
Lecture 2: Neural network

谢丹
清华大学数学系

2025/08

Linear Model Assumptions

Basic Assumptions

The linear model makes two key assumptions:

1. The target variable follows a Gaussian distribution

2. The mean depends linearly on the input x:

E[y|x] = wTx

Limitations
In many cases, these assumptions don’t hold. One solution is to
introduce nonlinear basis functions φi:

y =
∑
i

wiφi(x)

The choice of φi functions requires careful consideration.

Neural Networks Approach

An alternative approach is to use Neural Networks,
which have proven to be remarkably powerful

function approximators.

Neural Network Fundamentals

Definition
A neural network defines a parameterized function y(x;w) where:

I x: Input variables

I y: Output variables

I w: Network parameters

Basic Components

1. Nodes (neurons): Computational units

2. Edges: Connections between nodes with weights w

Layered Structure

For a network with layer structure, the function at each node is:

z
(i)
k = h

∑
j

w
(i)
kj z

(i−1)
j + b

(i)
k


where:

I z
(i)
k : Output of k-th node in layer i

I w
(i)
kj : Weight between nodes

I h: Activation function

Network Implementation

Simplified Notation

By adding a bias node (fixed at 1) to each layer, we get the
compact form:

z
(i)
k = h

∑
j

w
(i)
kj z

(i−1)
j



Feedforward Process

I Initialize with input layer (i = 0) values

I Recursively compute through hidden layers

I Final output at last layer

I Multiple output nodes produce vector outputs

Network Architecture Choices

1. Structure Design:
I Number of layers and nodes per layer
I Input layer size determined by data dimensionality
I Deep Neural Network: Many hidden layers

2. Activation Functions:

Table: Common Activation Functions

Function Formula

Logistic Sigmoid σ(a) = 1
1+exp(−a)

Tanh tanh(a) = ea−e−a

ea+e−a

Hard Tanh h(a) = max(−1,min(1, a))
Softplus h(a) = ln(1 + exp(a))
ReLU h(a) = max(0, a)
Leaky ReLU h(a) = max(0, a) + αmin(0, a)

ii− 1

w
(i)
kj

k

j

b
(i)
k

Figure: The building block of neural network.

Here is the probability model for the neural network:

P (y|x,w, σ2) = N (y|y(x,w), σ2)

where y(x,w) is defined by using neural network. Similarly, one
can get the probability model for the classification.

Neural Network Loss Function

General Formulation
For both regression and classification problems, the loss function
generalizes naturally:

E(w) =

N∑
n=1

(tn − y(xn,w))2 + λ
∑
i

w2
i

where:

I y(xn,w): Neural network output

I λ: Regularization parameter

Per-observation Contribution
The loss decomposes as E =

∑
En where:

En =
1

2
[tn − y(xn,w)]2 =

1

2

tn − h
∑

j

w
(f)
kj z

(f−1)
j

2

Optimization

The gradient descent method can be applied to minimize E(w),
with gradients computed efficiently via:

Backpropagation Algorithm
(based on chain rule differentiation)

对某一个参数 w
(l)
ji求导，利用微积分中的链式法则，有

∂En

w
(i)
kj

=
∂En

∂a
(i)
k

∂a
(i)
k

∂w
(i)
kj

=
∂En

∂a
(i)
k

z
(i−1)
j = δ

(i)
k z

(i−1)
j

这里我们利用了a
(i)
k =

∑
j w

(i)
kj z

(i−1)
j . 这样偏导数就有一个局域

的表达形式， 只需要在每一个节点上定义一个新的error项

δ
(i)
k =

∂En

∂a
(i)
k

=
∑
l

∂En

∂a
(i+1)
l

∂a
(i+1)
l

∂a
(i)
k

=

∑
l

∂En

∂a
(i+1)
l

∂a
(i+1)
l

∂a
(i)
k

=
∑
l

δ
(i+1)
l w

(i+1)
lk h

′
(a

(i)
k)

这里我们用到了a
(i+1)
l =

∑
tw

(i+1)
lt h(a

(i)
t). 上面的公式给了一个

递归的方式来计算error, 但是和原来量不一样的是这个时候 初始
的量为输出端。初始条件为

δ
(f)
j =

∂En

∂a
(f)
j

= (tn − yn)

i+ 1i

δ
(i)
k =

∑
δ
(i+1)
l w

(i+1)
lk h

′
(
a
(i)
k

)δ
(i+1)
lw

(i+1)
lk

Figure: Backpropagation of gradient

Classification with Neural Networks

Probability Output

For a network with K output nodes (yi, i = 1, . . . ,K), we can
obtain classification probabilities via softmax:

pi =
exp(yi)∑K
j=1 exp(yj)

Temperature Parameter

We can introduce temperature T to control output distribution:

pi(T) =
exp(yi/T)∑K
j=1 exp(yj/T)

I Higher T : Softer probabilities

I Lower T : More peaked distribution

Generative Applications

The network can parameterize many probability distribution,
enabling powerful generative AI models: Text generation, diffusion
model for image generation.

Deep Neural Networks

Function Representation

Neural networks provide a geometric framework for representing
complex nonlinear functions: universal function approximator.

Depth Advantage

Empirically, deeper networks (more hidden layers) yield better
performance for many tasks.

Training Challenges

1. Gradient Issues:
I Vanishing gradients (too small)
I Exploding gradients (too large)

2. Computational Complexity:
I Millions to billions, trillions of parameters
I Enormous computational requirements

Solutions

I Architectural innovations address gradient problems

I GPU acceleration enables large-scale training

Computational Considerations

Matrix Operations

I Neural networks primarily perform matrix multiplications

I These operations are highly parallelizable

I GPUs excel at parallel computation of these operations

Efficiency

I Modern GPUs can perform thousands of operations
simultaneously

I Specialized tensor cores further accelerate training

Practical Example

Coming Next:

Hands-on Demonstration

of Neural Network Implementation

