### Lecture 4: train a LLM

谢丹 清华大学数学系

2025/08

# Two-Stage LLM Training Pipeline

### 1. Pre-Training Phase

- ▶ Objective: Learn general language understanding and generation
- ▶ Data: Massive text corpora (1-10 trillion tokens)
- Method: Unsupervised learning via next-token prediction
- Outcome:
  - Base model with world knowledge
  - Text generation capability
  - Fundamental language understanding

### 2. Post-Training Phase

- Supervised Fine-Tuning (SFT):
  - Uses labeled instruction datasets
  - Aligns model with human preferences
  - Enables task-specific behaviors
- Reinforcement Learning (RLHF):
  - Further refines model outputs
  - Uses human/AI feedback signals
  - Optimizes for helpfulness/safety
- ► Reinforcement Learning to gain reasoning capabilities:

# LLM Pre-Training Pipeline



## Step 1: Data Collection

### Key Data Sources

- Web pages (Common Crawl, Wikipedia)
- Books (Project Gutenberg, proprietary collections)
- Scientific papers (arXiv, PubMed)
- Code repositories (GitHub)
- Dialogue data (for conversational ability)

#### Data Volume

- ► Typically 1-10 trillion tokens
- ► GPT-3: 300B tokens
- LLaMA 2: 2T tokens; LLaMA 3: 15T tokens;
- ▶ Deepseek V3: 14.8T tokens
- Qwen 3: 36T tokens



# Step 2: Data Preprocessing

### Cleaning Steps

- Deduplication
- Quality filtering
- Toxicity removal
- Language identification
- ► PII redaction

  Data quality is very important.

#### **Tokenization**

- Subword algorithms:
  - ▶ BPE (GPT series)
  - WordPiece (BERT)
  - Unigram (SentencePiece)
- ► Vocabulary size: 32K-200K

## Step 3: Model Architecture

### Transformer Specifications

- Decoder-only architecture (GPT-style)
- Key hyperparameters:

Layers: 12-96

Hidden dim: 768-12288Attention heads: 12-128

Context window: 2K-32K tokens

### **Example Configurations**

| Model   | Layers | Dim   | Params |
|---------|--------|-------|--------|
| GPT-3   | 96     | 12288 | 175B   |
| LLaMA 2 | 80     | 8192  | 70B    |
| PaLM    | 118    | 18432 | 540B   |

|                       | 8B                         | 70B                 | 405B               |  |
|-----------------------|----------------------------|---------------------|--------------------|--|
| Layers                | 32                         | 80                  | 126                |  |
| Model Dimension       | 4,096                      | 8192                | 16,384             |  |
| FFN Dimension         | 14,336                     | $28,\!672$          | 53,248             |  |
| Attention Heads       | 32                         | 64                  | 128                |  |
| Key/Value Heads       | 8                          | 8                   | 8                  |  |
| Peak Learning Rate    | $3 \times 10^{-4}$         | $1.5 	imes 10^{-4}$ | $8 \times 10^{-5}$ |  |
| Activation Function   | $\operatorname{SwiGLU}$    |                     |                    |  |
| Vocabulary Size       | 128,000                    |                     |                    |  |
| Positional Embeddings | RoPE $(\theta = 500, 000)$ |                     |                    |  |

Figure: Architecture for LLaMa3

# Step 4: Training Objectives

### Primary Objective

$$\mathcal{L}(\theta) = -\sum_{t=1}^{T} \log P(x_t | x_{< t}; \theta)$$

Autoregressive language modeling (next token prediction)

#### Common Variants

- Causal masking (left-to-right)
- ► Fill-in-the-middle (for code models)
- Mixed objective (sometimes with span corruption)

## Step 5: Optimization

## Key Techniques

- ► AdamW optimizer
- Learning rate warmup
- Cosine decay schedule
- Gradient clipping
- Mixed precision training

### Challenges

- ▶ Batch size: 1M-10M tokens
- ► Hardware: 100s-1000s GPUs/TPUs
- Training time: Weeks-months
- Memory optimization:
  - ZeRO
  - Pipeline parallelism
  - ► Tensor parallelism

# Step 6: Evaluation & Scaling

## Training Monitoring

- Loss curves
- Perplexity
- Downstream task performance
- Zero-shot capabilities

### Scaling Laws

$$L(N,D) = \left(\frac{N_c}{N}\right)^{\alpha_N} + \left(\frac{D_c}{D}\right)^{\alpha_D}$$

- ▶ N: Model parameters
- ▶ *D*: Training tokens
- $ightharpoonup \alpha_N, \alpha_D$ : Scaling exponents

