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Critical phenomena near phase transitions constitute a cornerstone of modern physics

with profound implications across condensed matter physics, statistical mechanics, quantum

field theory (QFT) and quantum gravity [1–5]. Continuous transitions and related critical

phenomena exhibit a remarkable property of universality, generally characterized by a set of

critical exponents that describe non-analytic behavior of physical observables near critical

points. For example, the liquid-gas transition shares the same universality class as the three-

dimensional Ising magnetic transition. Universality offers extensive applications of the Ising

model and general theories of critical phenomena, reaching fields such as pure mathematics,

biology, earth science, deep learning, economics, just to name a few.

Regarding the field theory description of critical phenomena, distinct universality classes

correspond to distinct renormalization group (RG) fixed points [1, 5, 6]. Remarkably, at these

RG fixed points, the usual Poincaré symmetry (comprising Lorentz and translation sym-

metries) and scale invariance often enhance into a larger spacetime symmetry—conformal

symmetry—first explicitly uncovered by Polyakov through the exact solution of the two-

dimensional Ising transition [7]. Conformal symmetry preserves angles but not necessarily

distances, signifying invariance under non-uniform RG transformations. Beyond its elegance,

conformal symmetry has proven instrumental in solving critical phenomena. In two dimen-

sions, conformal symmetry becomes infinite-dimensional [8], rendering numerous theories

exactly solvable and thus giving birth to conformal field theory (CFT) [9], which signifi-

cantly impacts diverse areas from condensed matter physics to quantum gravity. In higher

dimensions (e.g., 3D), conformal symmetry is less restrictive, yet modern developments such

as the conformal bootstrap method [10–12] have demonstrated that it remains highly effec-

tive for numerically determining precise critical exponents.

Despite widespread recognition of conformal symmetry’s significance, its explicit applica-

tion in studies of critical phenomena at three and higher dimensions, particularly in lattice

models like the Ising model, remains limited [13–16]. This is primarily because lattice mod-

els typically employ torus geometries, where the implications of conformal symmetry are

unclear, thus relying solely on scaling symmetry (finite-size scaling) to extract critical ex-

ponents. Conformal symmetry, however, becomes explicit on geometries like the sphere Sd

or cylinder Sd−1 × R. On the cylinder, CFTs exhibit the state-operator correspondence

(radial quantization) [17, 18], implying that quantum Hamiltonians defined on Sd−1 have

eigenstates directly corresponding to scaling operators of the infrared (IR) CFT. The energy
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gaps of these eigenstates are proportional to the scaling dimensions of the respective oper-

ators, providing a powerful framework to investigate scaling dimensions, operator product

expansion (OPE) coefficients, and operator algebras. In two dimensions, studying quantum

lattice models on a one-dimensional periodic chain (S1) naturally leverages this geome-

try [19–22], but in higher dimensions, curvature poses significant challenges for conventional

lattice approaches [23, 24].

Remarkably, fuzzy sphere regularization has proven highly successful for understanding

three-dimensional CFTs. Key achievements include: i) directly demonstrating conformal

symmetry in the 3D Ising transition [25], the O(N) Wilson-Fisher model [26, 27], and

the SO(5) deconfined phase transition [28] via state-operator correspondence; ii accurately

computing crucial quantities such as OPE coefficients [29], four-point correlator [30] and the

RG monotonic F -function [31]; iii) thoroughly exploring conformal line defects [32, 33] and

boundaries [34, 35] in the 3D Ising transition; and iv) discovering new 3D CFTs related to

Chern-Simons-matter theories [36]. These advances were facilitated the explicit conformal

symmetry on spherical geometry, and by remarkably small finite-size effects, enabling com-

putations that previously required millions of CPU hours to now be executed efficiently on

standard laptops within an hour. While many exciting results are forthcoming, this review

paper highlights significant progress already achieved.

I. MOTIVATION FROM THE CONFORMAL FIELD THEORY

A. Conformal transformation

Thus, we have four kinds of transformations:

• translation: ϵµ = aµ , i.e. ordinary translations independent of x.

• rotaion: ϵµ = ωµνxν

• dilatation: ϵµ = λxµ

• special conformal transformation: ϵµ = bµx
2 − 2xµbνxν

Locally, the above conformal transformation can be expressed as the conformal gener-

ators: aµ∂µ, ω
µ
νx

ν∂µxµ, λx · ∂, bµ(x2∂µ − 2xµx · ∂), where the number of them are respec-
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tively d, d(d − 1)/2, 1, d. Thus, the total number generators for conformal symmetry is

(d+ 1)(d+ 2)/2.

The generators are

Pµ = −i∂µ, (1)

Lµν = i(xµ∂ν − xν∂µ), (2)

D = −ixµ∂µ, (3)

Kµ = −i(2xµxν∂ν − x2∂µ) (4)

and they satisfy the commutation relations:

[D,Pµ] = iPµ, (5)

[D,Kµ] = −iKµ, (6)

[Pρ, Lµν ] = i(ηµνPν − ηρνPµ), (7)

... (8)

Up to now, we consider the conformal transformation on the coordinates only. Here we

consider how a quantum field changes under a given conformal transformation Ta: ϕ(x) →

ϕ′(x′) = (1− iϵaTa)ϕ(x).

To understand the physics of above commutation relation, we make an anglog with the

simple harmonics in quantum mechanics. That is, we think about dilatation operator D as

Hamiltonian H in simple harmonics, translation operator Pµ (SCT operator Kµ) as rising

ladder operator a+ (lowering ladder operator a), then we get some similarity between CFT

algebra and simple harmonics.

Then we define the CFT state |ϕ⟩ as the eigenstate of dilatation operator

D|ϕ⟩ = ∆ϕ|ϕ⟩ (9)

we immediately know that the eigenvalues of dilatation operator form the tower structure:

DPµ|ϕ⟩ = (∆ϕ + 1)Pµ|ϕ⟩ (10)

DKµ|ϕ⟩ = (∆ϕ − 1)Kµ|ϕ⟩ (11)

We call Pµ|ϕ⟩ as the descendant field of |ϕ⟩. If Kµ|ϕ⟩ = 0, we call |ϕ⟩ as the primary field.
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Simple harmonics problem.— Let us consider the hamiltonian

H =
1

2m
∇2 +

1

2
mω2x2 (12)

By introducing the ladder operators,

a+ =

√
mω

2
x− i p√

2mω
, a =

√
mω

2
x+ i

p√
2mω

(13)

the hamiltonian becomes

H = ℏω(a+a+
1

2
), (14)

[H, a] = ℏω[a+a, a] = −ℏωa (15)

[H, a+] = ℏω[a+a, a+] = ℏωa+ (16)

B. Constraints on correlation functions

The objects of interest in quantum field theories are n-point correlation functions which

are usually computed in a perturbative approach via either canonical quantisation or the

path integral method. In this section, we will see that the exact two- and three-point func-

tions for certain fields in a conformal field theory are already determined by the symmetries.

This will allow us to derive a general formula for the OPE among quasi-primary fields.

Now the 2-point function G(z1, z2) = ⟨ϕ(z1)ϕ(z2)⟩, under the scalse transformation z →

λz,

⟨ϕ(z1)ϕ(z2)⟩ = λ2∆⟨ϕ(λz1)ϕ(λz2)⟩ (17)

Rotation and translation invariance require that

⟨ϕ(z1)ϕ(z2)⟩ = f(|z1 − z2|) (18)

Inserting f(|z1 − z2|) into the above equation leads to

⟨ϕ(z1)ϕ(z2)⟩ = f(|z1 − z2|) =
C

|z1 − z2|2∆
(19)
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Similarly, for three-point correlator

⟨ϕ1(z1)ϕ2(z2)ϕ3(z3)⟩ =
f123

|z1 − z2|∆1+∆2−∆3|z2 − z3|∆2+∆3−∆1|z3 − z1|∆3+∆1−∆2
(20)

The scaling dimension ∆ and Operator Product Expansion (OPE) coefficients are uni-

versal numbers, and they are the most important information for a given CFT. Using these

data, one can reconstruct all critical phenomena near the phase transition.

Connection with the Critical Phenomena.— CFT is very useful in the statistical

physics and condensed matter physics, especially in the phase transition and critical

phenomena. A key feature of critical phenomena is the universality, where diverse physi-

cal systems exhibit identical scaling behaviors around phase transition point. It is rooted

in the long wavelength effective field theory governing the critical phenomena. This sec-

tion elucidates how the conformal data of CFT determine measurable critical exponents,

bridging abstract field theory to microscopic observables [1, 3, 4].

In Landau-Ginzburg-Wilson theory, the free energy near a critical point is governed

by local fields such as order parameter ϕ and energy density ϕ2. These map to the

relevant CFT primaries:

ϕ(local order parameter)←→ σ (lowest symmetry-odd primary)

ϕ2(energy density)←→ ϵ (lowest symmetry-even primary). (21)

Thus, the critical exponents relating to the local fields are solely determined by the

scaling dimensions of CFT primaries. The widely used critical exponents (η, ν, β, γ, δ)

of Wilson-Fisher universality class relates to the scaling dimensions ∆σ, ∆ϵ as

η = 2∆σ − (d− 2), (22)

ν =
1

d−∆ϵ

, (23)

β =
ν

2
(d− 2 + η), (24)

γ = ν(2− η), (25)

δ =
d+ 2− η
d− 2 + η

. (26)

Additionally, CFT also governs physics close to or around the exact critical point.

For example, in the finite-size simulation on a given size L, the subleading correction to
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the free energy reads:

F ∼ L−d
(
a0 + a1L

−ω + · · ·
)
,

where anomalous critical exponent ω = ∆ϵ′ − d is determined by the lowest irrelevant

symmetry-even primary ϵ′.

C. Radial quantization

To see the consequences of conformal invariance in a two dimensional quantum field the-

ory, we enter into some of the details of the quantization procedure (we first take conformal

field theories defined on Euclidean two-dimensional flat space.). We begin with flat Eu-

clidean “space” and “time” coordinates σ and τ (In Minkowski space, one needs to make

a Wick rotation τ = it). The coordinate σ = σ + 2π, is the periodic boundary condition

for 1d spatial dimension (Or, it is to eliminate any infrared divergences, we compactify the

space coordinate). Thus, we define the complex number ζ = τ + iσ.

The conformal map

z = exp(τ + iσ) (27)

maps the cylinder to the complex plane. Equal time surfaces, τ = const, become circles

of constant radius on the z-plane, and time reversal, τ → −τ , becomes z → 1/z∗. Then

the time translation τ− > τ + T becomes dilatation on the complex plane z− > eT z. So

the dilatation generator on the conformal plane can be regarded as the Hamiltonian for the

system, and the Hilbert space is built up on surfaces of constant radius. This procedure

for defining a quantum theory on the plane is known as radial quantization (Hilbert state

space defined on circles about the origin, and propagation of states in the radial direction

dilation operator is the Hamiltonian; rotation operator is a spatial translation). Thus the

hamiltonian on the complex plane is

H ↔ D (28)

The radial quantization, in particular, is to quantize this Hamiltonian or said to quantize

the generators on the complex plane.
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FIG. 1. Map from cylinder to plane in 2D.

FIG. 2. Map from cylinder to plane in 3D.

Another way to view this relation is, under that map Eq. 27, the field changes as

ϕcyl(τ,Ω) = Λ(r,Ω)∆/2ϕplane(r,Ω) (29)

where Λ = R−2e
2τ
R is the scale factor of this transformation and we can see it by considering
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the metric

ds2 = dr2 + r2dΩ2 = R−2e
2τ
R

(
dτ 2 +R2dΩ2

)
= Λ(r,Ω)

(
dτ 2 +R2dΩ2

)
. (30)

So we have

⟨ϕcyl(τ)ϕcyl(0)⟩ = Λ(r,Ω)∆/2Λ(r = 1,Ω)∆/2⟨ϕplane(τ)ϕplane(0)⟩ (31)

= R−2e
τ∆
R R−2 1

|r − 1|2∆
∼ e

−τ∆
R (32)

This is expontial decay function. Recalling that, the inverse of correlation length is propor-

tional the eigenenergy gap, we have

∆E = En − E0 ∼
1

ξ
=

∆

R
(33)

So we reach the state-operator correspondence: On the cylinder geometry Sd−1 × R, each

eigenenergy gap has one-to-one correspondence with scaling dimension of CFT operator.

[17, 18].

Example.- Let us consider an example of 1+1D transverse Ising model, which develops

1+1D Ising CFT at the phase transition point.

H =
∑
n

σz
nσ

z
n+1 + h

∑
n

σx
n (34)

The duality ensures the transition occurs at hc = 1. The periodic boundary condition

leads to S1 × R geometry. Plotting the energy spectra at the transition point will give

Fig. 3.

Next we solve this model with periodic boundary condition. The stategy is to use

the fermionic representative [Two-dimensional Ising model as a soluble problem of many

fermions, T. D. Schultz, D. C. Mattis, E. H. Lieb]. Here we make the Jordan-Wigner

transformation

cn =
σx
n + iσy

n

2

∏
m<n

σz
m, c

†
n =

σx
n − iσy

n

2

∏
m<n

σz
m, (35)

σ+
n =

∏
m<n

(1− 2c†mcm)cn, σ
−
n =

∏
m<n

(1− 2c†mcm)c
†
n, σ

z
n = 1− 2c†ncn (36)
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The string
∏

m<n(1−2c†mcm) takes values±1, depending on even/odd number of fermions

on the left side of n. One can check that,

{cn, c†m} = δm,n, {cn, cm} = {c†n, c†m} = 0 (37)

[σ+
n , σ

−
m] = δn,mσ

z
n, [σ

z
n, σ

±
m] = ±2δn,mσ±

n (38)

(Only the Pauli matrix with the same site index should consider the commutation rela-

tion {σa
i , σ

b
j} = 2δijδab, [σ

+
i , σ

−
j ] = δijσ

z
j .)

