Gravitational waves from phase transitions during inflation

安海鹏(清华大学)

第十一届威海新物理研讨会

In collaboration with Kun-Feng Lyu, Lian-Tao Wang and Siyi Zhou 2009.12381, 2201.05171

Very brief introduction of inflation

- 1. Solves the causality problem
- 2. Solves the flatness problem
- 3. Solves the magnetic monopole problem
- 4. Generates the seed of large scale structure

Very brief introduction of inflation

To solve the problems, 40 to 60 e-folds is required,
 BUT we can only observe ten!

- We usually assume a potential.
- Use it to calculate n_s , r ...

- We usually assume a potential.
- Use it to calculate n_s , r ...

- We usually assume a potential.
- Use it to calculate n_s , r ...

- We usually assume a potential.
- Use it to calculate n_s , r ...

- The inflaton must couple to some spectator field.
- The masses or couplings in the spectator sector can be changed drastically due to the evolution of the inflaton field.

A spectator sector is necessary

• ϕ : inflaton field

 σ : spectator field

Example 1:
$$V_1(\phi,\sigma) = -\frac{1}{2}(\mu^2 - c^2\phi^2)\sigma^2 + \frac{\lambda}{4}\sigma^4 + \frac{1}{8\Lambda^2}\sigma^6$$

Example 2:
$$\mathcal{L}_{\sigma}=-(1-\frac{c^2\phi^2}{\Lambda^2})\frac{1}{4g^2}G^a_{\mu\nu}G^{a\mu\nu}$$

Phase transitions in the spectator sector

We focus on first-order phase transitions in this talk.

Outline

- Conditions for first-order phase transitions to happen during inflation.
- Properties of GWs from first order phase transition during inflation.
- Possible detections.
- Summary

First-order phase transition during inflation

$$\frac{\Gamma}{V} = I_0 m_{\sigma}^4 e^{-S_4}$$

$$\mathcal{O}(1) = \int_{-\infty}^{t} dt' H^{-3} I_0 m_{\sigma}^4 e^{-S_4(t')}$$

$$S_4 \sim \log \left(\frac{\phi H}{\dot{\phi}} \frac{m_{\sigma}^4}{H^4} \right) \sim \log \left(\frac{\phi}{\epsilon^{1/2} M_{\rm pl}} \frac{m_{\sigma}^4}{H^4} \right)$$

$$S_4 \gg 1$$

Total energy density dominated by the inflaton sector:

$$m_{\sigma}^4 \ll 3M_{\rm pl}^2 H^2$$

$$H^4 \ll m_\sigma^4 \ll 3M_{\rm pl}^2 H^2$$

First-order phase transition during inflation

$$\frac{\Gamma}{V} = I_0 m_\sigma^4 e^{-S_4}$$

 S_4 becomes smaller during

• $\beta = -\frac{dS_4}{dt}$, determines the rate of the phase transition.

First-order phase transition during inflation

• Bubble radius also determined by β .

$$R_{\rm bubble} \approx \beta^{-1} \ll H^{-1}$$

First order phase transition during inflation

•
$$\beta = \left| \frac{dS_4}{dt} \right| = \frac{dS_4}{d\log \mu_{\text{eff}}^2} \times \left| \frac{2\dot{\phi}}{\phi \left(1 - \frac{\mu^2}{c^2 \phi^2} \right)} \right|$$
 $\mu_{\text{eff}}^2 = -(\mu^2 - c^2 \phi^2)$

$$\frac{\beta}{H} = \left| \frac{dS_4}{d \log \mu_{\text{eff}}^2} \right| (2\epsilon)^{1/2} \times \frac{M_{\text{pl}}}{\left| \phi \left(1 - \frac{\mu^2}{c^2 \phi^2} \right) \right|}$$

$$V_1(\phi, \sigma) = -\frac{1}{2}(\mu^2 - c^2\phi^2)\sigma^2 + \frac{\lambda}{4}\sigma^4 + \frac{1}{8\Lambda^2}\sigma^6$$

