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Large Language Models (LLMs) in Research

LLMs have become increasingly important tools for scientific
research:

» Often the most efficient way to learn a new subject
Writing assistance: editing, proofreading, summarizing
Code generation: Sage, Mathematica, IATEX, Python, etc.

>
>
P Research agents: Answer questions using tools and resources
» Data analysis and interpretation

>

Computation, theorem proof using reasoning feature.



LLM Evolution: GPT-2 to Present

2019-2020 2021-2022

» GPT-2 (1.5B) — > GPT-3.5 powers
GPT-3 (175B) ChatGPT

> Few-shot learning > PalLM (540B)
emerges advances reasoning

» T5 unifies text tasks » Open models:

BLOOM, OPT
Key Trends

» Scale: 1.56B — ~1T params
P Access: Proprietary vs open

» Capability: Text — multimodal

2023-2024

>
>

GPT-4: Multimodal

LLaMA spurs open
ecosystem

Claude 3, Gemini
compete



Popular LLM Platforms in 2025

» Current LLM landscape:

Closed weights Open weights

OpenAl: ChatGPT DeepSeek: DeepSeek

Anthropic: Claude Alibaba: Qwen

Google: Gemini Zhipu: GLM

xAl: Grok Moonshot: Kimi
Meta: LLaMA

> Models are updated frequently with significant capability
improvements (especially since 2025): larger context window,
reasoning capabilities.

» The performance gap between open and closed models has
narrowed considerably

> Many interesting open-weight models available on
HuggingFace



Recent Advances in LLMs

» Since 2025, most major LLMs have introduced advanced
reasoning capabilities
» Dramatically improved performance on:

» Complex mathematical problems
» Physics and scientific reasoning
» Challenging coding tasks

» LLMs are fundamentally machine learning models

» Our focus will be on the underlying mathematical foundations



Core Components of Machine Learning

The basic ingredients for training ML models:

1. Model: Typically probabilistic - reflects the probabilistic
nature of reality

2. Data: Represented as vectors, matrices, or tensors
3. Training: Optimization process to find function minima

4. Inference: Making predictions on new data

Machine learning essentially involves careful parameter tuning!



Machine Learning Applications

ML methods can solve diverse problems:
1. Regression analysis (linear and nonlinear curve fitting)
. Classification tasks

2
3. Clustering problems
4. Natural language processing:

» Translation
» Text generation

Learning Paradigms

» Supervised learning: Regression and classification
» Unsupervised learning: Clustering

» Generative Al: Text generation models



Probability Fundamentals

Basic Probability Concepts
A probability model is described by a density function p(x)

satisfying:
/p(x) dr =1

For higher dimensions, we have joint probability p(z,y) and:

» Marginal density: p(x) = ZP(%ZJ)
y

» Conditional probability: p(x|y) or p(y|x)

The fundamental relation:

[, y) = plaly)p(y)




Relevance to Physics

» Quantum mechanics

> Statistical physics
Statistical distribution

_exp(—=FE(p,q))
plpa) = ———

Such as Ising model, etc.



Probability Characteristics

Key quantities to characterize a probability distribution:

1. Mean (expected value):



Information Theory Concepts

Entropy
Measure of uncertainty:

== pla)np(z

Kullback-Leibler Divergence
Important in machine learning:

=— T nM T
KL(qllp) = /p<>1p d

1. KL(q|[p) > 0 (Non-negativity)
2. KL(qllp) =0 <= p(x) = q(z) (Identity)



Important Probability Distributions

1. Gaussian (Normal) Distribution:

2

Mean p, variance o

2. Bernoulli Distribution (discrete):

Ber(z|p) = p*(1—p)' ="

> Pea=0)=1—pu, Plzr=1)=p
» Mean p, variance u(1 — p)



Multivariate Distributions

Multivariate Gaussian

_ 1 1 Ty—1
P(x|p,X) = WGXP <—2(X —p) X (x— N))

Mean vector p, covariance matrix X
Categorical Distribution
For K classes:

K

Pit=i)=p (i=1,....K), Y p=1

i=1

Compact representation:
K
P(t) =][»¥



Bayesian Perspective

Machine learning models often begin with a parameterized
probability model. Treating parameters w as random variables:

p(x|w)p(w)

plwho = XL

» p(w): Prior probability
» p(w|x): Posterior probability

Maximum Likelihood Estimation:

N
w* = arg mvz}XHp(mi\w)
i=1



Linear Regression

Probabilistic Model
P(ylx, w,0%) = N(ylw" x,07)

Negative log-likelihood gives the loss function:

Regularization
To prevent overfitting:

N
Z —wix,)? 4+ N|w|3

n=1

A: Hyperparameter controlling regularization strength



Logistic Regression (Classification)

Binary Classification Model

P(tx,w) = o(w'x)'(1 —o(w'x))! ™"

where o(z) = 1  is the sigmoid function

1+exp(—z

Loss Function
Negative log-likelihood:

N
J(w)==>[talogo(w'x,) + (1 - t,)log(1 — o(w'xp))]

n=1




Multiclass Classification

Softmax Regression
Probability for class i:

exp(wlx)

K
Zj:l eXp(WJT

pi =
1 X)

> Generalization of logistic regression
» Similar loss function derived via maximum likelihood

» Uses cross-entropy loss for optimization
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Stochastic Gradient Descent (SGD)

Key ldea
Instead of computing the full gradient using all training data, SGD:

» Uses small random subsets (batches) of data
» Computes gradient estimates from these batches

» Updates parameters more frequently

Batch Size

» Batch size: Number of samples in each subset
» Common choices:

» Small batches (32-256 samples): Faster updates, noisier
gradients
» Large batches: Smoother gradients, more memory needed

» One epoch = complete pass through all batches



Advantages

P Faster convergence per computation time
> Better escape from local minima

» Enables training on large datasets



TRATYHERT (Inference)
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Remark: Renormalization group flow