Under the Jordan-Wigner transformation, the Hamiltonian becomes

H =
∑
n

σz
n −

∑
n

σx
nσ

x
n+1

=
N∑

n=1

(1− 2c†ncn)−
N−1∑
n=1

[c†nc
†
n+1 + c†ncn+1 + h.c.] + (c†Nc

†
1 + c†Nc1 + h.c.)eiπN ,N =

∑
n

c†ncn

(39)

with

σx
nσ

x
n+1 = [

∏
m<n

(1− 2c†mcm)](cm + c†m)[
∏

k<n+1

(1− 2c†kck)](ck + c†k)

= (c†n + cn)(1− 2c†ncn)(cn+1 + c†n+1)

= c†ncn+1 + c†nc
†
n+1 + h.c. (40)

The boundary term comes from that σx
Nσ

x
1 = eiπ

∑
j<L njc†Nc1 = −eiπ

∑
j≤L njc†Ncl =

−eiπN c†Ncl, because to the left of c
†
N we certainly have nN = 1. This shows that boundary

condition are changed by fermion parity eiπN = (−1)N and periodic boundary condition

become anti-periodic boundary condition whenN is even. And oddN relates to periodic

boundary condition. Therefore, the real spin problem is not exactly the same with free

fermion. Next, for odd N , we set eikN = 1, k = 2πn
N
, n = −N/2 + 1, ..., 0, ..., N/2, for

even N , we set eikN = −1, k = ±π(2n−1)
N

, n = 1, ..., N/2.
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In terms of momentum space cj =
1√
N

∑
k e

ikjck, the Hamiltonian becomes

H = −
∑
k

[2 cos(k)c†kck + (eikc†kc
†
−k + h.c.)] +

∑
k

(2c†kck − 1)

=
∑
k

[(1− cos(k))(c†kck − c−kc
†
−k)− (eikc†kc

†
−k + h.c.)]

=
∑
k>0

[(1− cos(k))(c†kck − c−kc
†
−k)− (eikc†kc

†
−k + h.c.)] +

∑
k<0

...

=
∑
k>0

[2(1− cos(k))(c†kck − c−kc
†
−k)− (2i sin(k)c†kc

†
−k − 2i sin(k)c−kck)]

=
∑
k>0

(c†k, c−k)

2(1− cos(k)) −2i sin(k)

2i sin(k) 2(1− cos(k))

 ck

c†−k

 (41)

where we used
∑

k 2 cos(k)c
†
kck =

∑
k cos(k)(c

†
kck − c−kc

†
−k), and

∑
k(2c

†
kck − 1) =∑

k(c
†
kck − c−kc

†
−k).

The diagonalization is akin to Bogovliubov transformation, and all eigenvalues can

be calculated:

Λ(k) = ±2
√

(cos(k)− 1)2 + sin2(k) = ±2 sin k
2

(42)

So we obtain that, for odd N, we have eikN = 1, k = 2πn
N
, n = −N/2, ..., 0, ..., N/2,

H =
N−1∑
n=0

Λ−(n)(η†nηn −
1

2
) + const. (43)

Λ−(n) = [(1− cos
2πn

N
)2 + (sin

2πn

N
)2]1/2 = 2 sin

2πn

2N
(44)

where Bogoliubov particle as

 cq

c†−q

 =

 uq −ivq
−ivq uq

 ηq

η†−q

. (We have used that

H =
∑

k>0 Λ(k)(η
†
kηk + η−kη

†
−k) =

∑
k Λ(k)(η

†
kηk − 1/2)) For even N, we know the

boundary condition is eikN = −1, k = ±π(2n−1)
N

, n = 1, ..., N/2.

H =

N/2∑
n=1

Λ+(n)(η†nηn −
1

2
) + const. (45)

Λ+(n) = [(1− cos
π(2n− 1)

N
)2 + (sin

π(2n− 1)

N
)2]1/2 = 2 sin

π(2n− 1)

2N
(46)

The expression for H in above allows to immediately conclude that the ground state

of the Hamiltonian must be the Bogoliubov vacuum state |0⟩ which annihilates the
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η⃗k|0⟩ = 0 for all k. Thus, the ground state energy is

E+
0 = −1

2

N/2∑
n=1

Λ+(n) + const. = −csc π
2N

+ const ≈ −2N

π
− π

12N
+ ...

(47)

E−
0 = −1

2

N/2−1∑
n=1

Λ−(n) + const. = −cot π
2N

+ const ≈ −2N

π
+

π

6N
+ ... = E+

0 +
π

4N

(48)

The lowest excited energy in even sector is

E+
1 = Λ+(1) + Λ+(N/2) + E+

0 = 4 sin
π

2N
+ E+

0 ≈
2π

N
+ E+

0 (49)

Finally, according to the CFT, we have

H =
1

2π

∫ N

0

dy[T ′(w) + T̄ ′(w̄)] =
2π

N
(L0 + L̄0)−

πc

6N
+K (50)

whereK is a constant. Then we use the state |∆⟩, L0|∆+n⟩ = (∆+n)|∆+n⟩, L̄0|∆̄+n⟩ =

(∆̄ + n)|∆̄ + n⟩. We got the eigenvalues as

E =
2π

N
(∆ + ∆̄ + n+ n̄)− πc

6N
+K, (51)

E0 = −
πc

6N
+K (52)

Compare E+
0 (1/N term) with CFT result, we have c = 1/2. And we used csc(x) ≈

1
x
+ x

6
+ .., cot(x) ≈ 1

x
− x

3
+ ..

Comparing E+
1 with CFT, we have

∆ϵ = ∆̄ϵ = 1/2 (53)

Comparing E−
0 with CFT

∆σ = ∆̄σ = 1/16 (54)

In conclusion, the state-operator correspondence works in 2D Ising transition.
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FIG. 3. Operator spectra of 1+1 transverse Ising model at the transition point.
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II. LANDAU LEVELS ON THE SPHERE GEOMETRY

In the Haldane’s spherical geometry, the two-dimensional sheet containing electrons is

wrapped around the surface of a sphere, and a perpendicular magnetic field is generated by

placing a Dirac magnetic monopole at the center of the sphere. The spherical geometry is

compact, i.e. it does not have edges, which makes it suitable for an investigation of the bulk

properties. In particular, filled Landau levels are unambiguously defined. The spherical

geometry has been instrumental in establishing the validity of the theory of the FQHE, and

provides the cleanest proofs for many properties, which was first introduced by Haldane [37].

A. Landau levels on sphere

We consider a sphere of radius R and put a monopole charge 2s0 at its center. The

monopole generates a magnetic field B extending radially outward through the surface. 2s0

must be an integer due to Dirac’s monopole quantization condition. The flux corresponds

to a magnetic field

B =
2s0ϕ0

4πR2
r̂ (55)

which and is produced by the vector potential

A = −2s0ϕ0

4πR
cot θϕ⃗, (56)

∇×A =
1

r sin θ
[
∂

∂θ
(Aϕ sin θ)−

∂

∂ϕ
Aθ]r⃗ +

1

r
[

1

sin θ

∂

∂ϕ
Ar −

∂

∂r
(rAϕ)]θ⃗ +

1

r
[
∂

∂r
(rAθ)−

∂

∂θ
Ar]ϕ⃗

(57)

The kinetic energy operator is given by

H0 =
ℏ2

2mR2
|Λ|2 (58)

where the canonical momentum is defined as (by setting ℏ ≡ 1)

Λ = Rr⃗ × (−i∇+ eA)

= Rr⃗ × [−i(θ⃗ ∂
∂θ
ϕ⃗

1

sin θ

∂

∂ϕ
)− s0 cot θϕ⃗] = −i[ϕ⃗

∂

∂θ
− θ⃗ 1

sin θ

∂

∂ϕ
] + s0 cot θθ⃗ (59)

where we used r⃗ × θ⃗ = ϕ⃗, r⃗ × ϕ⃗ = −θ⃗, and ∇ = r⃗ ∂
∂r

+ θ⃗ ∂
r∂θ

+ ϕ⃗ ∂
r sin θ∂ϕ

.
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FIG. 4. Schematic plot of electrons moving on a sphere in the presence of 4π · s monopole. The

LLL has 2s + 1 degenerate orbitals, which form an SO(3) spin-s irreducible representation. A

system projected into the LLL can be equivalently viewed as a fuzzy sphere.

Using the Levi-Civita symbol to rewrite

Λi =Mi + eϵijkrjAk = −iℏϵijkrj∂k + eϵijkrjAk (60)

where Mi is the canonical angular momentum and satisfy [Mi,Mj] = iℏϵijkMk. The com-

mutator of Λ are

[Λi,Λj] = [Mi,Mj] + eϵjcd[Mi, rcAd]− eϵiab[Mi, raAb]

= iℏϵijkMk + ieℏϵibaϵjca(rbAc − rcAb) + ieℏϵiabϵjcd(∂dAb − ∂bAd)

= iℏϵijkMk + ieℏϵijk(r×A)k + ieℏϵiabϵjcdϵdberarbBe

= iℏϵijk(Λk − ℏs0Ωk) (61)

Similarly, we have

[Λi, r⃗j] = [Mi, rj/R] = iϵijkr⃗k (62)

Finally, we can define the operator Li as

L = Λ+ s0r⃗ (63)

This operator forms su(2) algebra

[Li, Lj] = iεijkLk (64)
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So the operator L2 should be quantized with eigenvalues s(s+ 1), 2s ∈ Z.

Using Λ · r⃗ = 0, we have

|Λ|2 = L2 − s20 (65)

The Hamiltonian, therefore, commutes with the angular momentum operators. Because

[L2, Lz] = 0, we choose eigenfunctions that simultaneously diagonalize H, L̂2, L̂z. These

eigenfunctions are called “monopole harmonics”, denoted by Y
(2s0)
s,m .

L̂2Y (s0)
s,m = s(s+ 1)Y (s0)

s,m , (66)

L̂zY
(s0)
s,m = mY (s0)

s,m (67)

The eigenvalues of |Λ|2 are s(s+ 1)− s20, giving the energy eigenvalues

Es0,l,m =
ℏ2

2mR2
[s(s+ 1)− s20] = ℏωc

s(s+ 1)− s20
2|s0|

(68)

= ℏωc[n+
1

2
+
n(n+ 1)

2|s0|
] (69)

where we used 2s0ϕ0 = 4πR2B, and s = s0 + n (n hence labels the Landau levels).

Next we proceed to obtain the explicit expression for the single particle eigenstate, Y
(s0)
s,m .

A complete, orthogonal basis of the states spanning the lowest Landau level (n = 0, s = s0)

is given by

ψs
m(u, v) = us+mvs−m, (70)

u = cos
θ

2
eiϕ/2, v = sin

θ

2
e−iϕ/2 (71)

with m = −s,−s+ 1, ..., s. And we obtain the monopole harmonics functions

Y (s0)
s,m

!
= [

(2s+ 1)!

4π(s−m)!(s+m)!
]1/2vs−mus+m (72)

B. Landau level projection

The Landau levels are gapped spectrum. The finite energy gap is very important. Due

the appearance of this energy gap, we can project out the higher energy levels, and project

into the lowest Landau level (LLL) subspace. We can construct effective theory based on

the LLL. This technique has been widely used in the study of the fractional quantum Hall

effect, which is belong to the gapped topological order.
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FIG. 5. Monopole harmonics.

It is worth noting that this LLL projection is controlled, because the kinetic energy is

quenched. Say, generally the projection is controlled under the condition of W ≪ U ≪ ∆,

where W is the bandwidth of projected band, U is the interaction strength of particles and

∆ is the energy band gap separating the projected energy band from the higher energy

bands. In traditional condensed matter systems, this condition is usually violates because

W is generally nonzero. Fortunately, W is exactly zero in the Landau level problem, so the

condition of W ≪ U ≪ ∆ can be easily satisfied by tuning the interaction strength. And,

importantly, no matter how small U is, this problem is strongly-correlated (since kinetic

energy is quenched). In a word, this LLL projection is always controlled and we can apply

it safely.

The great advantage of the LLL enormously simplifies computer experimentation; the

dimension of the relevant Fock space is finite because of the LLL constraint, allowing us to

obtain exact results. This idea is similar to the ”regularization” in the field theory.

At last, the LLL on the sphere indeed corresponds to the fuzzy sphere, a fundamental ex-

ample of non-commutative geometry in mathematics. To provide an intuitive understanding

of the emergence of the fuzzy sphere, we consider the projection of the coordinates of a unit

sphere, denoted as x⃗ = (sin θ cosφ, sin θ sinφ, cos θ). After the projection, these coordinates

become three (2s+ 1)× (2s+ 1) matrices, given by

(X⃗)m1,m2 =

∫
sin θ dθ dφ x⃗ Ȳ (s)

s,m1
(θ, φ)Y (s)

s,m2
(θ, φ). (73)

These matrices satisfy the following commutation relations:

[Xµ,Xν ] =
1

s+ 1
iϵµνρXρ. (74)



19

The fact that the three projected coordinates satisfy the SO(3) algebra formally defines a

fuzzy sphere [38]. Notably, in the limit s → ∞, the fuzziness disappears, and the commu-

tative unit sphere is recovered. This limit also corresponds to the continuum limit in our

fuzzy sphere regularization.