# Final Pre-Training Output

Model Checkpoint 100-1000GB Vocabulary 1-10MB

Training Logs Comprehensive

# Zero-Shot Learning in Large Language Models

#### **Definition**

- ➤ **Zero-shot**: Model performs tasks *without* task-specific training examples
- Leverages only:
  - Pretrained knowledge
  - Task description in prompt
  - General reasoning ability

#### Mechanism

### P(output|task description, input)

- ► No gradient updates or fine-tuning
- ► Pure inference-time adaptation
- Relies on model's pretrained representations



# Examples & Applications

#### Text Classification

#### Prompt:

"Classify this tweet sentiment:
'I love this product!'
Options: [positive, negative, neutral]"

Output: "positive"

### Key Advantages

- No need for labeled data
- ► Instant task adaptation
- Broad task generalization

### Question Answering

### Prompt:

"Q: What's the capital of France?
A:"

Output: "Paris"

#### Technical Foundations

#### What Enables Zero-Shot?

- Scale: Massive pretraining data coverage
- Architecture: Transformer's attention mechanism
- Objectives: Causal/MLM pretraining

#### Limitations

- ► Performance ≪ fine-tuned models
- Sensitive to prompt phrasing
- ► May generate plausible but wrong answers

# Post-Training: The Alignment Phase

### Three Key Stages

### 1. Supervised Fine-Tuning (SFT)

- Trains on curated (input, output) pairs
- Adapts base model to follow instructions
- Requires 10K-100K high-quality examples

#### 2. Reinforcement Learning from Human Feedback (RLHF)

- Learns from preference rankings (good vs bad outputs)
- Uses reward model trained on human judgments
- Optimizes with PPO algorithm

#### 3. Constitutional Al

- Applies self-critique against principles
- Reduces harmful outputs without human labels
- Uses chain-of-thought feedback

#### **Technical Details**

### **RLHF Mathematics**

Reward modeling:

$$\mathcal{L}_{\mathsf{RM}} = -\mathbb{E}[\log \sigma(r_{\theta}(y_w) - r_{\theta}(y_l))]$$

PPO optimization:

### Emergent Methods

- ▶ **DPO**: Direct preference optimization
- ► **RAFT**: Reward-ranked fine-tuning
- ► Self-Play: Model-as-its-own-judge

$$\mathcal{L}_{\mathsf{PPO}} = \mathbb{E}[\min(\rho_t \hat{A}_t, \mathsf{clip}(\rho_t, 1-\epsilon, 1+\epsilon)\hat{A}_t)]$$

### Why Post-Train?

- Base LLMs lack:
  - Safety guardrails
  - Instruction following
  - Consistent formatting



Every step involves tuning the parameters of the model!

Reinforcement learning plays an important role.

# What is Reinforcement Learning?

- Learning by interaction with an environment
- Goal: Maximize cumulative reward
- No supervised labels—only rewards/penalties

#### Key Components

- Agent
- Environment
- State (s)
- Action (a)
- Reward (r)

# Chain-of-thought

Q: A bookstore had 80 books. They sold 25 on Monday and 30 on Tuesday. How many remain?

A: Let's think step-by-step: 1. Start with 80 books 2. Sold 25 on Monday: 80 - 25 = 55 books left 3. Sold 30 on Tuesday: 55 - 30 = 25 books left Final answer: 25 books remain.

# Chain-of-Thought Prompting

- ► **Goal**: Elicit step-by-step reasoning from LLMs.
- ► Methods:
  - Zero-Shot CoT: Add "Let' s think step by step".
  - ► Few-Shot CoT: Provide reasoning examples.
- ► Impact: +20% accuracy on math benchmarks (GSM8K).

### Example

**Q**: A bat and a ball cost \$1.10. The bat costs \$1 more than the ball. How much is the ball? **A**: Let the ball cost \$x. The bat costs \$x + 1. Total:  $x + (x + 1) = 1.10 \rightarrow 2x = 0.10 \rightarrow x = 0.05$ . The ball costs \$0.05.



## DeepSeek: Key Innovations

#### **Cutting-Edge Contributions**

- Multi-Latent Attention (MLA): An enhanced attention mechanism improving model efficiency and scalability.
- 2. **Mixture of Experts (MoE)**: Optimizes training and inference by dynamically routing tasks to specialized subnetworks.
- GRPO (Group Relative Policy Optimization): A novel RL framework for stable and efficient alignment.

#### **Training Breakthroughs**

Pioneering architectures and methodologies for high-performance LLM training.

### Modern MOE architecture



## Other topics

- 1. The knowledge of LLM is base on the data it is trained. One can add knowledge by following method
  - Supervised fine tuning or Reinforcement learning using your own data. (Parameter-efficient fine-tuning method)
  - ▶ Web search
  - RAG using your own data and transforms it into a data base
- 2. Tool use and Al agent