3
e.g., Ig}lbble = Jbubble | Iﬂlbble. [Wen, Yang, Hjalte's talks]

 Am2(p? — 4m2) 1 dm? — s



Generic Features of Feynman Integrals

I’/le"“Vn (8; {xi} )

¢ dependence is always meomorphic (Laurent series).



Generic Features of Feynman Integrals

IVle"“Vn (8; {xi} )

The kinematic dependence is the most non-trivial: analytic structures.



Kinematics Dependence

Kinematics vary— natural to study differential equations of Fls (Mls).

It becomes the primary method for analytic calculation of Fls.

M, M,
M, M,
d| M5 | = ANFxNF(e, {x}) M,

M, My,

F

[Kotikov '91; Remiddi '97; Gehrmann, Remiddi ‘00]




Canonicalization

e-tactorization:

With rotationof basis and variable change, £ dependence factorizes in the (Gaul3
Manin) connection matrix, with suitable boundary condition.

[Henn '13]

]2 ]2 f: Z 8nf(n)

Jor+D = JBNFxNFf(n) + boundary

Mls can be written as Chen'’s iterated integrals [Chenn "13].



Canonicalization

e-tactorization:

With rotationof basis and variable change, £ dependence factorizes in the (Gaul3
Manin) connection matrix, with suitable boundary condition.

[Henn '13]

J2 ]2 j: Z 8nf(n)

JUth = JBNFxNFJ(n) + boundary
Mls can be written as Chen'’s iterated integrals [Chenn "13].

Once the e-factorized form is derived, Fls (Mls) are viewed as solved.
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Canonicalization’s Another Consequence

To achieve the e-factorized form, both rotations basis and variable changes are required.

X
The "mirror map”: g(x) = exp | 2ni )
Wo(xX)

holomorphic while y;(x) is single-logarithmic near the MUM point.

> and its inverse x(q), where y;(x) is
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Canonicalization’s Another Consequence

To achieve the e-factorized form, both rotations basis and variable changes are required.

X
The "mirror map”: g(x) = exp | 2ni )
Wo(xX)

holomorphic while y;(x) is single-logarithmic near the MUM point.

> and its inverse x(q), where y;(x) is

Mathematician: Evalution speed in terms of g is the fastest!

» For Fls, the MUM point should always “exist”;

» The mirror map not only exists for Calabi-Yau type Fls, but also
generalizes to MPL-like Fls, e.qg., [ 2411.07493, Wang, XW, Wang].



Multiple (Goncharov) Polylogarithms

For many cases, the entrys of By, ., look like: dlog#,(x). In particular, the letters

n;; are rational functions, then we end up with MPL (GPL) [Goncharov, '98, 01'].
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Duhr, and Smirnov, 2010] 24 12 72

[Goncharov, Spradlin, Vergu, and Volovich, “10]



Motivation of Analytic Investigation

The magic simplification is deeply rooted in the hidden structures of MPLs:
symbol letter and coaction (Hopf algebra).

Structure — Simplicity — Shortcuts

talk by Britto @ Amplitudes 2025

10



Motivation of Analytic Investigation

The magic simplification is deeply rooted in the hidden structures of MPLs:
symbol letter and coaction (Hopf algebra).

Structure — Simplicity — Shortcuts

talk by Britto @ Amplitudes 2025

The last two decades of precision predictions benefit a lot
from knowledge and tools developed from the above.

10



Motivation of Analytic Investigation

The magic simplification is deeply rooted in the hidden structures of MPLs:
symbol letter and coaction (Hopf algebra).

Structure — Simplicity — Shortcuts

talk by Britto @ Amplitudes 2025

The last two decades of precision predictions benefit a lot
from knowledge and tools developed from the above.

formal side: 8-|00p form factor (A = 4 sYM) [talk by Dixon @ Amplitudes 2025]

real world: 2-|00p 6-point QCD +... [Yang's talk] [talk by Volovich @ Amplitudes 2025]

1

cluster algebra
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Motivation of Analytic Investigation

Structure — Simplicity — Shortcuts

talk by Britto @ Amplitudes 2025

This is just the beginning of Feynman integral story.
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Geometric Classification of Fls
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Geometric Classification of Fls