C. Second quantization using monopole harmonics

We consider the interacting field theory

H =
1

2

∫
drdr′ψ̄(r)ψ̄(r′)V (r − r′)ψ(r′)ψ(r) (75)

where V (r − r′) is the interaction scattering potential.

Using the monopole harmonics, we introduce the second quantization scheme as

ψ̂(θ, φ) =
s∑

m=−s

Y
(s0)

s,m (θ, φ)ĉm. (76)

We can write down the second quantization form of hamiltonian with two-body interac-

tion

H =
1

2

s∑
m1,m2,m3,m4=−s

c†m1,n
c†m2,n

cm3,ncm4,nδm1+m2,m3+m4⟨s,m1; s,m2|V |s,m3; s,m4⟩ (77)

where the n is Landau level index and s = s0 + n is orbital momentum (s0 is the magnetic

monopole placed in the center of sphere). Next we consider the lowest Landau level with

n = 0 case. The matrix element is

⟨s,m1; s,m2|V |s,m3; s,m4⟩ =
∫
dΩ1

∫
dΩ2Y

(s0)

s,m1
(r1)Y

(s0)

s,m2
(r2)V (r1, r2)Y

(s0)
s,m3

(r2)Y
(s0)
s,m4

(r1)

(78)

where Y
(s0)
s,m (r) is monopole harmonics functions.

If the potential V is a function of |r1 − r2| (as is the case for the Coulomb potential), it

can expanded in Legendre polynomials,

V (|r1 − r2|) =
∞∑
k=0

Uk(r1, r2)Pk(cos θ12) (79)

and

Uk =
1

2

∫ π

0

dθV (r12)Pk(cos θ) sin θ. (80)

So the interaction can be rewritten in terms of a new set of parameters, Uk. The Uk are

unitless coefficients that defines the potential. Let us show several examples here:
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• For coulomb potential V (r) = 1
r
, we define the chord distance between two points on

a sphere is given by

V (r) = V (|r1 − r2|) =
1

2R| sin θ1−θ2
2
|
=

1

R
√
2− 2 cos θ12

=
1

R

∑
n

Pn(cos θ12) (81)

, where we need the formula for Legendre polynomials Pn(x):

1√
1− 2xt+ t2

=
∑
n=0

Pn(x)t
n. (82)

So we have Uk = 1.

• For short-ranged potential V (r) = δ(r), we can use the expansion

δ(Ωa − Ωb) =
∞∑
l=0

l∑
m=−l

Y ∗
l,m(Ωa)Yl,m(Ωb) =

∞∑
l=0

(2l + 1)Pl(cos θab) (83)

, where we used Pl(cos θab) = 4π
2l+1

∑l
m=−l Y

∗
lm(Ωa)Ylm(Ωb) (Ylm is sphere harmonics

function). Thus we have Uk = 2k + 1 for short-ranged potentials.

• For short-ranged potential V (r) = ∇2δ(r), we use the expansion

∇2
aδ(Ωa − Ωb) =

∞∑
l=0

l∑
m=−l

∇2
aY

∗
l,m(Ωa)Yl,m(Ωb) =

∞∑
l=0

l∑
m=−l

(−l(l + 1))Y ∗
l,m(Ωa)Yl,m(Ωb) =

∞∑
l=0

(−l(l + 1))(2l + 1)Pl(cos θab)

(84)

, where we used Pl(cos θab) = 4π
2l+1

∑l
m=−l Y

∗
lm(Ωa)Ylm(Ωb) (Ylm is sphere harmonics

function). Thus we have Uk = −k(k + 1)(2k + 1) for short-ranged potentials.

Next we insert the potential form Eq. 79 into the matrix element, we have

⟨s,m1; s,m2|V |s,m3; s,m4⟩ =
∫
dΩ1

∫
dΩ2Y

(s0)

s,m1
(r1)Y

(s0)

s,m2
(r2)V (r1, r2)Y

(s0)
s,m3

(r2)Y
(s0)
s,m4

(r1)

=

∫
dΩ1

∫
dΩ2Y

(s0)

s,m1
(Ω1)Y

(s0)

s,m2
(Ω2)[

∑
k

Uk
4π

2k + 1

k∑
m=−k

Y ∗
km(Ω1)Ykm(Ω2)]Y

(s0)
s,m3

(Ω2)Y
(s0)
s,m4

(Ω1)

=
∑
k

Uk
4π

2k + 1

k∑
m=−k

×
∫
dΩ1Y

(s0)

s,m1
(Ω1)Y km(Ω1)Y

(s0)
s,m4

(Ω1)

∫
dΩ2Y

(s0)

s,m2
(Ω2)Ykm(Ω2)Y

(s0)
s,m3

(Ω2)

(85)
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To deal with this integral, we explicitly substitute the monopole harmonic with s0 = 0 for

the spherical harmonics: Ylm = Y s0=0
lm . Then we use the result from Ref. [39]:∫

dΩY (Q1)
s1,m1

(Ω)Y (Q2)
s2,m2

(Ω)Y (Q3)
s3,m3

(Ω) =

(−)s1+s2+s3 [
(2s1 + 1)(2s2 + 1)(2s3 + 1)

4π
]1/2

 s1 s2 s3

m1 m2 m3

 s1 s2 s3

Q1 Q2 Q3

 (86)

where the round brackets are 3j symbols, and it is nonzero only if Q1 + Q2 + Q3 = 0 and

m1 +m2 +m3 = 0. And the relation is also need: Y
s0
l,m = (−)s0+mY −s0

l,−m.

Under this useful integrals, we can integrate over the angular coordinates Ω1,2, and we

reach

H =
1

2

s∑
m1,m2,m3,m4=−s

c†m1,n
c†m2,n

cm3,ncm4,nδm1+m2,m3+m4⟨s,m1; s,m2|V |s,m3; s,m4⟩

⟨s,m1; s,m2|V |s,m3; s,m4⟩ =
kmax∑
k=0

Uk(−)2s0+m2+m4+4s+2k[(2s+ 1)]2× s k s

−m1 m1 −m4 m4

 s k s

−m2 m2 −m3 m3

 s k s

−s0 0 s0

 s k s

−s0 0 s0

 (87)

Here, for a general Wigner 3j coefficient,

 s1 s2 s3

m1 m2 m3

, it is non-zero only whenm1+m2+

m3 = 0 and when s1, s2, s3 together satisfy the triangle inequality, |s1 − s2| ≤ s3 ≤ s1 + s2.

As such, the sum over m collapses, and m = m1 −m3 = m4 −m2.

However, this result is not shown in the literature. A more popular form is to express

this formula in a pair pseudopotentials, which is widely used in the community of quantum

Hall effect.

D. Haldane’s pseudopotential

The pair pseudopotential V n(l) is defined as the interaction energy of a pair of electrons

as a function of their pair angular momentum l. Although the pseudopotential is a function

only of the pair angular momentum, V n(l) actually contains all of the correlative behaviors

of any many-body system, and can be used in the place of the two-body matrix elements

calculated above to perform the same calculations. The pseudopotential is defined on the
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Haldane sphere by using standard angular momentum coupling to expand the monopole

harmonics into a coupled basis,

|s,m1; s,m2⟩ =
∑
l

|s, s; l,m1 +m2⟩⟨s, s; l,m1 +m2|s,m1; s,m2⟩

This is actually a momentum coupling transformation, and the coefficient ⟨s, s; l,m1 +

m2|s,m1; s,m2⟩ is the ordinary Clebsch-Gordan coefficient.

If we expand both the initial and final state vectors in the coupled angular momentum

basis, we can rewrite the two-body matrix element in the following form:

⟨s,m1; s,m2|V (r)|s,m3; s,m4⟩ =
∑
l,l′

⟨s,m1; s,m2|s, s; l,m1 +m2⟩⟨s, s; l′,m3 +m4|s,m3; s,m4⟩ ×

⟨s, s; l,m1 +m2|V (r1 − r2)|s, s; l′,m3 +m4⟩

In this expression, the pseudopotential for particles in a single Landau level is evaluated

from the matrix element from

⟨s, s; l,m|V (r1 − r2)|s, s; l′,m′⟩δm=m1+m2δm′=m3+m4

For particles in the n th Landau level, that is, when s = s0 + n matrix element gives the

pair pseudopotential.

In order to reduce the following expression slightly, we need lots of integral relations and

results. We omit these tedious process, and reach the finial result:

⟨s, s; l,m|V (|r1−r2|)|s, s; l′,m′⟩ = V n=0
s (l)δl,l′ = δl,l′

2s∑
k=0

Uk(−)2s0+l(2s+1)2

 l s s

k s s


 s k s

−s0 0 s0

2

(88)

where s = s0 + n is the shell angular momentum of the n-th Laudan level, l is the relative

angular momentum between two particles. Here,

 s k s

−s0 0 s0

 is Wigner 3j coefficient

and

 l s s

k s s

 is Wigner 6j coefficient. Please note that the expression of V n
s (l) does not

depend on the relative angular momentum m,m′.
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To sum up, the hamiltonian written by pseudopotential will be

H =
1

2

s∑
m1,m2,m3,m4=−s

a†m1,n
a†m2,n

am3,nam4,nδm1+m2,m3+m4⟨s,m1; s,m2|V |s,m3; s,m4⟩

⟨s,m1; s,m2|V |s,m3; s,m4⟩ =∑
l,l′

⟨s,m1; s,m2|s, s; l,m1 +m2⟩⟨s, s; l′,m3 +m4|s,m3; s,m4⟩ × ⟨s, s; l,m1 +m2|V (r1 − r2)|s, s; l′,m3 +m4⟩

=
∑
l

Vl
√
2l + 1(−1)m1+m2

 s s l

m1 m2 −m1 −m2

√2l + 1(−1)m3+m4

 s s l

m3 m4 −m3 −m4


=

∑
l

Vl(2l + 1)

 s s l

m1 m2 −m1 −m2

 s s l

m3 m4 −m3 −m4

 (89)

Let us calculate the pseudopotential using Eq. 88.

• For short-ranged interaction V (r) = δ(r), Uk = 2k + 1, Vs(l) =


(2s+1)2

(4s+1)
, l = 2s

0, l ̸= 2s

• For short-ranged interaction V (r) = ∇2δ(r), Uk = −k(k + 1)(2k + 1),

Vs(l) =


x0 = − (1+s)2(2s+1)4((2s)!)4

s(4s+1)((2(s+1))!)2((2s−1)!)2
= − s(2s+1)2

4s+1
< 0, l = 2s

x1 =
4s(1+s)2(2s+1)4((2s)!)2

(4s−1)((2(s+1))!)2
= s(2s+1)2

4s−1
> 0, l = 2s− 1, [lims→∞ x1 = s2 + 5

4
s+ 9

16
]

0, others

(90)

• For coulomb interaction V (r) = 1/r, Uk = 1, V n
s (l) =

2−2−4s(2s+1)(2s+1)!((8s−1)/2)!
((4s−1)/2)!(((4s+1)/2)!)2

For coulomb interaction V (r) = 1/r, the above equation has a analytical form, first

derived by Fano, for the lowest Landau level, n = 0:

V n=0
s (l) =

 4s0 − 2l

2s0 − l

 4s0 + 2l + 2

2s0 + l + 1


 4s0 + 2

2s0 + 1

2 (91)

, which is widely used for calculation in first Laudau level.
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E. Density operator

In the case of lowest Landau level (s = s0, n = 0), we define the annihilation operator

ψ̂(θ, φ) on the projected Landau level as

ψ̂(θ, φ) =
s∑

m=−s

Y
(s0)

s,m ĉm. (92)

ĉm stands for the annihilation operator of Landau orbital m, and it is independent of coor-

dinates (θ, φ). Monopole harmonics Y
(s0)
l,m see Eq. 72.