First order phase transition during inflation

•
$$\beta = \left| \frac{dS_4}{dt} \right| = \frac{dS_4}{d\log \mu_{\text{eff}}^2} \times \left| \frac{2\dot{\phi}}{\phi \left(1 - \frac{\mu^2}{c^2 \phi^2} \right)} \right|$$
 $\mu_{\text{eff}}^2 = -(\mu^2 - c^2 \phi^2)$

$$\frac{\beta}{H} = \left| \frac{dS_4}{d \log \mu_{\text{eff}}^2} \right| (2\epsilon)^{1/2} \times \frac{M_{\text{pl}}}{\left| \phi \left(1 - \frac{\mu^2}{c^2 \phi^2} \right) \right|} \sim \mu_{\text{eff}}^2 / \Lambda^2$$

$$\int_{\phi_{\text{end}}}^{\phi_{\text{PT}}} \frac{d\phi}{\sqrt{2\epsilon} M_{\text{pl}}} = N_{\text{e}}$$

$$\frac{\beta}{H} \sim \left| \frac{dS_4}{d \log \mu_{\text{eff}}^2} \right| \times \frac{\Lambda^2}{\mu_{\text{eff}}^2} \times \frac{1}{N_e}$$

 N_e : e-fold before the end of the inflation.

First order phase transition during inflation

•
$$\frac{\beta}{H} \sim \left| \frac{dS_4}{d \log \mu_{\text{eff}}^2} \right| \times \frac{\Lambda^2}{\mu_{\text{eff}}^2} \times \frac{1}{N_e}$$

 N_e : e-folds before the end of the inflation

$$\frac{\beta}{H} \sim \mathcal{O}(10) - \mathcal{O}(100)$$

Outline

- Conditions for first-order phase transitions to complete during inflation.
- Properties of GWs from first order phase transition during inflation.
- Possible detections.
- Summary

Generic features of GW spectrum

 k_p : Physical momentum when it is produced.

 Δ_p : Duration of the phase transition.

How to calculate GW?

- In E&M: $\partial_{\mu}F^{\mu\nu}=J^{\nu}$
 - We solve the Green's function first.
 - We convolute the Green's function with the source.
- In GR: $G_{\mu\nu}=8\pi G T_{\mu\nu}$
 - We solve the Green's function first. (instantaneous and local source)
 - We convolute the Green's function with the source.

• E.O.M. of GW
$$h_{ij}''+\frac{2a'}{a}h_{ij}'-\nabla^2h_{ij}=16\pi^2G_Na^2\sigma_{ij}$$

$$ds^2=a^2(\tau)\left[-d\tau^2+(\delta_{ij}+h_{ij})dx^idx^j\right]$$

 For an instantaneous and local source, the source can be seen as delta funtion in both space and time.

$$\sigma_{ij} \sim \delta(\mathbf{x})\delta(\tau - \tau')$$

• E.O.M. in Fourier space

$$h''(\tau, \mathbf{k}) + \frac{2a'}{a}h'(\tau, \mathbf{k}) + k^2h(\tau, \mathbf{k}) = 16\pi G_N a^{-1} T \delta(\tau - \tau')$$

$$h \sim \frac{\sin k(\tau - \tau')}{a(\tau)}$$

- The conformal time between the source and the horizon is fixed.
- The phase of h at the source is fixed.
- The value of h^f at the horizon oscillates with k.
- h^f is the initial condition for later evolution.

Quasi-de Sitter inflation as an example

•
$$a = -\frac{1}{H\tau}$$

$$h_{ij}(\tau, \mathbf{k}) = -\frac{16\pi G_N H T_{ij} \tau}{k} \left[\left(\frac{1}{k\tau} - \frac{1}{k\tau'} \right) \cos k(\tau - \tau') + \left(1 + \frac{1}{k^2 \tau \tau'} \right) \sin k(\tau - \tau') \right]$$

De Sitter inflation as an example

•
$$a = -\frac{1}{H\tau}$$

$$\bullet \qquad h_{ij}(\tau, \mathbf{k}) = -\frac{16\pi G_N H T_{ij} \tau}{k} \left[\left(\frac{1}{k\tau} - \frac{1}{k\tau'} \right) \cos k(\tau - \tau') + \left(1 + \frac{1}{k^2 \tau \tau'} \right) \sin k(\tau - \tau') \right]$$

De Sitter inflation as an example

•
$$a = -\frac{1}{H\tau}$$

$$\bullet \qquad h_{ij}(\tau, \mathbf{k}) = -\frac{16\pi G_N H T_{ij} \tau}{k} \left[\left(\frac{1}{k\tau} - \frac{1}{k\tau'} \right) \cos k(\tau - \tau') + \left(1 + \frac{1}{k^2 \tau \tau'} \right) \sin k(\tau - \tau') \right]$$