MPL

1

S

Riemann sphere, i.e.,
g=0

last 2 decades,
most 2-loop
cases

packages for e-factorized

form...
11



Geometric Classification of Fls

elliptic MPL +
MPL modular forms

:
. . Riemann torus, i.e.,
Riemann sphere, i.e.,

g=0 s =1
last 2 decades, frontier during last
most 2-loop 10 years,
cases Some 2-loop cases
packages for e-factorized some examples

form... worked out
11



Geometric Classification of Fls

elliptic MPL +
MPL modular forms

Riemann surfaces with g > 2

. . Riemann torus, i.e.,
Riemann sphere, i.e.,

g=0 s =1
last 2 decades, frontier during last
most 2-loop 10 years,
cases Some 2-loop cases
packages for e-factorized some examples

form... worked out

11



Geometric Classification of Fls

elliptic MPL +
MPL modular forms

n n
- (&

Riemann torus, i.e.,

Riemann surfaces with g > 2

Riemann sphere, i.e.,

=1
g o O g LI I )
last 2 decadesl frontier during last
most 2-loop 10 years, Calabi-Yau 3 folds, K3 CalabiYau 4-folds
cases Some 2-loop cases
banans, icecones...
packages for e-factorized some examples

form... worked out
11



Geometric Classification of Fls

elliptic MPL +
MPL modular forms

n n
- (&

Riemann torus, i.e.,

Riemann surfaces with g > 2

Riemann sphere, i.e.,

=1
g o O g LI I )
last 2 decadesl frontier during last
most 2-loop 10 years, Calabi-Yau 3 folds, K3 CalabiYau 4-folds
cases Some 2-loop cases
banans, icecones...
packages for e-factorized some examples
form worked out 'Snowmass 2021 review 2203.0/7/088],

1 a comprehensive book by Weinzierl, '22]


https://arxiv.org/abs/2203.07088

This Talk

Go beyond multiple polylogrithms, or equivalently, go beyond (puntured)
Riemann sphere.

Structure — Simplicity — Shortcuts

ey talk by Britto @ Amplitudes 2025
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This Talk

Go beyond multiple polylogrithms, or equivalently, go beyond (puntured)
Riemann sphere.

Structure — Simplicity — Shortcuts

ey talk by Britto @ Amplitudes 2025

We have found a unified algorithm towards deriving e-factorized form
of any Feynman integral, inspired by Hodge theory.

Disclaimer: The algorithm reduce the complexity to a threshold, bounded by
correspongding geometry, which is however inevitable!
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This Talk
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Where are the geometric objects?



Parameter Representation of Feynman Integrals
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Parameter Representation of Feynman Integrals

” 1 - 1 L[~ ~1 —aP
['(v) = daa*"' e ™ ~ — = daa* " e ™
0 Py 1)),

» de
Iyl...,,n X JR Od”aa” HJ i exp Z
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Parameter Representation of Feynman Integrals

quadratic in momentua
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Parameter Representation of Feynman Integrals

quadratic in momentua

) dej
n v—1

> j=1

T T T,

f’fr(a;x))

d" v—1 9/ _% (
JR>O aQ [ ((x)] exp 2@

Schwinger rep.

U (a): tirst Symanzik (homogeous) polynomial; F(a; x): second Symanzik (homogeous) polynomial

15



Parameter Representation of Feynman Integrals

% (a): tirst Symanzik (homogeous) polynomial; F(a; x): second Symanzik (homogeous) polynomial

Lyg _D F(a;
L., = c J d"a a¥~! [%(a)] > exp ( (a,x))
T )T, g g ()
Schwinger rep.

v—(l+1)D/2

o7 T (v — ID/2) -~ (@) ™
I ., = d"a a” 5(1 — Z ai) 5

) F(Vl)r(l/n) R0 ; lg(a,x)] v

Feynman rep.

e“’EF(v — lD/2)
[ = J d"a a¥~! [CZl(a)+S‘T(a;x)]
I'((+ 1DD/2 —v)T (W) TW,) Jro

—D/2

Lee-Pomeransky rep.