The density operator n̂(θ, φ) = ψ̂†ψ̂ can be written as,

n̂(θ, φ) =
∑

m1,m2

Y (s0)
s,m1

Y
(s0)

s,m2
c†m1

cm2 . (93)

Next we write the Hamiltonian in terms of density operator nl,m in the angular momentum

space, defined as,

n(θ, φ) =
s∑

m1,m2=−s

Y
s0
s,m2

Y s0
s,m1

c†m1
cm2 =

∑
l,m

nl,mYl,m(θ, φ). (94)

Here Yl,m(θ, φ) = Y
(0)
l,m is the spherical harmonics, with m = −l,−l+1, · · · , l and l ∈ Z. nl,m

can be obtained using spherical harmonic transformation,

nl,m =

∫
dΩ Ȳl,m(θ, φ)n(θ, φ)

= (2s+ 1)

√
2l + 1

4π

s∑
m1=−s

(−1)3s+m1+l

 s l s

m−m1 −m m1

 s l s

−s 0 s

 c†m1
cm1−m

!
= (2s+ 1)

√
2l + 1

4π

s∑
m1=−s

(−1)3s+m1+l(−1)4s+2l

 s l s

−m1 m m1 −m

 s l s

−s 0 s

 c†m1
cm1−m,

(95)

where we used the integral in Eq. 86. Here

 j1 j2 j3

m1 m2 m3

 is the Wigner 3j-Symbol. To

have the term

 s l s

−m1 m m1 −m

 non-vanishing, we should have l ≤ 2s. One can show

that,

n†
l,m = (−1)mnl,−m (96)
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Relation between Vl and Ũl = Ul/(2l + 1).—

For δ(r) potential

g0δ(r)→ Ul = g0(2l + 1), Ũl = g0

g0δ(r)→ V0 = g0
(2s+ 1)2

4s+ 1
(97)

and ∇2δ(r) potential

g1∇2δ(r)→ Ul = g1[−l(l + 1)(2l + 1)], Ũl = g1[−l(l + 1)]

g1∇2δ(r)→ V0 = −g1
s(2s+ 1)2

4s+ 1
, V1 = g1

s(2s+ 1)2

4s− 1
(98)

For a pontential g0δ(r) + g1∇2δ(r), we have the pseudopotential {V0, V1} connected

with {g0, g1} asV1 = g1
s(2s+1)2

4s−1

V0 = −g1 s(2s+1)2

4s+1
+ g0

(2s+1)2

4s+1

⇒

g0 = 4s+1
(2s+1)2

V0 +
4s−1

(2s+1)2
V1

g1 = 4s−1
s(2s+1)2

V1

(99)

So in the language of Ũl:

⇒ Ũl = g0 − g1l(l + 1) =
4s+ 1

(2s+ 1)2
V0 +

4s− 1

(2s+ 1)2
V1 −

4s− 1

s(2s+ 1)2
V1 × l(l + 1) (100)

where Ũl is the parameter which pun in Eq. ??.

Relation between two different expressions Eq. 89 and Eq. 87

⟨s,m1; s,m2|V (r)|s,m3; s,m4⟩ =∑
l,l′

⟨s,m1; s,m2|s, s; l,m1 +m2⟩⟨s, s; l′,m3 +m4|s,m3; s,m4⟩×

⟨s, s; l,m1 +m2|V (r1 − r2)|s, s; l′,m3 +m4⟩

=
∑
l

Vl
√
2l + 1(−1)−m1−m2

 s s l

m1 m2 −m1 −m2

√2l + 1(−1)−m3−m4

 s s l

m3 m4 −m3 −m4


=

∑
l

Vl(2l + 1)

 s s l

m1 m2 −m1 −m2

 s s l

m3 m4 −m3 −m4

 (101)
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⟨s,m1; s,m2|V |s,m3; s,m4⟩ = (2s+ 1)2
kmax∑
k=0

Uk(−)2s+m2+m4× s k s

−m1 m1 −m4 m4

 s k s

−m2 m2 −m3 m3

 s k s

−s 0 s

 s k s

−s 0 s

 (102)

Next we apply the condition of (if j1, j2, j3 satisfy the triangle condition)

(2j3 + 1)
∑

m1,m2

 j1 j2 j3

m1 m2 m3

 j1 j2 j′3

m1 m2 m′
3

 = δj3,j3′δm3,m′
3

(103)

to the above to Equations, and get

∑
l

Vl
1

2l + 1
δl,l′δl,l′′δm′=−m1−m2δm′′=−m3−m4 =

kmax∑
k=0

Uk(2s+ 1)2

 s k s

−s 0 s

2

×

∑
m1,m2,m3,m4

(−)2s+m2+m4

 s k s

−m1 m1 −m4 m4

 s k s

−m2 m2 −m3 m3


 s s l

m1 m2 −m1 −m2

 s s l

m3 m4 −m3 −m4


∑

m1,m2,m3,m4

(−)2s+m2+m4

 s k s

−m1 m1 −m4 m4

 s k s

−m2 m2 −m3 m3


 s s l

m1 m2 −m1 −m2

 s s l

m3 m4 −m3 −m4


(104)
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Vl
1

2l + 1
=

kmax∑
k=0

Uk(2s+ 1)2(−)2s
 s k s

−s 0 s

2

×
∑

m1,m2,m3,m4

(−)m2+m4

 l s s

−m1 −m2 m1 m2

 (−1)2s+l

 l s s

m3 +m4 −m3 −m4


(−1)2s+k

 k s s

m1 −m4 −m1 m4

 k s s

m2 −m3 m3 −m2


=

kmax∑
k=0

Uk(2s+ 1)2(−)2s+l+k

 s k s

−s 0 s

2 l s s

k s s

 (105)

Here use the formula:

 j1 j2 j3

j4 j5 j6

 =
∑

xi=1,..,6

(−1)
∑6

k=1 jk−
∑6

k=1 xk

 j1 j2 j3

−x1 −x2 −x3

j1 j5 j6

x1 −x5 x6

×
j4 j2 j6

x4 x2 −x6

 j4 j5 j3

−x4 x5 x3

 (106)

by setting j1 = l, j4 = k, j2 = j3 = j5 = j6 = s and x1 = −m1 −m2 = −m3 −m4, x2 =
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m3, x3 = m4, x4 = m2 −m3 = −m1 +m4, x5 = −m1, x6 = m2, to do the summation

∑
m1−4

(−)m2+m4

 l s s

−m1 −m2 m1 m2

 l s s

m3 +m4 −m3 −m4


 k s s

m1 −m4 −m1 m4

 k s s

m2 −m3 m3 −m2


=

∑
m1−6

(−)m2+m4

 l s s

m5 m1 m2

 l s s

m6 −m3 −m4


 k s s

m1 −m4 −m1 m4

 k s s

m2 −m3 m3 −m2


=

∑
m1−6

(−)2m2+2m4−2m1(−)−(m4+m2−2m1)

 l s s

m5 m1 m2

 l s s

m6 −m3 −m4


 k s s

m1 −m4 −m1 m4

 k s s

m2 −m3 m3 −m2


!
=

 l s s

k s s

 (107)

Similarly, we have

Uk =
(−1)2s0+k(2k + 1)2

(2s+ 1)2

 s k s

−s 0 s

−2
2s∑

l′=0

Vs(l′)(−1)−l′(2l′ + 1)

 s s k

s s l′


 (108)
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III. 2+1D TRANSVERSE ISING MODEL ON THE FUZZY SPHERE

Here we explicitly define the model, which is spinful electrons in the LLL. [40] In spatial

space, the Hamiltonian takes the form

H = R4

∫
dΩadΩb U(Ωab)

[
n0(θa, φa)n

0(θb, φb)− nz(θa, φa)n
z(θb, φb)

]
− hR2

∫
dΩnx(θ, φ),

(109)

where nα(θ, φ) is a local density operator given by

nα(θ, φ) = (ψ̂†
↑(θ, φ), ψ̂

†
↓(θ, φ))σ

α

 ψ̂↑(θ, φ)

ψ̂↓(θ, φ),

 , (110)

with σx,y,z being Pauli matrices, σ0 = I2×2, and U(Ωab) the local density-density interactions

(defined below). The first term behaves like an Ising ferromagnetic interaction, while the

second term is the transverse field. By projecting the Hamiltonian into the LLL, we obtain

H = H00 +Hzz +Ht,

H00 =
1

2

s∑
m1,2,3,4=−s

Vm1,m2,m3,m4

(
c†m1

cm4

) (
c†m2

cm3

)
δm1+m2,m3+m4 ,

Hzz = −
1

2

s∑
m1,2,3,4=−s

Vm1,m2,m3,m4

(
c†m1

σzcm4

) (
c†m2

σzcm3

)
δm1+m2,m3+m4 ,

Ht = −h
s∑

m=−s

c†mσ
xcm,

(111)

where c†m = (c†m↑, c
†
m↓) is the fermion creation operator on the mth Landau orbital. The

parameter Vm1,m2,m3,m4 is connected to the Haldane pseudopotential Vl by

Vm1,m2,m3,m4 =
∑
l

Vl (4s− 2l + 1)

 s s 2s− l

m1 m2 −m1 −m2

 s s 2s− l

m4 m3 −m3 −m4

 , (112)

where

 j1 j2 j3

m1 m2 m3

 is the Wigner 3j-symbol. In this paper we will only consider ultra-

local density-density interactions in real space, i.e. U(Ωab) = g0
1
R2 δ(Ωab) + g1

1
R4∇2δ(Ωab),

and the associated Haldane pseudopotentials involve V0, V1. Next we will set V1 = 1 as

energy unit and vary V0, h to study the phase diagram.

We consider the half-filling case with the LLL filled by N = 2s + 1 electrons. When

h = 0 and V0, V1 > 0, the ground state is an Ising ferromagnet that spontaneously breaks
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Z2 symmetry. In quantum Hall literature this phase is called quantum Hall ferromagnetism

[41, 42]. The two-fold degenerate ground states are |Ψ↑⟩ =
∏s

m=−s c
†
m↑|0⟩ and |Ψ↓⟩ =∏s

m=−s c
†
m↓|0⟩. When h ≫ V0, V1, the ground state is a trivial paramagnet that preserves

Ising symmetry, |Ψx⟩ =
∏s

m=−s(c
†
m↑+c

†
m↓)|0⟩. Therefore, we expect a 2+1D Ising transition

as increasing h. The global phase diagram of the model is as shown in Fig. 6(b).

Space-time symmetry of Ising.

1. Particle-hole symmetry: cm → iσyc†m, i→ −i. That is: cm,↑ → c†m,↓, cm,↓ → −c†m,↑,

c†m,↑ → cm,↓, c
†
m,↓ → −cm,↑.

The particle-hole symmetry turns out to be the spacetime parity symmetry of 3D

Ising CFT. To understand this relation, we can write an SO(3) vector,

nx
m=0,±1 =

s∑
m1=−s

(−1)m1

 s s 1

m1 m−m1 −m

 c†m1
σxcm1−m, (113)

and find it transforms as

nx
m=0 =

s∑
m1=−s

(−1)m1

 s s 1

m1 −m1 0

 (c†m1↑cm1↓ + c†m1↓cm1↑) (114)

→
s∑

m1=−s

(−1)m1

 s s 1

m1 −m1 0

 (−cm1↓c
†
m1↑ − cm1↑c

†
m1↓) = nx

m=0 (115)

and

nx
m=1 =

s∑
m1=−s

(−1)m1

 s s 1

m1 1−m1 −1

 (c†m1↑cm1−1↓ + c†m1↓cm1−1↑) (116)

→
s∑

m1=−s

(−1)m1

 s s 1

m1 1−m1 −1

 (−cm1↓c
†
m1−1↑ − cm1↑c

†
m1−1↓) (117)

=
s∑

m1=−s

(−1)m1

 s s 1

m1 1−m1 −1

 (c†m1−1↑cm1↓ + c†m1−1↓cm1↑) (118)

=
s∑

m1=−s

(−1)m1+1

 s s 1

m1 + 1 −m1 −1

 (c†m1↑cm1+1↓ + c†m1↓cm1+1↑) (119)

= −
s∑

m1=−s

(−1)m1

 s s 1

m1 −1−m1 1

 (c†m1↑cm1+1↓ + c†m1↓cm1+1↑) = −nm=−1 (120)
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
nx
m=1

nx
m=0

nx
m=−1

→


0 0 −1

0 1 0

−1 0 0



nx
m=1

nx
m=0

nx
m=−1

 , (121)

under particle-hole transformation. Since det[


0 0 −1

0 1 0

−1 0 0

] = −1, The particle-hole

acts as an improper Z2 of O(3), so it can be identified as the spacetime parity of the 3D

Ising CFT.

A. Symmetries

The Hamiltonian (111) has three symmetries,

1. Ising Z2 symmetry: cm → σxcm.

2. SO(3) sphere rotation symmetry: cm=−s,··· ,s form the spin-s representation of SO(3).

3. Particle-hole symmetry: cm → iσyc∗m, i→ −i.

To further analyze the Ising transition in our system, we will relate the UV symmetries

of our Landau level model to the IR symmetries of the 3D Ising CFT. It is obvious we

can identify the Ising Z2 and SO(3) sphere rotation between UV and IR. A slightly non-

trivial symmetry is the particle-hole symmetry, which turns out to be the spacetime parity

symmetry of 3D Ising CFT. To understand this relation, we can write an SO(3) vector,

nx
m=0,±1 =

s∑
m1=−s

(−1)m1

 s s 1

m1 m−m1 −m

 c†m1
σxcm1−m, (122)

and find it transforms as 
nx
m=1

nx
m=0

nx
m=−1

→


0 0 −1

0 1 0

−1 0 0



nx
m=1

nx
m=0

nx
m=−1

 , (123)

under particle-hole transformation. The particle-hole acts as an improper Z2 of O(3), so it

can be identified as the spacetime parity of the 3D Ising CFT.
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FIG. 6. (a) Schematic plot of electrons moving on a sphere in the presence of 4π · s monopole.

The LLL has 2s+1 degenerate orbitals, which form an SO(3) spin-s irreducible representation. A

system projected into the LLL can be equivalently viewed as a fuzzy sphere. (b) Phase diagram

of the proposed model consisting of a continuous phase transition from a quantum Hall Ising

ferromagnet to a disordered paramagnet.