After inflation

- $h^f(k)$ is the initial amplitude for the GW oscillation after inflation.
- All the modes start to oscillate with the same phase.
- Example, in RD, the oscillation is $\sin k\tau / k\tau$

After inflation

- $h^f(k)$ is the initial amplitude for the GW oscillation after inflation.
- All the modes start to oscillate with the same phase.
- Example, in RD, the oscillation is $\sin k\tau / k\tau$

- What is the spatial configuration of h from an instantaneous and local source?
- In Minkovski space

- What is the spatial configuration of h from an instantaneous and local source?
- In de Sitter space

$$h_{ij}(\tau, \mathbf{k}) = -16\pi G_N H T_{ij} \tau \Theta(\tau - \tau') \left[\frac{\sin k(\tau - \tau')}{k} \right]$$

$$+ \left(\frac{1}{k^2\tau} - \frac{1}{k^2\tau'}\right)\cos k(\tau - \tau') + \frac{1}{k^3\tau\tau'}\sin k(\tau - \tau')\right]$$

- What is the spatial configuration of h from an instantaneous and local source?
- In de Sitter space

$$\frac{\tau}{4\pi x}\delta(\tau - \tau' - |\mathbf{x}|)$$

$$h_{ij}(\tau, \mathbf{k}) = -16\pi G_N H T_{ij} \tau \Theta(\tau - \tau') \left[\frac{\sin k(\tau - \tau')}{k} \right]$$

$$+\left(\frac{1}{k^2\tau} - \frac{1}{k^2\tau'}\right)\cos k(\tau - \tau') + \frac{1}{k^3\tau\tau'}\sin k(\tau - \tau')\right]$$

$$\frac{1}{4\pi}\Theta(\tau - \tau' - |\mathbf{x}|)$$

- What is the spatial configuration of h from an instantaneous and local source?
- In de Sitter space

$$h(\tau, \mathbf{x}) \sim \frac{\tau}{4\pi x} \delta(\tau - \tau' - x) + \frac{1}{4\pi} \Theta(\tau - \tau' - x)$$

Similar to Minkovski

Intrinsic in de Sitter

Decreases with both x and τ

constant

Vanishes out of horizon

de Sitter inflation as an example

• At
$$\tau \to 0$$
 $h(\tau, \mathbf{x}) \sim \frac{1}{4\pi}\Theta(|\tau'| - x)$

- A ball of GW, with radius $|\tau'|$
- h uniformally distributed inside the GW balls.
- All the balls have the same radius.

Spectrum of GW from a real source

- $|k\tau'| > \eta_A$ (the mode produced inside horizon)
 - At the end of inflation

$$\tilde{h}_{ij}^f(\mathbf{k}) = \frac{16\pi G_N \tilde{\mathcal{G}}_0^f(k)}{k} \int d\tau' \tilde{T}_{ij}(\tau', \mathbf{k_p}) \cos[k(\tau - \tau')]$$

After inflation (damped oscillation)

$$\tilde{h}_{ij}(\tau, \mathbf{k}) = \tilde{h}_{ij}^f(\mathbf{k})\mathcal{E}(k\tau)$$
$$\mathcal{E}(\eta) = \tilde{\mathcal{E}}_0^i(k)a^{-1}\sin(\eta + \phi)$$

•
$$\rho_{\rm GW} = \frac{1}{16\pi G_N a^2} \langle h_{ij}^{\prime 2}(\tau, \mathbf{x}) \rangle$$

Spectrum of GW from a real source

- Inflation models
 - de Sitter inflation

$$ilde{\mathcal{G}}_0^f \sim rac{1}{k}$$
• t^p inflation

$$\tilde{\mathcal{G}}_0^f \sim k^{\frac{p}{1-p}}$$

- **Evolution after inflation**
 - In RD, $ilde{\mathcal{E}}_0^i \sim k^{-1}$
 - In MD, $~~ ilde{\mathcal{E}}^i_0 \sim k^{-2}$
 - In $t^{ ilde{p}}$, $ilde{\mathcal{E}}^i_0 \sim k^{ ilde{p}/(ilde{p}-1)}$

Comparing scenarios

Different inflation scenarios

Different slopes in the UV and oscillatory parts

Temporary MD betwteen inflation and RD

 τ_2 : MD-RD transition

Outline

- Conditions for first-order phase transitions to complete during inflation.
- Properties of GWs from first order phase transition during inflation.
- Possible detections.
- Summary