gOOd for method of region [Beneke, Smirnov ‘911 In para. space [Smirnov; Gardi, Jones, Ma...]
15



Symanzik Polynomials

U(a) = Z H a,

T: spanning tree e¢T
12

F(a; x) = 2 _pFHa + U - Z(x ;

F: spanning Dforest I egF

mi, aq
_ —5 mi ms ms
P F(a;x) = — o3 + U(a) a1—2 +a— + a3—
H K K H

16



Geometry by Symanzik Polynomials

Y(x) = {[0‘130‘230533“'10!] F (a; x) =O} c CP"!

n

mi, &

ms3, x3 torus

3

_ oy _ 2

Ysumise(xl,xz, x3) = {[0‘1 L0 o] | a0, = (0{1 + a, + a3) E aixl-} c CP
j=1
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Why Geometry Matters

B 82}’EF(3 — D) J 3@( 5(1 — 053)
p=2-2¢ Tw)-1W) Jpo  [%()] - F(a; %) -

sunrise
l 111

The most important contribution comes from the variety (zero set, i.e., torus)!
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Why Geometry Matters

sunrise
/ 111

B 827Er(3 — D) J d3a 5(1 — a3)
D=2-2¢ ['(vy)---1'(v,) R.0 [%(0[)] —3¢ [3‘7(&; X)

The most important contribution comes from the variety (zero set, i.e., torus)!

sunrise _
B Y1 Y2
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Why Geometry Matters

sunrise
/ 111

B 82}’EF(3 — D) [ d3a 5(1 — 053)
D=2-2¢ ['(vy)---1'(v,) R.0 [%(0{)] —3¢ [g(a;x)

The most important contribution comes from the variety (zero set, i.e., torus)!

sunrise _
111 D_Z—CIJ a)+ch' @
B Y1 Y2

J
Vi
This is a generic pattern, and that is why Feynman integrals

J w;'s are called periods of such a geometry.

also interest mathematicians

18



Baikov Representation of Feynman Integrals

> Treat propagators, Ps, as integration variables: z; = Pl-/,uz; Hjalte's talk!
In DR, one need to introduce extra variables to match #d.o.f's, leading to some non-trivial
“Jacobian”:
y 1
L,.. = constX J [%’(z;x)] ———d'z
G . BESIEGA:

u(z)

19



Baikov Representation of Feynman Integrals

» Treat propagators, P/'s, as integration variables: z;, = P./u?; Hjalte's talk!

In DR, one need to introduce extra variables to match #d.o.f's, leading to some non-trivial
“Jacobian”:

/ = const X J

yloooyn
1]

|
KB(z; ! d”
[ (Z )C)] J Zf1252°°°2,'{” <

u(z)

» Baikov rep. is not for calculating Fls, but rather to study the structures therein!
Packages.: [Baikovletter, Jiang, Yang; BaikovPackage, Hjalte; SOFIA, Correia, Giroux, Mizera]

» It translates Fls to twisted cohomology.

> This representation is perfect for cuts: just taking residues explicitly: cut; = res__.

19



From now on, we focus on the maximal cut.
Since it is most relevant for analytical
difficulty.

20



Example: Sunrise
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Example: Sunrise

It has three propagators: {z;, 2y, 73} The loop-by-loop Baikov rep. needs an auxiliary variable, z,. Hence
its full Baikov rep. reads:

le A\ de A\ dZ3 N\ dZ4

Isunrise

111 7~ J M(Zl,Zz, Z3;Z4)
€

{1 4p <3
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Example: Sunrise

It has three propagators: {z;, 2y, 73} The loop-by-loop Baikov rep. needs an auxiliary variable, z,. Hence
its full Baikov rep. reads:

le N\ de A\ dZ3 N\ dZ4

Isunrise

111 7~ J' M(Zl,Zz, Z3;Z4)
€

{1 4p <3

The (non-trivial) geometry is dictated by the maximal cut. So we have:

11811111151\26(: = r2(1/2 — ¢) LMC ‘[P 1(24)]8 [P 2(24)] v
u(zy)

—1/2—¢ —1/2—¢

P3(z,)] dz,
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Example: Sunrise

It has three propagators: {z;, 2y, 73} The loop-by-loop Baikov rep. needs an auxiliary variable, z,. Hence
its full Baikov rep. reads:

le N\ de A\ dZ3 N\ dZ4

Isunrise

111 7~ J' M(Zl,Zz, Z3;Z4)
€

{1 4p <3

The (non-trivial) geometry is dictated by the maximal cut. So we have:

11811111151\26(: = r2(1/2 — ¢) LMC ‘[P 1(24)]8 [P 2(24)] v
u(zy)

—1/2—¢ —1/2—¢

P3(z,)] dz,

mi, o

A > ()

torus
21



Where is (Algebraic) Geometry from Baikov?