B. Order parameter

Electric charges of fermions are gapped in the entire phase diagram, while the Ising spins

of fermions are the degrees of freedom that go through the phase transitions. Therefore, all

the gapless degrees of freedom at the phase transition are charge-neutral. In particular, the

order parameter of the transition is a particle-hole excitation of fermions,

M =
s∑

m=−s

c†m
σz

2
cm. (124)

We emphasize an important point for the Landau level regularization of the Ising transition:

the electrons are sitting on a fuzzy sphere due to the monopole, but the Ising spins are
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FIG. 7. (a) Finite size scaling of order parameter ⟨M2⟩/N2−∆. ∆ = 0.518148 is the scaling

dimension of the Ising order parameter field. N = 2s + 1 is the number of electrons (i.e. Ising

spins), hence it should be identified as space volume and the length scale is ∼
√
N . The rescaled

order parameter perfectly crosses at the same point hc ≈ 3.16. (b) Plot of the RG-invariant binder

cumulant U4. The binder cumulant does not stably cross at the same point due to the large finite

size effect. We set V0 = 4.75 here.

sitting on a normal sphere (for any finite N = 2s+1) since they are charge neutral. This is

the key difference between our Landau level regularization and the non-commutative field

theory [43], namely the latter always has quantum fields defined on a fuzzy manifold as long

as the physical volume is finite.

C. Finite size scaling

The phase diagram in Fig. 6(b) is obtained by the conventional finite size scaling of the

Z2 order parameter M in Eq. (124). We have simulated N = 2s + 1 = 8, 10, · · · 24 using

ED for smaller sizes (N ≤ 16) and DMRG for larger sizes N > 16 (the length scale in this

2 + 1D system is Lx =
√
N). At the phase transition point, the Z2 order parameter should

scale as ⟨M2⟩ ∼ L4−2∆
x = N2−∆ [44], where ∆ ≈ 0.5181489 is the scaling dimension of Ising

order parameter [11, 45]. Fig. 7 (a) depicts ⟨M2⟩/N2−∆ with respect with the transverse

field strength h of different N for V0 = 4.75. All the curves nicely cross at hc ≈ 3.16, which

we identify as the transition point. Similarly for other V0 we have identified the critical hc
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and obtained the phase diagram as shown in Fig. 6(b).

We have also computed the binder cumulant

U4 =
3

2

(
1− 1

3

⟨M4⟩
⟨M2⟩2

)
. (125)

U4 is a RG-invariant quantity, and U4 = 1, 0 at the thermodynamic limit corresponds to

the ordered phase and disordered phase, respectively. At the phase transition U4 will be

a universal quantity related to the four point correlator of the order parameter field σ of

CFT [46]. Fig. 7 (b) shows U4 with respect to the transverse field strength h for different

N for V0 = 4.75. Clearly, at small h the model is in the Ising ferromagnetic phase, while at

large h the model is in the disordered phase. To estimate the value of binder ratio at the

critical point U c
4 , we perform a detailed crossing-point analysis (Appendix Sec. ??). With

the data on hand, the best estimate we can give is 0.28 ≤ U c
4 ≤ 0.40. It will be interesting

to evaluate U4 from conformal bootstrap and compare with our estimate.

In practice, for small N (as we simulated numerically), finite-size effects are inevitable.

One common source is from the couplings of irrelevant operators, which are typically present

in microscopic models. Tuning along the critical line in the 2-dimensional parameter space

(V0, h) shown in Fig. 6(b) generically modifies the coupling strength of irrelevant operators

and therefore the magnitude of finite-size effects (while the relevant operators flow to the

same fixed point). In the following section, we will present the data of the state-operator

correspondence at a particular point V0 = 4.75, hc = 3.16, where we find the finite size effects

are smallest.

D. Operator spectra

We now turn to the central results of our paper: the state-operator correspondence of

the 3D Ising transition. As explained in previous Sec, on S2 × R the eigenstates of the

quantum Hamiltonian are in one-to-one correspondence with the scaling operators of its

corresponding CFT. In particular, the energy gaps of each state will be proportional to the

scaling dimensions of the scaling operators. Therefore, we explore energy spectra at the

critical point by utilizing exact diagonalization and compare it with CFT predictions.

To match the Ising transition’s energy spectra with the 3D Ising CFT’s operator spec-

trum, we first need to rescale the energy spectrum with a non-universal (i.e. model- and
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size-dependent) numerical factor. The natural calibrator is the energy momentum tensor

Tµ1µ2 , a conserved operator that any local CFT possesses. For any 3D CFT, Tµ1µ2 will be

a global symmetry singlet, Lorentz spin ℓ = 2 operator with scaling dimension ∆T = 3.

Our model has exact SO(3) Lorentz rotation, Ising Z2, and spacetime parity symmetries,

so every eigenstate has well-defined quantum numbers (Z2, P, ℓ) of these three symmetries.

The energy-momentum tensor will be the lowest state in the (Z2 = 1, P = 1, ℓ = 2) sector.

We rescale the full spectrum by setting the energy momentum tensor to exactly ∆T = 3,

and then examine if the low-lying states form representations of 3D conformal symmetry up

to a finite size correction.

To facilitate later analysis of our numerical results, we will elaborate a bit more about

the operator contents of a 3D CFT. In 3D the Lorentz rotation group is the familiar SO(3)

group, all the irreducible representations of which are rank-ℓ symmetric traceless represen-

tations, i.e., spin-ℓ representations. So all (primary and descendant) operators have two

quantum numbers (∆, ℓ). A primary operator O with quantum number ℓ = 0 is called a

scalar operator, and any of its descendants can be written as

∂ν1 · · · ∂νj□nO, n, j ≥ 0, (126)

with quantum number (∆ + 2n + j, j). We note □ = ∂2. Here and hereafter all the free

indices shall be symmetrized with the trace subtracted. The descendants of a spin-ℓ primary

operator Oµ1···µℓ
are a bit more complicated as there are two different types. The first type

can be written as,

∂ν1 · · · ∂νj∂µ1 · · · ∂µi
□nOµ1···µℓ

, (127)

with quantum number (∆+ 2n+ j + i, ℓ+ j − i) for ℓ ≥ i ≥ 0, n, j ≥ 0. Here and hereafter

the repeated indices shall be contracted. The other type will involve the ε tensor of SO(3),

and can be written as,

εµlρτ∂ρ∂ν1 · · · ∂νj∂µ1 · · · ∂µi
□nOµ1···µℓ

, (128)

with quantum number (∆ + 2n + j + i + 1, ℓ + j − i) for ℓ − 1 ≥ i ≥ 0, n, j ≥ 0. We note

that the ε tensor alters spacetime parity symmetry of Oµ1···µℓ
.

We also remark that conserved operators (i.e. global symmetry current Jµ and energy

momentum tensor Tµν) should be treated a bit differently, because they satisfy the conser-
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TABLE I. Low-lying primary operators identified via state-operator correspondence on a fuzzy

sphere with N = 16 electrons. The operators in the first and second row are Z2 odd and even

operators, respectively. We highlight that two new parity-odd primary operators σP− and ϵP− are

found. The conformal bootstrap data is from Ref. [45].

σ σ′ σµ1µ2 σ′
µ1µ2

σµ1µ2µ3 σµ1µ2µ3µ4 σP−

Bootstrap 0.518 5.291 4.180 6.987 4.638 6.113 NA

Fuzzy sphere 0.524 5.303 4.214 7.048 4.609 6.069 11.191

ϵ ϵ′ ϵ′′ Tµν T ′
µν ϵµ1µ2µ3µ4 ϵ′µ1µ2µ3µ4

ϵP−

Bootstrap 1.413 3.830 6.896 3 5.509 5.023 6.421 NA

Fuzzy sphere 1.414 3.838 6.908 3 5.583 5.103 6.347 10.014

vation equations ∂µJµ = 0 and ∂µTµν = 0. Therefore, their descendants in Eq. (127) and

(128) should have i = 0. [47]

We analyze the low-lying spectra according to the following steps,

1. For each Z2 = ±1 sector, we find the lowest-lying energy state (regardless of ℓ and P ),

and identify it as a primary state.

2. Based on the representation theory of the 3D conformal group as summarized in

Eq. (126), (127), (128), we enumerate the descendant states of the identified primary

state and examine if all of descendant states (up to ∆ = 7) exist in our energy

spectrum.

3. We remove the identified conformal multiplet (i.e. primary and its descendants) from

the energy spectrum, and for the remaining states we repeat the step 1,2.

Remarkably, we found that the lowest-lying 70 eigenstates [48] form representations of the

3D conformal symmetry up to a small finite size correction, with no extra or missing state.

This is a direct and unambiguous demonstration of the emergent conformal symmetry of

the 3D Ising transition.
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FIG. 8. Conformal multiplet of several low lying primary operators: scaling dimension ∆ versus

Lorentz spin ℓ. We plot conformal bootstrap data with lines: lines in red are parity even, non-

degenerate operators; lines in green are parity odd, non-degenerate operators; lines in black are

parity even, two-fold degenerate operators. Symbols are our numerical data of parity even (red

circle) and odd (green square) operators. The discrepancy is typically more significant for the

larger ∆.

After verifying the emergent conformal symmetry, we further compare our scaling dimen-

sions of the identified primary operators with the numerical conformal bootstrap data [11,

45], and we find a good agreement for all of them. Table I lists all the primary operators

we have identified with N = 16 ED data. We have found 12 parity-even primary operators

besides the energy-momentum tensor, and all of them have less than a 1.6% discrepancy

from the bootstrap data [11, 45]. As one can see the numerical accuracy is unexpectedly

high, particularly given that it is from a small system size (N = 16 total spins): around

10 operators have relative numerical error around 3% ∼ 5.5%, and the rest of them have

relative numerical error smaller than 3%. Fig. 8 plots conformal multiplets of a few repre-

sentative primary operators, which clearly illustrate the emergent conformal symmetry and
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agree well with numerical conformal bootstrap results.

A few remarks are in order. 1) We verify the emergent conformal symmetry of the 3D

Ising transition by showing that the low-lying spectra of our model form representations of

3D conformal symmetry. This procedure does not rely on any input of previous knowledge

such as numerical bootstrap data. 2) A spinning (ℓ > 0) parity-even (parity-odd) primary

operator can have parity-odd (parity-even) descendant opertors as written in Eq. (128). This

nontrivial structure from the CFT’s algebra matches our ED spectrum. [49] 3) The energy

momentum tensor Tµ1µ2 is a conserved operator, so it does not have any ℓ < 2 descendant.

This structure is clearly shown in our data. 4) All the parity-even primary operators that we

found have been reported in the bootstrap study of mixed correlators ⟨σσσσ⟩, ⟨ϵϵϵϵ⟩, ⟨σσϵϵ⟩.

The mixed-correlator bootstrap study is only capable of detecting operators in the σ × σ,

ϵ × ϵ and σ × ϵ OPE, so it will miss (Z2 = 1, P = 1, odd ℓ) primary operators (in addition

to P = −1 primaries). Our approach should be able to detect operators in these quantum

number sectors, including the candidate of virial current [50] [51], namely the lowest primary

in the (Z2 = 1, P = 1, ℓ = 1) sector. We have not observed any primary operators in the

(Z2 = 1, P = 1, odd ℓ) sector below ∆ = 7, and so this gives a lower bound for the virial

current candidate, which is higher than the previous estimate [52]. 5) We have identified

two previously unknown (parity-odd) primary operators in the (Z2 = 1, P = −1, ℓ = 0) and

(Z2 = −1, P = −1, ℓ = 0) sectors with ∆ ≈ 10.01 and ∆ ≈ 11.19, respectively. To access

P = −1 primary operators in the bootstrap calculation, one has to bootstrap correlation

functions of the spinning operator: for example, the energy momentum tensor. Such study

has only been initiated in Ref. [53] but no P = −1 primary has been identified by conformal

bootstrap or any other methods so far. 6) In all previous lattice model studies, only several

primary fields (σ, ϵ and ϵ′) were found, and their scaling dimensions are related to the critical

exponents η, ν and ω [44, 54].

E. OPE coefficients

1. ⟨0|ϕ̂|ϕ⟩

First, we consider the scalar-scalar correlation function on Rd,

⟨0|ϕ̂(r,Ω)ϕ̂(r′,Ω′)|0⟩ = 1

(r2 + r′2 − 2rr′ cos(Ω− Ω′))∆
, (129)
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where (r,Ω) are the spherical coordinates and ∆ is the scaling dimension of field ϕ̂. Using

the relation of state-operate correspondence

|ϕ⟩ = lim
r→0

ϕ̂(r,Ω)|0⟩, ⟨ϕ| = lim
r→∞

r2∆⟨0|ϕ̂(r,Ω), (130)

we have

⟨0|ϕ̂(r,Ω)|ϕ⟩ = lim
r′→0
⟨0|ϕ̂(r,Ω)ϕ̂(r′,Ω′)|0⟩ = 1

r2∆
. (131)

Then, we apply the Weyl-transformation τ = R ln r to map (r,Ω) in Rd to (τ,Ω) in Sd−1×R,

where R is the radius of Sd−1. The operator transforms as

ϕ̂(r,Ω)→ ϕ̂(τ,Ω) = Λ(r,Ω)∆/2ϕ̂(r,Ω), (132)

where Λ = R−2e
2τ
R is the scale factor of this transformation and we can see it by considering

the metric

ds2 = dr2 + r2dΩ2 = R−2e
2τ
R

(
dτ 2 +R2dΩ2

)
= Λ(r,Ω)

(
dτ 2 +R2dΩ2

)
. (133)

Substituting into the correlator and letting τ = 0, we finally get

⟨0|ϕ̂(τ = 0,Ω)|ϕ⟩ = ⟨0|Λ(r,Ω)∆/2ϕ̂(r,Ω)|ϕ⟩
∣∣
r=1

= Λ(r,Ω)∆/2 1

r2∆
∣∣
r=1

= R−∆. (134)

2. ⟨ϕ1|ϕ̂2|ϕ3⟩

Now we consider the scalar-scalar-scalar correlator

⟨0|ϕ̂i(ri,Ωi)ϕ̂j(rj,Ωj)ϕ̂k(rk,Ωk)|0⟩ =
fijk

d
∆i+∆j−∆k

ij d
−∆i+∆j+∆k

jk d
∆i−∆j+∆k

ik

, (135)

where d12 =
√
r21 + r22 − 2r1r2 cos(Ω1 − Ω2) is the distance between (r1,Ω1) and (r2,Ω2) .