Redshifts of the GW signal

Redshifts of the GW signal

GWs produced in flat space-time

$$\frac{d\rho_{\text{GW}}^{flat}}{\Delta\rho_{\text{vac}}d\log k_p} \approx \left(\frac{H_{\text{inf}}}{\beta}\right)^2 \times \frac{\beta \ k_p^{2.8}}{\beta^{3.8} + 2.8k_p^{3.8}}$$

Huber and Konstandin, 0806.1828

$$\Omega_{\rm GW}^{(0)} \approx \Omega_R \left(\frac{H_{\rm inf}}{\beta}\right)^2 \frac{\beta k_p^{2.8}}{\beta^{3.8} + 2.8 k_p^{3.8}}$$

$$\Omega_{\rm GW} \approx \Omega_R \left(\frac{H_{\rm inf}}{\beta}\right)^6 \left(\frac{\Delta \rho_{\rm vac}}{\rho_{\rm inf}}\right)^2$$

Assume quasi-dS inflation, RD re-entering and fast reheating

$$\Omega_{\mathrm{GW}}(k_{\mathrm{today}}) = \Omega_R \frac{H_{\mathrm{inf}}^4}{k_p^4} \left[\frac{1}{2} + \mathcal{S}(k_p \beta^{-1}) \cos \left(\frac{2k_p}{H_{\mathrm{inf}}} \right) \right] \left(\frac{\Delta \rho_{\mathrm{vac}}}{\rho_{\mathrm{inf}}} \right)^2 \frac{d\rho_{\mathrm{GW}}^{\mathrm{flat}}}{\Delta \rho_{\mathrm{vac}} d \log k_p}$$
 Dilution factor Smearing Suppressed by the energy faction

Redshift

$$\frac{f_{\rm today}}{f_{\star}} = \frac{a(\tau_{\star})}{a_1} \left(\frac{g_{*S}^{(0)}}{g_{*S}^{(R)}}\right)^{1/3} \frac{T_{\rm CMB}}{\left[\left(\frac{30}{g_{*}^{(R)}\pi^2}\right)\left(\frac{3H_{\rm inf}^2}{8\pi G_N}\right)\right]^{1/4}}$$

$$e^{-N_e} \qquad N_e \text{: e-folds before the end of inflation}$$

CMB B modes

Simulation with the CLASS package.

Signal strength is also sensitive to intermediate stages

Summary

- First-order phase transitions can happen in a spectator sector during inflation.
- We show that there is an oscillatory feature in the spectrum.
- The slopes of the spectrum can tell us information about the inflation model and evolution of the universe when the modes re-enter the horizon.
- If we are lucky enough, such a signal can be detected by future GW detectors.

Backups

Summary

- We study the features of classical GWs produced from instantaneous sources during inflation.
- We show that there is an oscillatory feature in the spectrum.
- The slopes of the spectrum can tell us information about the inflation model and evolution of the universe when the modes re-enter the horizon.
- First order phase transition during inflation can be realized with simple models.
- If we are lucky enough, such a signal can be detected by future GW detectors.

Outline

- Motivations
- GWs from an instantaneous source during inflation
- GWs from a source with finite duration during inflation
- GWs from first order phase transition during inflation
- Summary

Instantaneous source

•
$$k_p \ll \Delta_p^{-1}$$
 $\cos k_p t_p \to 1$, $\sin k_p t_p \to 0$

$$\rho_{\mathrm{GW}}(\tau) = \int \frac{d^3k}{(2\pi)^3} \frac{8\pi G_N \left[\tilde{\mathcal{E}}_0^i(k)\tilde{\mathcal{G}}_0^f(k)\right]^2}{Va^4(\tau)a^2(\tau_\star)} \cos^2k(\tau_\star - \tau_0)\tilde{T}_{ij}(0,\mathbf{k}_p)\tilde{T}_{ij}^*(0,\mathbf{k}_p)$$

$$\tilde{T}_{ij}(0,\mathbf{k}_p) = \int dt_p \tilde{T}_{ij}(\tau,\mathbf{k}_p)$$

$$\langle \tilde{T}_{ij}\tilde{T}_{ij}^* \rangle_k \approx \delta^{-1} \text{ independent of } k \qquad \text{Cai. Pi and Sasaki. 1909. 13728}$$

 $\langle \tilde{T}_{ij} \tilde{T}_{ij}^* \rangle_{k_p \ll \Delta_p^{-1}}$ independent of k. Cai, Pi and Sasaki, 1909.13728