Here, the pure geometry or the leading geometry is determined by taking € = 0O:

Jsunrise J' dz, J' dz, J' dz
111,MC "~ 2 N
|Py(24) P3(24)] Wa I W

4

{(24, wy) € C? ‘ wf = H (24 — a4(x)) }

=1

~lewmel|w=2c-1(z-iw)}

&
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Where is (Algebraic) Geometry from Baikov?

Here, the pure geometry or the leading geometry is determined by taking € = 0O:

Jsunrise J' dz, J' dz, J' dz
111,MC "~ 2 N
|Py(24) P3(24)] Wa I W

4

{(24, wy) € C? ‘ wf = H (24 — a4(x)) }

=1

~lewmel|w=2c-1(z-iw)}

&

To rationlize the square root, elliptic functions are

inevitable: z = (&), w = ¢'(&), then:
(§0°(6))* = (&) (g(&) — 1) (go(&) — Ax))

dz
— = d¢&. € is the coordinate on the torus.

w

22



Setup

In a given sector, MlIs’ Baikov representations share the same twist (b, bj e Z):
1

" (Z19229 '”9ZNV> = H [pi(Z)] 3t H PJ(Z)

= jel

cven

1

» Odd polynomials — pure geometry;

» Even polynomials — possible punctures or marked points in the manifold;

» The Baikov rep.'s of different Mls has different rational parts:

q,z)
MizCaiOVJ Uz dzy, A - Adzy, U € 7
o MC ( ) Hanll [pj(z)]ﬂj " | :

—

P,

23



Setup

» Given a M,, there is a differential form ¢, ( Hgv > VWv);

» The revese is not quite correct: one needs to modulo IBP relations.
¢, ~ ¢+ V n, which leads us to the twisted cohomology. [Hjalte's talk!]

» From now on, we can study the differential forms to represent the corresponding Mis;

» Besides, it is helpful to consider everything in the projective space, which takes infinite
into account naturally.

(a2 a) = [ @] T o]

€144 JEI

cven

S U(20: 205 25 5 Zy,) = H P, (ZO, 2)| “rabe H _Pj(zo, z): ] -Zgb‘)g

€144 JEI

cven




Setup

From now on, we focus on the linear space Hgv (twisted cohomology) made of differential
forms, classify them by some criteria and them translate back to Fls;

HYv = { ‘PMO.._ﬂND[Q] = C.(1u}) U(z) (IA)ﬂOH-//tND[Q] 1 } modulo IBPs

— o lul | — =
C.=¢e " X II ( 5 2bi5> II <2bi8> @), I'(a+1—n)

iEIOdd Hi lEI

cven //t l

~~

C

rel

We define two more ordering numbers on top of Laporta’s algorithm: pole order o0, and the

number of non-zero residues r of ‘Pﬂo,,,ﬂN [O].
D

p=Ny—o+r; q = o; w=p+qg=Ny+r.

25



Setup

p=Ny—o+r; q = o, w=p+qg=N,+r.
» Within a sector, these numbers organize complexity of Mls.

» Our algorithm is we start from the highest w (weight), and then scan elements in Hgv by

increasingthe pole order o. After we finish this weight, we minus the weight by 1 and
repeat scanning the pole order.

In math terminlogy, this layered decomposition is called filtration, which is used in Hodge theory.
26



Setup

p=Ny—o+r; q = o, w=p+qg=N,+r.
» Within a sector, these numbers organize complexity of Mls.

» Our algorithm is we start from the highest w (weight), and then scan elements in Hgv by

increasingthe pole order o. After we finish this weight, we minus the weight by 1 and
repeat scanning the pole order.