Using state-operator correspondence relations Eq. (130) we have

⟨ϕi|ϕ̂j(rj,Ωj)|ϕk⟩ = lim
ri→∞,rk→0

r2∆i
i ⟨0|ϕ̂i(ri,Ωi)ϕ̂j(rj,Ωj)ϕ̂k(rk,Ωk)|0⟩ =

fijk

r
−∆i+∆j+∆k

j

. (136)

Similarly, under the Weyl-transformation

⟨ϕi|ϕ̂j(τ = 0,Ω)|ϕk⟩ = fijkR
−∆j . (137)

Thus, one can compute the OPE coefficients through Eq. 134 and Eq. 137

fijk =
⟨ϕi|ϕ̂j(τ = 0,Ω)|ϕk⟩
⟨0|ϕ̂(τ = 0,Ω)|ϕ⟩

. (138)
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3. OPE coefficients and finite-size scaling

In this section, we will present a detailed analysis of OPE coefficients from the microscopic

spin operators. Generally speaking, since spin operators we used are not the exact CFT

primary fields, so the three-point correlators involve contributions from other primaries or

descendants. Fortunately, we will show that many OPE coefficients can be extracted from

the proper finite-size extrapolation.

We will choose local operator n̂z(Ω) to approach the CFT operator σ̂, and n̂x(Ω), Ôϵ(Ω)

to approach ϵ̂. Although CFT operators and spin operators are always local operators

defined on the sphere, for computing OPE coefficients it is more convenient to use operators

defined in the angular momentum (orbital) space, which are the spherical modes of the local

operators, e.g.,

Ôl,m =

∫
dΩ Ȳl,m(Ω)Ô(Ω). (139)

So in the detailed analysis presented below, the computations are done in the orbital space.

1. fσσϵ

The operator decomposition nz(Ω) generically is,

n̂z(Ω) = cσσ̂(Ω) + c∂µσ∂µσ̂(Ω) + c□σ□σ̂(Ω) + c∂µ∂νσ∂µ∂ν σ̂(Ω) + · · ·

+ cσµν σ̂µν(Ω) + c∂µσµν∂µσ̂µν(Ω) + c∂ρσµν∂ρσ̂µν(Ω) + · · ·

+ cσ′σ̂′(Ω) + c∂µσ′∂µσ̂
′(Ω) + c□σ′□σ̂′(Ω) + c∂µ∂νσ′∂µ∂ν σ̂

′(Ω) + · · ·

+ · · · (140)

where each line represents components of a primary and its descendants, the conformal

dimension of these operators are ∆σ̂ ≈ 0.51814, ∆σ̂′ ≈ 5.2906, and ∆σµν ≈ 4.1803 and more

other operators included in · · · . Thus, the OPE coefficient can be extracted by
⟨σ|n̂z

0,0|ϵ⟩
⟨σ|n̂z

0,0|0⟩
for

which only scalar scaling operators will contribute,

⟨σ|n̂z
0,0|ϵ⟩

⟨σ|n̂z
0,0|0⟩

≈
cσfσσϵR

−∆σ + c□σfσ,□σ,ϵR
−(∆σ+2) + c□2σfσ,□2σ,ϵR

−(∆σ+4) + cσ′fσ,σ′,ϵR
−∆σ′

cσR−∆σ + c□σR−(∆σ+2) + c□2σR−(∆σ+4) + cσ′R−∆σ′

≈ fσσϵ +
c1
R2

+
c2
R4

+O(R−4.77) ≈ fσσϵ +
c′1
N

+
c′2
N2

+O(N−2.38).

(141)

In the last line of Eq.(141), we change the variable from the spherical radius R to the number

of Ising spins N on the fuzzy sphere. It shows that the OPE coefficients can be achieved by

extrapolation N →∞.
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The OPE σσϵ can also be defined as ⟨σ|ϵ|σ⟩ and computed using a Z2 even operator such

as n̂x(Ω)

n̂x(Ω) = cI Î + [cϵϵ̂(Ω) + · · · ] + [cTµν T̂µν(Ω) + · · · ] + [cϵ′ ϵ̂
′(Ω) + · · · ] + · · · (142)

where each bracket refers to a primary and its descendants (labeled by · · · ), with conformal

dimensions of the first few lying ones to be ∆I = 0, ∆ϵ ≈ 1.4126, ∆Tµν = 3, ∆ϵ′ ≈ 3.8296.

The identity component should be subtracted, we have

⟨σ|n̂x
0,0|σ⟩ − ⟨0|n̂x

0,0|0⟩
⟨ϵ|n̂x

0,0|0⟩
≈
cϵfσϵσR

−∆ϵ + c□ϵfσ,□ϵ,σR
−(∆ϵ+2) + cϵ′fσ,ϵ′,σR

−∆ϵ′ + c□2ϵfσ,□2ϵ,σR
−(∆ϵ+4)

cϵR−∆ϵ + c□ϵR−(∆ϵ+2) + cϵ′R−∆ϵ′ + c□2ϵR−(∆ϵ+4)

≈ fσσϵ +
c1
R2

+
c2

R2.4173
+
c3
R4

+O(R−4.4173) ≈ fσσϵ +
c′1
N

+
c′2

N1.2087
+O(N−2).

(143)

Similarly, the OPE σσϵ can also be computed by local spin operator Ôϵ(Ω). The finite-size

scaling form is the same with different numerical factors cα.

2. Scalar OPE coefficients: fϵϵϵ, fσσϵ′ , fσ′σϵ, fϵϵϵ′ , fσ′ϵσ′ and fσ′σϵ′ Similar to Eq. (142-143),

the finite-size scaling of OPE ϵϵϵ reads

⟨ϵ|n̂x
0,0|ϵ⟩ − ⟨0|n̂x

0,0|0⟩
⟨ϵ|n̂x

0,0|0⟩
≈
cϵfϵϵϵR

−∆ϵ + c□ϵfϵ,□ϵ,ϵR
−(∆ϵ+2) + cϵ′fϵ,ϵ′,ϵR

−∆ϵ′ + c□2ϵfϵ,□2ϵ,ϵR
−(∆ϵ+4)

cϵR−∆ϵ + c□ϵR−(∆ϵ+2) + cϵ′R−∆ϵ′ + c□2ϵR−(∆ϵ+4)

≈ fϵϵϵ +
c1
R2

+
c2

R2.4173
+
c3
R4

+O(R−4.4173) ≈ fϵϵϵ +
c′1
N

+
c′2

N1.2087
+O(N−2).

(144)

Similarly,

⟨σ|n̂z
0,0|ϵ′⟩

⟨σ|n̂z
0,0|0⟩

≈ fσσϵ′ +
c1
R2

+
c2
R4

+O(R−4.77) ≈ fσσϵ′ +
c′1
N

+
c′2
N2

+O(N−2.38)

⟨σ′|n̂z
0,0|ϵ⟩

⟨σ|n̂z
0,0|0⟩

≈ fσ′σϵ +
c1
R2

+
c2
R4

+O(R−4.77) ≈ fσ′σϵ +
c′1
N

+
c′2
N2

+O(N−2.38) (145)

⟨σ′|n̂x
0,0|σ⟩

⟨ϵ|n̂x
0,0|0⟩

≈ fσ′σϵ +
c1
R2

+
c2

R2.4173
+
c3
R4

+O(R−4.4173) ≈ fσ′σϵ +
c′1
N

+
c′2

N1.2087
+O(N−2),

⟨ϵ|n̂x
0,0|ϵ′⟩

⟨ϵ|n̂x
0,0|0⟩

≈ fϵϵϵ′ +
c1
R2

+
c2

R2.4173
+
c3
R4

+O(R−4.4173) ≈ fϵϵϵ′ +
c′1
N

+
c′2

N1.2087
+O(N−2)

(146)

In the last two equations, the identity component shouldn’t be subtracted since ⟨σ′|Î|σ⟩ =

⟨ϵ′|Î|ϵ⟩ = 0. The numerical results are shown in Fig.??(a-b), (e) and can be fitted as(up to
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linear term)

⟨σ|n̂z
0,0|ϵ′⟩

⟨σ|n̂z
0,0|0⟩

≈ 0.0529389− 0.35087

N

⟨σ′|n̂z
0,0|ϵ⟩

⟨σ|n̂z
0,0|0⟩

≈ 0.0514531− 0.329505

N

⟨σ′|n̂x
0,0|σ⟩

⟨ϵ|n̂x
0,0|0⟩

≈ 0.052771− 0.66503

N

⟨ϵ|n̂x
0,0|ϵ′⟩

⟨ϵ|n̂x
0,0|0⟩

≈ 1.56597− 4.10764

N

(147)

where the extracted OPE coefficient are fσσϵ′ ≈ 0.0529389, fσ′σϵ ≈ 0.0514531(n̂z), 0.052771(n̂x)

and fϵϵϵ′ ≈ 1.56597. The conformal bootstrap results are fCB
σσϵ′ ≈ 0.053012(55), fCB

σ′σϵ ≈

0.057235(20), and fCB
ϵϵϵ′ ≈ 1.5360(16).

Finally, we compute two OPE coefficients fσ′ϵσ′ and fσ′σϵ′ that have not been computed

by conformal bootstrap so far. We have,

⟨σ′|n̂x
0,0|σ′⟩ − ⟨0|n̂x

0,0|0⟩
⟨ϵ|n̂x

0,0|0⟩
≈ fσ′ϵσ′ +

c1
R2

+
c2

R2.4173
+
c3
R4

+O(R−4.4173) ≈ fσ′ϵσ′ +
c′1
N

+
c′2

N1.2087
+O(N−2)

⟨σ′|n̂z
0,0|ϵ′⟩

⟨σ|n̂z
0,0|0⟩

≈ fσ′σϵ′ +
c1
R2

+
c2
R4

+O(R−4.77) ≈ fσ′σϵ′ +
c′1
N

+
c′2
N2

+O(N−2.38).

(148)

The numerical results are shown in Fig.??(f-g). The fitting results of fσ′ϵσ′ are

⟨σ′|n̂x
0,0|σ′⟩ − ⟨0|n̂x

0,0|0⟩
⟨ϵ|n̂x

0,0|0⟩
≈ 3.17844 +

30.9552

N

⟨σ′|(Ôϵ)0,0|σ′⟩ − ⟨0|(Ôϵ)0,0|0⟩
⟨ϵ|(Ôϵ)0,0|0⟩

≈ 2.97839 +
5.66358

N
,

And the result of fσ′σϵ′ is

⟨σ′|n̂z
0,0|ϵ′⟩

⟨σ|n̂z
0,0|0⟩

≈ 1.29367− 3.05227

N
.
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(a) (b)

(c) (d)

(e) (f)

FIG. 9. OPE coefficients of primary operators. (a-b) Two representative OPE coefficients

involving three scalar primaries fσσϵ and fϵϵϵ, obtained from the finite-size extrapolation via spin

operator nz(Ω) (red), nx(Ω) (yellow) and Oϵ(Ω) (green) (see main text). (c-d) Two representa-

tive OPE coefficients involving energy-momentum tensor fσσTµν , fσ′σTµν by using nz(Ω) operator.

The dashed line in (a-d) is the value from conformal bootstrap. (e-f) Two representative OPE

coefficients fσϵ′σµν , fTµνϵTµν that are not known in conformal bootstrap calculation. In all figures

only the data points on largest six sizes are used in the fitting. In (a-c) and (f), larger sizes up to

N = 48 are available by the DMRG method which are labeled by solid symbols.
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TABLE II. List of OPE coefficients of primary operators obtained on the fuzzy sphere. The primary

operators in consideration have scaling dimensions ∆σ ≈ 0.51815, ∆ϵ ≈ 1.4126, ∆ϵ′ ≈ 3.8297,

∆σ′ ≈ 5.2906, ∆Tµν = 3, and ∆σµν ≈ 4.1803. The conformal bootstrap (CB) data is from Ref.

[45], where some of unavailable data is labeled by ‘NA’. We note that our convention for fTµνϵTρη

is fTµνϵTρη = 1√
4π

∫
dΩ ⟨Tµν ,m = 0|ϵ̂(Ω)|Tρη,m = 0⟩ [? ].