• $k\Delta \ll 1 \ll |k\tau_{\star}|$, an oscillating feature in the GW spectrum

$$\frac{d\rho_{\text{GW}}}{d\log k} = \frac{4G_N |\tilde{T}_{ij}(0,0)|^2}{\pi^2 V a^4(\tau) a^2(\tau_{\star})} \left\{ \left[\tilde{\mathcal{E}}_0^i(k) \tilde{\mathcal{G}}_0^f(k) \right]^2 k^3 \cos^2 k(\tau_{\star} - \tau_0) \right\}$$

Finite size effect

$$\frac{d\rho_{\text{GW}}}{d\log k} = \frac{4G_N |\tilde{T}_{ij}(0,0)|^2}{\pi^2 V a^4(\tau) a^2(\tau_\star)} \left\{ \left[\tilde{\mathcal{E}}_0^i(k) \tilde{\mathcal{G}}_0^f(k) \right]^2 k^3 \cos^2 k(\tau_\star - \tau_0) \right\}$$

$$\frac{1}{2} + \frac{1}{2} \cos 2k(\tau_\star - \tau_0)$$
Oscillating

$$\frac{d\rho_{\text{GW}}^{\text{osc}}}{d\log k} = \frac{2G_N |\tilde{T}_{ij}(0,0)|^2}{\pi^2 V a^4(\tau) a^2(\tau_{\star})} \left\{ \left[\tilde{\mathcal{E}}_0^i(k) \tilde{\mathcal{G}}_0^f(k) \right]^2 k^3 \left[1 + \mathcal{S}(k_p \Delta_p) \cos 2k(\tau_{\star} - \tau_0) \right] \right\}$$

- The UV part of the spectrum
 - $k_p \Delta_p \gg 1$, the oscillation pattern is completely smeared out.

$$\frac{d\rho_{\text{GW}}^{\text{UV}}}{d\log k} = \frac{2G_N |\tilde{T}_{ij}(k_p, \mathbf{k}_p)|^2}{\pi^2 V a^4(\tau) a^2(\tau_{\star})} \left\{ \left[\tilde{\mathcal{E}}_0^i(k) \tilde{\mathcal{G}}_0^f(k) \right]^2 k^3 \right\}$$

- The IR part of the spectrum $|k\tau_{\star}|\ll 1$
 - $ilde{\mathcal{G}}^f$ is flat, no oscillation pattern in the spectrum either,

$$\frac{d\rho_{\text{GW}}^{\text{IR}}}{d\log k} = \frac{4G_N |\tilde{T}_{ij}(0,0)|^2}{\pi^2 V a^4(\tau)} \left[\int_{\tau_{\star}}^0 a^{-2}(\tau_1) d\tau_1 \right]^2 \left\{ \left[\tilde{\mathcal{E}}_0^i(k) \right]^2 k^5 \right\}$$

Shape of the spectrum

Examples

Inflation models

• Quasi-de Sitter inflation
$$ilde{\mathcal{G}}_0^f = \left(-\frac{H}{k}\right), \quad \eta_0' = 0$$

•
$$t^p$$
 inflation $ilde{\mathcal{G}}_0^f = a_0^{-1} (-k \tau_0)^{\frac{p}{1-p}} rac{2^{\frac{p}{-1+p}}}{\sqrt{\pi}} \Gamma igg(rac{3}{2} + rac{1}{-1+p} igg) \;, \quad \eta_0' = rac{\pi}{2-2p}$

In t^p inflation, we have the slow-roll parameter $\epsilon = -\frac{\dot{H}}{H^2} = \frac{1}{p}$

$$\tilde{\mathcal{G}}_0^f \sim k^{-\frac{1}{1-\epsilon}}$$

Evolution after inflation

• In RD,
$$\tilde{\mathcal{E}}_0^i \sim k^{-1}$$

• In MD,
$$ilde{\mathcal{E}}_0^i \sim k^{-2}$$

• In
$$t^{ ilde{p}}$$
 , $ilde{\mathcal{E}}_0^i \sim k^{ ilde{p}/(ilde{p}-1)}$

	w	$\rho(a)$	\tilde{p}
MD	0	a^{-3}	2/3
RD	1/3	a^{-4}	1/2
Λ	-1	a^0	∞
Cosmic string	-1/3	a^{-2}	1
Domain wall	-2/3	a^{-1}	2
kination	1	a^{-6}	1/3