_______ 5 o w o ow=2+4+2
________//___/L.__Tl_____l
0 .7 0 ws w=2+1
—————— ) /———/—/————//———————l
1 a4 1 W w=2+0
F2_ FL  F

geom , geom , geom ,”
- - -

In math terminlogy, this layered decomposition is called filtration, which is used in Hodge theory.
26



Setup

» With the filtration, we group the elements of H"'v and translate back to Mls. DEQ is not e-factorized;

1
> But it is in a good block lower-triangular and looks like: A(e; x) = Z e'AD(x)
i=—N,,

» Can always remove the unwanted ¢ fori < 0, in a bottom-up way!

» Solving the constraints turns out to be equivalent to using the periods information;

» The filtration algorithm reduces the problem to the “naked” level, which is related to the geometry
itself and inevitable;

» The filtration algorithm does not specify the geometry!

27



Two examples

elliptic
Calabi-Yau 2-folds

lots of highly non-trivial examples worked out and in preparation...

28



Canonicalizing Elliptics: A New Perspective

E Kira reports 3 master integrals in the top sector.
le 1 —%—8 —%—g

L1121 mc = CBaikovJ > Pi)| 7 pa(z)] P3(z)] with
G MiC

(1-x,)"
Xl .

, _
p1=Z1_X2,p2=Z1+4—X2, p3=(21+1) —4X2=

29



Canonicalizing Elliptics: A New Perspective

Kira reports 3 master integrals in the top sector.

1
_7_8

ps(zp| * 7, with

(1-x,)"
X1

dz; _1 -

[P1(Z1)] ’ [pz(Zl)]

111121,MC — CBaikovJ' :
7 27l
MC

, _
p1=Z1_X2, p2=Z1+4—XZ, p3=(21+1) —4X2=

All three polynomials are odd. After homogenization, there is one even polynomial: P, = z,.

1 1 1

U(Z(), Zl) — Pgepl_i 2_7—8})3—7—8
And the element in H! looks like: Y, 0] = CuenCra({p}) U(2) (IA)ﬂoo--M[Q] .

» U is of homogeneous degree —2, while 77 is of homogeneous degree +2. Hence ® should be of
homegeneous degree 0.

29



Canonicalizing Elliptics: A New Perspective

»w =141 =2: There is only one even polynomial P, = z,, which we can take a non-
zero residue at.

Thus, we consider ®,0[z;]1 = z;/z,. By definition, we can read off:
C

lutch = e~ and C. = 3¢e.Then ¥ yylz;] has pole ordero = 1,and r = 1;

»w =140 = 1: 1) The trivial one is ®yyo[1] = 1, which is holomorphic. Accordingly,
C.iuteh = Cro; = 1. In this case, W00l 1] has no pole, and hence no non-zero residue to take.

We assign it pole order o = 0, and r = 0; 2) The next one should have pole order 1, but
has not residue. There are some three equally good candidates. Here we choose

&)0100[50] = zo/P;. Thuswe have C,;,,, = ¢ 'and C, = — 1/2.

30



Canonicalizing Elliptics: A New Perspective

» Now, we can map the filtrated H' to the Feynman integral side:

M, :j(q]oooo[l]) = 53x11111200100

M, =j(‘P1000[Zl]) = 383x1111120001(—1)0

L,

My =j(\P01oo[Zo]) = — =€ X1| 1111200100 T 211120001100 T €3121120001(=1)0

2

» DEQ of the above basis is good enough. Then after solving some constraints. We find

£9x

Kl —
1
RiT"

Il 112001000

_ 1.3 0
Ky =3 X111 112001-1y0 — Rz(l)Kl
Ky=--

—>

31
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K3 Example

Calabi-Yau 2-folds

7/
/7

/7
) / 1 /
Fgeom ,7 Fgeom P Fgeom 7
- - -

This algorithm brings the maximally unequal-mass banana down to

its geometric essence—>the K3 surtface.

32
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Outlook

Asymptotic
Expansion

Fast Numerics

Number Feynman

Bootstrap
Theory? Integrals

Mixed Hodge Hidden
Structure Symmetry
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