Operators Spin Z2 fαβγ (Fuzzy Sphere) fαβγ (CB)

σ 0 − fσσϵ ≈ 1.0539(18) fσσϵ ≈ 1.0519

ϵ 0 + fϵϵϵ ≈ 1.5441(23) fϵϵϵ ≈ 1.5324

ϵ′ 0 + fσσϵ′ ≈ 0.0529(16) fσσϵ′ ≈ 0.0530

fϵϵϵ′ ≈ 1.566(68) fϵϵϵ′ ≈ 1.5360

σ′ 0 − fσ′σϵ ≈ 0.0515(42) fσ′σϵ ≈ 0.0572

fσ′σϵ′ ≈ 1.294(51) NA

fσ′ϵσ′ ≈ 2.98(13) NA

Tµν 2 + fσσT ≈ 0.3248(35) fσσT ≈ 0.3261

fσ′σT ≈ −0.00007(96) fσ′σT = 0

fϵϵT ≈ 0.8951(35) fϵϵT ≈ 0.8892

fTϵT ≈ 0.8658(69) NA

σµν 2 − fσϵσµν ≈ 0.400(33) fσϵσµν ≈ 0.3892

fσϵ′σµν ≈ 0.18256(69) NA
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IV. MORE APPLICATIONS

A. Phase transitions

1. 3-State Potts universality

Drawing upon the previous Ising model [25] with a global Z2 symmetry, we consider

interacting fermions with three flavors to achieve the full S3 permutation symmetry. We

construct three-component fermions living on the fuzzy sphere. The system is characterized

by a continuous Hamiltonian:

H =

∫
dΩadΩbU (Ωab)

[
n0 (Ωa)n0 (Ωb)− nz (Ωa)n

†
z (Ωb)

]
−h

∫
dΩ

[
nx (Ω) + n†

x (Ω)
]
(149)

where Ω = (θ, ψ) is spatial coordinates on a sphere with radius R, density operator reads

nα(Ω) = ψ†(Ω)Sαψ(Ω), and Sα is defined in Q = 3 local Hilbert space

S0 =


1 0 0

0 1 0

0 0 1

 , Sz =


1 0 0

0 ei
2π
3 0

0 0 ei
4π
3

 , Sx =


0 0 1

1 0 0

0 1 0

 . (150)

The interaction term U (Ωab) = g0
R2 δ (Ωab) +

g1
R4∇2δ (Ωab) is taken to be local and short-

ranged, ensuring that the phase transition is described by a local theory. After projecting

to the lowest Landau level (LLL), the second quantized Hamiltonian can be derived in the

following form:

H =
∑

m1m2m3m4

Vm1m2m3m4

[(
c†m1

cm4

) (
c†m2

cm3

)
−

(
c†m1

Szcm4

) (
c†m2

S†
zcm3

)]
− h

∑
m

c†m
(
Sx + S†

x

)
cm

(151)

where c†m =
(
c†m0, c

†
m1, c

†
m2

)
is the fermion creation operator on the mth Landau orbital, and

Vm1,m2,m3,m4 is associated with Haldane pseudopotential Vl with following form:

Vm1m2m3m4 =
∑
l

Vl(4s−2l+1)

 s s 2s− l

m1 m2 −m1 −m2

 s s 2s− l

m4 m3 −m4 −m3

 δm1+m2,m3+m4 ,

(152)

where

 j1 j2 j3

m1 m2 m3

 is the Wigner 3j symbol. In this paper, we will only consider ultra-

local interactions U in real space, which corresponds to non-zero Haldane pseudopotentials

V0 and V1, and we set V0 = 1.
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In 2D, the Potts model exhibits two families of CFTs with the same global symmetry,

regarding the critical and tricritical branches, respectively. For the D = 3 Potts model, the

first-order phase transition is expected to appear for Q > Qc(3) as shown in Fig. 10 [55–58],

but the critical value Qc(D = 3) is not exactly known. Historically, the critical value Qc(3)

has been estimated by various methods, such as Qc(3) ≈ 2.7 from the ϵ-expansion [55],

Qc(3) ≈ 2.2 from the Kadanoff variational renormalization group [56], 2 < Qc(3) < 3 from

various Monte Carlo calculations [59–61] and Qc(3) ≈ 2.11 from the non-perturbative renor-

malization group [57]. The Monte Carlo simulations partially support the above estimations

[62–64] and the tensor renormalization group simulations , where the first-order transition is

observed in the 3D Q = 3-state Potts model. Moreover, based on a recent numerical boot-

strap study [65], fixing Q = 3, the critical space-time dimension separating the continuous

and first-order transition is around Dc ≈ 2.6. These results indicate that in the physical

parameter space (see Fig. 10), the 3D 3-state Potts model (D = 3, Q = 3) is sitting close to

the phase boundary. Additionally, the conformal fixed points merge-and-annihilate picture

is also supported by the calculation based on the non-perturbative renormalization group in

higher dimensions [56–58]. Notably, Recent field-theoretic developments further clarify this

picture: the work of Wiese and Jacobsen [66] confirms that the non-perturbative RG fixed

point persists deep into the first-order region, reinforcing the interpretation of complex fixed

points as a universal feature of discontinuous transitions. Inspired by these facts, a natural

conjecture is a first-order transition in the 3D 3 state Potts model can also be described by

the complex CFT, akin to the 2D (Q > 4)-state Potts model.

2. O(N) Wilson-Fisher universality

A natural generalization of the 3D Ising universality class is the O(N) Wilson-Fisher

(WF) universality (e.g. see a review [4]), where the Ising corresponds to N = 1. Similar to

the Ising model, the O(N) model describes an order-disorder transition, in which the ordered

phase exhibits spontaneous symmetry breaking of O(N). In nature, the O(2) WF (also called

XY) universality class describes the superfluid-to-normal fluid transition in helium-4, while

the O(3) WF universality class describes the Heisenberg ferromagnetic phase transition.

The general guiding principle for designing fuzzy sphere models is to ensure that the

global symmetry and (’t Hooft) anomaly of the fuzzy sphere model match those of the target
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Qc(2)=4

Qc(3)

Dc(3)

Qc(3) Ref.

2.7 ϵ-exp [55]

2.2 RG [56]

2.21 MC [59]

2.45 MC [60]

2.65 MC [61]

2.15 SCOZA [67]

2.11 RG[57]

2.35 MC [68]

Dc(3) Ref.

2.6 CB [65]

FIG. 10. (Left panel) The nature of Potts transition depends on space-time dimension D and spin

component Q [55–60, 67, 68], where the continuous transition exists for Q ≤ Qc, D ≤ Dc. Here

Qc, Dc are the largest critical values for which the Potts transition is continuous. (Right panel)

The estimated values of Qc(D = 3) and Dc(Q = 3) from various literature.

universality class. Since the O(N) WF universality class does not exhibit any anomaly, the

corresponding fuzzy sphere model must also preserve O(N) symmetry and remain anomaly-

free. For example, Ref. [26] investigated a O(3) WF model, which also involves four fermion

flavors but with two fermions per Landau orbital. We consider a real-space Hamiltonian:

Hint =

∫
dΩ⃗a,b

[
U0n(Ω⃗a)n(Ω⃗b) + U2n⃗1(Ω⃗a) · n⃗2(Ω⃗b)− U1(n⃗1(Ω⃗a) · n⃗1(Ω⃗b) + n⃗2(Ω⃗a) · n⃗2(Ω⃗b))

]
−h

∫
dΩ⃗Ψ̂†τxσ0Ψ̂,

where the local density operator of layer-τ is n⃗τ (Ω⃗) = (nx
τ , n

y
τ , n

z
τ ) = ψ†

τ (Ω⃗)σ⃗ψτ (Ω⃗) and the

total density is n(Ω⃗) = Ψ†(Ω⃗)Ψ(Ω⃗). For simplicity, we consider the potentials to be short-

ranged interactions δ(Ω⃗1 − Ω⃗2) and ∇2δ(Ω⃗1 − Ω⃗2). The transverse field strength h controls

tunneling effect between two different layers.

After verifying the emergent conformal symmetry, we further compare scaling dimensions

of the identified primary operators with the existing data from various methods [11, 70, 71].

As listed the relevant primary operators that we have identified in Tab. III, overall we
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find a reasonable agreement with numerical bootstrap [11, 70] and Monte Carlo data [71],

e.g. the averaged discrepancy from the bootstrap data is less than 1%. Despite of the

small discrepancy, the precision is still sufficiently high to further increase the confidence

that the universality class of the transition falls into the 3D Wilson-Fisher O(3) type. In

particular, these data are crucial to understand the physics of O(3) critical point. For

instance, the lowest rank-4 symmetric tensor operator t4 corresponds to the anisotropic cubic

perturbation. This operator is dangerously relevant, according to the existing numerical

computation [69, 70]. Our calculation confirms its relevance ∆t4 ≈ 2.961(12). Here we notice

that the finite-size effect of t4 is strong, since the finite-size value of its scaling dimension

FIG. 11. (a) Sketches of the bilayer fuzzy sphere model: Interacting fermions move on a fuzzy

sphere bilayer; and the fermion is able to tunnel between two layers. (b) A schematic plot of phase

diagram with a critical point separating a paramagnet from a symmetry breaking Heisenberg

magnet. (c) Finite size scaling of order parameter ⟨M2
1(2)⟩/N

2−∆ϕ
s , where ∆ϕ = 0.519 is the scaling

dimension of the O(3) vector field relating to the critical exponent η = 2∆ϕ − 1. Ns = 2s + 1 is

the number of Landau orbitals (i.e. Heisenberg spins), which relates to the length scale radius as

R ∼
√
N s. (d) The data collapse of the rescaled order parameter according to f((h − hc)L

1/ν)

with ν = 1/(3 − ∆s) and ∆s ≈ 1.595, where hc is a free fitting parameter. The best fit gives

hc ≈ 0.225. (e) Finite size scaling of crossing points by a finite-size pair (Ns, Ns + 1) gives rise to

an extrapolated value hc ≈ 0.2248± 0.0001.
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flows from irrelevant to relevant. This strong flow results from the influence of high-level

irrelevant fields. To resolve this problem, much larger system sizes are needed, which is

beyond the current computational ability.

3. Lee-Yang universality

The origin of the Lee-Yang CFT and its role in our understanding of order–disorder

phase transitions is a remarkable chapter in theoretical physics. The universal, long-distance

physics, of the LY edge singularity is captured by the following field theory action:

S =

∫
ddx[

1

2
(∂ϕ)2 +

iλ

3!
ϕ3] (153)

The coupling iλ is purely imaginary, rendering the theory non-unitary while preserving

stability by avoiding runaway directions.

The current state-of-the-art five-loop ϵ-expansion estimates yield ∆ϕ = 0.215(1) for D =

3 this value lies below the unitarity bound. The operator ϕ2 is redundant with via the

equations of motion ∂2ϕ ∼ ϕ2. Next, as in any local CFT, the Lee-Yang has an energy

momentum tensor: a spin-two primary operator of dimension ∆T = 3. The next primary

operators in the spectrum are a scalar operator ϕ3 and a spin ℓ = 4 operator Cµνρσ, which

have estimated dimensions above three – indeed ∆ϕ3 = 5.0(1) and ∆C = 4.75(1).

TABLE III. Low-lying primary operators identified via state-operator correspondence on the fuzzy

sphere. We only take the first three digits from the data in literature.

ϕ t2 s t3 t4

ϵ−exp[69] 0.510 1.232 1.610 - 2.911

large-N [69] 0.499 1.339 1.301 - 3.447

Bootstrap[70] 0.519 1.209 1.595 2.039 < 2.991

MC[71] 0.519 1.210 1.594 2.039 2.986

Fuzzy sphere 0.524 1.211 1.588 2.028 2.961
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FIG. 12. Operator spectra of Lee-Yang model on the fuzzy sphere (with finite-size correction).

The hamiltonian on fuzzy sphere will be

HLY = HIsing + igz

∫
dΩnz(Ω) (154)

The CFT data is shown in Fig. 12. The results match the expectation quite well (The

proper finite-size scaling is necessary).
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FIG. 13. Schematic plot of the defect and boundary in 3D. (a) The line defect and (b) the

boundary before and after the Weyl transformation.

B. Defects/Boundaries CFT

Defects and boundaries are ubiquitous in the real world, and in the realm of critical

phenomena, they can give rise to new physics, including distinct defect and boundary uni-

versality classes. A well-known example of a defect in critical phenomena is the Kondo effect,

the study of which played a pivotal role in the development of RG theory, revolutionizing

modern physics.

Introducing a defect or boundary into a bulk CFT can trigger an RG flow toward a

nontrivial IR fixed point on the defect or boundary, leading to a defect CFT (dCFT) [15, 72]

or a boundary CFT (bCFT) [73–75]. The dCFT [76] exhibits a rich array of new physical

phenomena. First, a given bulk CFT can host multiple defect universality classes, making it

particularly interesting to explore the landscape of defect fixed points. For each defect fixed

point, the original conformal symmetry of the bulk is broken down to a smaller conformal

symmetry on the defect. New operators exist on the defect, which can still be classified

into primaries and descendants under the defect conformal group. Moreover, there is a

nontrivial interplay between the defect and the bulk, allowing for interesting correlation

functions between bulk and defect operators. Finally, RG monotonicity theorems also apply

to defect RG flows; for instance, the g-theorem of the line defect has been proven for bulk

CFTs in various dimensions [77–79].

Similar to bulk CFTs, it is natural to study dCFTs in Rd. Then by applying a Weyl

transformation, one can map the theory onto the cylinder Sd−1×R, which again benefits from

the advantages of the fuzzy sphere scheme. In particular, the state-operator correspondence
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remains valid for dCFTs. As shown in Fig. 13, a line defect in Rd is mapped to Sd−1 × R,

where 0 + 1D impurities are located at the north and south poles. Similarly, a CFT with a

boundary in Rd is mapped to a setup where the spatial dimensions reside on a hemisphere

rather than a full sphere. One can also consider defect-changing operators, which sit at

the junction between two different types of semi-infinite line defects. On Sd−1 × R, this

corresponds to placing different types of impurities at the north and south poles.

The simplest example of a conformal defect is the pinning field defect [80] in the 3D Ising

CFT, where a Ising Z2-breaking magnetic field is applied along a line defect. In field theory,

this corresponds to turning on the σ field on the 1D line defect, which is relevant (∆σ < 1)

and therefore induces an RG flow to a nontrivial IR defect fixed point. In the fuzzy sphere

model, this line defect can be realized by adding impurity terms at north and south pole,

hNn
z(x = North Pole) + hSn

z(x = South Pole), (155)

to the original Hamiltonian. The eigenstates of this Hamiltonian are in one-to-one corre-

spondence with the operators of the dCFT. Interestingly, different choices of impurity terms

correspond to different types of operators: setting hN = hS yields defect operators, hN = −hS
gives defect-changing operators, and (hN ̸= 0, hS = 0) produces defect-creation operators.

Ref. [32] observed the state-operator correspondence for defect operators, explicitly demon-

strated the defect conformal invariance, and obtained the scaling dimensions of several defect

primary operators as well as bulk-defect OPE coefficients. Moreover, Ref. [33] computed

the g-function using wavefunction overlap, obtaining g = 0.602(2), a result later reproduced

by the rigorous bootstrap approach [81]. In the same work, the authors also studied defect-

creation and defect-changing operators, demonstrating that spontaneous Ising Z2 breaking

is unstable on the line defect of the 3D Ising CFT. Additionally, Ref. [82] calculated the

cusp anomalous dimension for the Ising pinning field line defect.

Shifting focus from defects to boundaries, Refs. [34, 35] studied the bCFT of the 3D Ising

model on the fuzzy hemisphere. The key idea is that one can construct a fuzzy hemisphere

by removing half of the Landau orbitals of the LLL. The authors investigated both the

normal boundary (which explicitly breaks Z2 symmetry) and the ordinary boundary (which

preserves Z2 symmetry). The emergent boundary conformal symmetry was once again

demonstrated through the state-operator correspondence, along with results for boundary

primary operators and bulk-boundary OPE coefficients. Moreover, Ref. [34] computed the
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boundary central charge, an RG-monotonic quantity governing the boundary RG flow [83].

Additionally, the same work reported an intriguing connection between the bCFT operator

spectrum and the bulk entanglement spectrum in Landau orbital space.

C. F-Function: 3D Analog of the Central Charge in 2D CFT

RG theory is fundamental for understanding scale-dependent behaviors in critical phe-

nomena. Since RG transformations integrate out short-distance degrees of freedom, a key

feature of RG flow is its irreversibility—certain complexity measures, such as the number

of degrees of freedom, monotonically decrease along the flow. The first established RG ir-

reversibility theorem is Zamolodchikov’s c-theorem in 2D [84]. The c-theorem states that

a c-function, associated with the central charge of 2D CFTs at RG fixed points, monoton-

ically decreases under RG flow. The 2D c-theorem was later conjectured by Cardy [85] to

generalize to the a-theorem in 4D, which was subsequently proven by Komargodski and

Schwimmer [86]. Both the 2D central charge and the 4D a-function are related to the

conformal anomaly and can be computed from stress tensor correlators.

In 3D, a similar RG irreversibility theorem exists—the F -theorem. In this case, the

RG monotonic F -function is defined through the partition function on the three-sphere

S3 [87]. Mapping S3 to R3 via a conformal transformation, the F -function appears in the

entanglement entropy—specifically, it corresponds to the subleading term in addition to the

conventional entanglement area law [88]. The entanglement version of the F -theorem has

been proven using entanglement subadditivity [89]. Unlike the c- and a-functions, the F -

function is inherently non-local, as it is not related to the conformal anomaly and cannot be

computed from the correlators of any local operators. Instead, it must be extracted from a

non-local quantity on a conformally flat manifold, such as the entanglement entropy in R3

or S2 × R (but not on T 3 or T 2 × R). This makes the F -function particularly challenging

to compute.

The fuzzy sphere offers several unique advantages for computing the F -function [31]. On

the fuzzy sphere, one can consider the entanglement entropy of a real-space entanglement

cut at a latitude parameterized by θ on a sphere of radius R:

SA(θ) = −Tr(ρA ln ρA) =
αR

δ
sin θ − F, (156)
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where δ is a UV regulator. The first term represents the entanglement area law, while the

second term corresponds to the F -function. Since the space is continuous, we can define the

cylinder-renormalized entanglement entropy [90]:

FC(R, θ0) ≡ (tan θ ∂θ − 1)SA(θ)
∣∣∣
R,θ0

. (157)

In the thermodynamic limit, where R sin θ0 → ∞, FC(R, θ0) approaches F at the IR fixed

point.

Following this strategy, Ref. [31] reported the first non-perturbative computation of the

F -function for the 3D Ising CFT, yielding FIsing = 0.0612(5). This value is slightly smaller

than the F -function of a free real scalar, Ffree =
log 2
8
− 3ζ(3)

16π2 ≈ 0.0638 [91], in agreement with

the F -theorem. The result is also very close to predictions from the 4− ϵ expansion, which

gives FIsing ≈ 0.0610 [92] and FIsing ≈ 0.0623 [93, 94].
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[19] H. W. J. Blöte, J. L. Cardy, and M. P. Nightingale, Phys. Rev. Lett. 56, 742 (1986).

[20] I. Affleck, in Current Physics–Sources and Comments, Vol. 2 (Elsevier, 1988) pp. 347–349.

[21] A. Milsted and G. Vidal, Phys. Rev. B 96, 245105 (2017), arXiv:1706.01436 [cond-mat.str-el].

[22] Y. Zou, A. Milsted, and G. Vidal, Phys. Rev. Lett. 121, 230402 (2018).

[23] R. C. Brower, G. T. Fleming, and H. Neuberger, Physics Letters B 721, 299 (2013),

https://doi.org/https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/https://doi.org/10.1016/0550-3213(84)90052-X
https://doi.org/10.1088/1126-6708/2008/12/031
https://doi.org/10.1088/1126-6708/2008/12/031
https://doi.org/10.1103/RevModPhys.91.015002
https://doi.org/10.1103/RevModPhys.96.045004
https://doi.org/10.1209/epl/i2000-00377-0
https://doi.org/10.1103/PhysRevLett.88.190602
https://doi.org/https://doi.org/10.1007/JHEP07(2013)055
https://doi.org/https://doi.org/10.1007/JHEP07(2013)055
https://arxiv.org/abs/1304.4110
https://doi.org/10.1007/JHEP08(2015)022
https://doi.org/10.1007/JHEP08(2015)022
https://arxiv.org/abs/1503.02011
https://doi.org/10.1088/0305-4470/17/7/003
https://doi.org/10.1088/0305-4470/18/13/005
https://doi.org/10.1103/PhysRevLett.56.742
https://doi.org/10.1103/PhysRevB.96.245105
https://arxiv.org/abs/1706.01436
https://doi.org/10.1103/PhysRevLett.121.230402
https://doi.org/10.1016/j.physletb.2013.03.009


56

arXiv:1212.6190 [hep-lat].

[24] R. C. Brower, G. T. Fleming, A. D. Gasbarro, D. Howarth, T. G. Raben, C.-I. Tan, and E. S.

Weinberg, Phys. Rev. D 104, 094502 (2021), arXiv:2006.15636 [hep-lat].

[25] W. Zhu, C. Han, E. Huffman, J. S. Hofmann, and Y.-C. He, Phys. Rev. X 13, 021009 (2023).

[26] C. Han, L. Hu, and W. Zhu, Phys. Rev. B 110, 115113 (2024).

[27] A. Lauchli, https://scgp.stonybrook.edu/video/video.php?id=6221.

[28] Z. Zhou, L. Hu, W. Zhu, and Y.-C. He, Phys. Rev. X 14, 021044 (2024).

[29] L. Hu, Y.-C. He, and W. Zhu, Phys. Rev. Lett. 131, 031601 (2023).

[30] C. Han, L. Hu, W. Zhu, and Y.-C. He, Phys. Rev. B 108, 235123 (2023).

[31] L. Hu, Y. C. He, and W. Zhu, arXiv e-prints , arXiv:2401.17362 (2024), arXiv:2401.17362

[cond-mat.str-el].

[32] L. Hu, Y.-C. He, and W. Zhu, Nat. Commun. 15, 9013 (2024).

[33] Z. Zhou, D. Gaiotto, Y.-C. He, and Y. Zou, arXiv e-prints , arXiv:2401.00039 (2023),

arXiv:2401.00039 [hep-th].

[34] Z. Zhou and Y. Zou, SciPost Physics 18, 31 (2025).

[35] M. Dedushenko, Ising bcft from fuzzy hemisphere (2024), arXiv:2407.15948 [hep-th].

[36] Z. Zhou and Y.-C. He, , arXiv.2410.00087 (2024), arXiv:2410.00087 [hep-th].

[37] F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).

[38] J. Madore, Classical and Quantum Gravity 9, 69 (1992).

[39] T. T. Wu and C. N. Yang, Nuclear Physics B 107, 365 (1976).

[40] The spin degree of freedom should be thought as a pseudospin as it does not couple to the

Zeeman field of the magnetic monopole.

[41] S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi, Phys. Rev. B 47, 16419 (1993).

[42] S. M. Girvin, Physics Today 53, 39 (2000).

[43] M. R. Douglas and N. A. Nekrasov, Reviews of Modern Physics 73, 977 (2001), arXiv:hep-

th/0106048 [hep-th].

[44] M. Hasenbusch, Phys. Rev. B 82, 174433 (2010).

[45] D. Simmons-Duffin, J. High Energ. Phys. 2017, 86.

[46] D. Berkowitz and G. Fleming, arXiv e-prints , arXiv:2110.12109 (2021), arXiv:2110.12109

[hep-lat].

[47] The conformal multiplet of a conserved operator is called a short multiplet.

https://arxiv.org/abs/1212.6190
https://doi.org/10.1103/PhysRevD.104.094502
https://arxiv.org/abs/2006.15636
https://doi.org/10.1103/PhysRevX.13.021009
https://doi.org/10.1103/PhysRevLett.131.031601
https://doi.org/10.1103/PhysRevB.108.235123
https://doi.org/10.48550/arXiv.2401.17362
https://arxiv.org/abs/2401.17362
https://arxiv.org/abs/2401.17362
https://doi.org/10.48550/arXiv.2401.00039
https://arxiv.org/abs/2401.00039
https://doi.org/10.21468/scipostphys.18.1.031
https://arxiv.org/abs/2407.15948
https://arxiv.org/abs/2407.15948
https://arxiv.org/abs/2410.00087
https://arxiv.org/abs/2410.00087
https://doi.org/10.1103/PhysRevLett.51.605
https://doi.org/10.1103/PhysRevB.47.16419
https://doi.org/https://doi.org/10.1063/1.1306366
https://doi.org/10.1103/RevModPhys.73.977
https://arxiv.org/abs/hep-th/0106048
https://arxiv.org/abs/hep-th/0106048
https://doi.org/10.1103/PhysRevB.82.174433
https://doi.org/10.1007/JHEP03(2017)086
https://arxiv.org/abs/2110.12109
https://arxiv.org/abs/2110.12109


57

[48] We have targeted the lowest 100 eigenstates using ED without explicitly imposing the value

of ℓ, and we only looked at states with ℓ ≤ 4 which roughly contains 70 states.

[49] To recall, the UV particle-hole symmetry becomes the spacetime parity symmetry of the IR

CFT.

[50] J. Polchinski, Nuclear Physics B 303, 226 (1988).

[51] Strictly speaking, virial current refers to an operator with scaling dimension ∆ = 2. If such

an operator exists, one may have a theory that is scale-invariant but not conformal-invariant.

[52] S. Meneses, J. Penedones, S. Rychkov, J. M. Viana Parente Lopes, and P. Yvernay, Journal

of High Energy Physics 2019, 115 (2019), arXiv:1802.02319 [hep-th].

[53] A. Dymarsky, F. Kos, P. Kravchuk, D. Poland, and D. Simmons-Duffin, Journal of High

Energy Physics 2018, 164 (2018), arXiv:1708.05718 [hep-th].

[54] A. M. Ferrenberg, J. Xu, and D. P. Landau, Phys. Rev. E 97, 043301 (2018).

[55] F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).

[56] B. Nienhuis, E. K. Riedel, and M. Schick, Phys. Rev. B 23, 6055 (1981).

[57] C. A. Sánchez-Villalobos, B. Delamotte, and N. Wschebor, Phys. Rev. E 108, 064120 (2023).

[58] K. E. Newman, E. K. Riedel, and S. Muto, Phys. Rev. B 29, 302 (1984).

[59] G. Barkema and J. de Boer, Phys. Rev. A 44, 8000 (1991).

[60] J. Lee and J. M. Kosterlitz, Phys. Rev. B 43, 1268 (1991).

[61] F. Gliozzi, Phys. Rev. E 66, 016115 (2002).

[62] S. J. K. Jensen and O. G. Mouritsen, Phys. Rev. Lett. 43, 1736 (1979).
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