Comparing scenarios

Different inflation scenarios

Different slopes in the UV and oscillatory parts

Temporary MD betwteen inflation and RD

 τ_2 : MD-RD transition

Outline

- Motivations
- GWs from an instantaneous source during inflation
- GWs from a source with finite duration during inflation
- GWs from first order phase transition during inflation
- Summary

For phase transition to finish

$$R = \Delta_p \ll H_{\rm inf}^{-1}$$

$$\beta = \frac{dS_4}{dt} \sim \Delta_p^{-1} \gg H_{\rm inf}$$

$$\frac{d\rho_{\text{GW}}^{flat}}{\Delta\rho_{\text{vac}}d\log k_p} \approx \left(\frac{H_{\text{inf}}}{\beta}\right)^2 \times \frac{\beta k_p^{2.8}}{\beta^{3.8} + 2.8k_p^{3.8}}$$

Huber and Konstandin, 0806.1828

Models of first order phase transition during inflation

- Models in the literature:
 - Open inflation

K. Sugimura, D. Yamauchi, M. Sasaki, 1110.4773

- GUT phase transition at the beginning of inflation H. Jiang, T. Liu, S. Sun, Y. Wang, 1512.07538
- Obtained the correct UV behavior of the GW spectrum Y.-T. Wang, Y. Cai, Y.-S. Piao, 1801.03639

Models of first order phase transition during inflation

• Simple models: ϕ : inflaton field, σ : spectator

$$V_{1}(\phi,\sigma) = -\frac{1}{2}(\mu^{2} - c^{2}\phi^{2})\sigma^{2} + \frac{\lambda}{4}\sigma^{4} + \frac{1}{8\Lambda^{2}}\sigma^{6}$$

$$V_{2}(\phi,\sigma) = -\frac{1}{2}(\mu^{2} - c^{2}\phi^{2})\sigma^{2} + \frac{\lambda}{4}\sigma^{4} + \frac{\kappa}{4}\sigma^{4}\log\frac{\sigma^{2}}{\Lambda^{2}}$$

$$V_{3}(\phi,\sigma) = -\frac{1}{2}(\mu^{2} - c^{2}\phi^{2})\sigma^{2} + \frac{\lambda}{3}\mathcal{E}\sigma^{3} + \frac{\kappa}{4}\sigma^{4}.$$

$$\mu_{\text{eff}}^2 = -(\mu^2 - c^2 \phi^2)$$

- Bubble nucleation rate: $\frac{\Gamma}{V} = I_0 m_\sigma^4 e^{-S_4}$
- Phase transition starts: $\mathcal{O}(1) = \int_{-\infty}^t dt' H^{-3} I_0 m_\sigma^4 e^{-S_4(t')}$
- The bounce: $S_4 \sim \log\left(\frac{\phi H}{\dot{\phi}} \frac{m_\sigma^4}{H^4}\right) \sim \log\left(\frac{\phi}{\epsilon^{1/2} M_{\rm pl}} \frac{m_\sigma^4}{H^4}\right)$
- First order phase transiton: $S_4 \gg 1$

$$H^4 \ll m_\sigma^4 \ll 3M_{\rm pl}^2 H^2$$

•
$$\beta = \left| \frac{dS_4}{dt} \right| = \frac{dS_4}{d \log \mu_{\text{eff}}^2} \times \left| \frac{2\dot{\phi}}{\phi \left(1 - \frac{\mu^2}{c^2 \phi^2} \right)} \right|$$
 $\mu_{\text{eff}}^2 = -(\mu^2 - c^2 \phi^2)$

$$\frac{\beta}{H} = \left| \frac{dS_4}{d \log \mu_{\text{eff}}^2} \right| (2\epsilon)^{1/2} \times \frac{M_{\text{pl}}}{\left| \phi \left(1 - \frac{\mu^2}{c^2 \phi^2} \right) \right|}$$

$$V_1(\phi, \sigma) = -\frac{1}{2}(\mu^2 - c^2\phi^2)\sigma^2 + \frac{\lambda}{4}\sigma^4 + \frac{1}{8\Lambda^2}\sigma^6$$

$$\beta = \left| \frac{dS_4}{dt} \right| = \frac{dS_4}{d\log \mu_{\text{eff}}^2} \times \left| \frac{2\dot{\phi}}{\phi \left(1 - \frac{\mu^2}{c^2 \phi^2} \right)} \right|^{\frac{\lambda = -1}{4}}$$

$$\Rightarrow \frac{\beta}{H} = \left| \frac{dS_4}{d\log \mu_{\text{eff}}^2} \right| (2\epsilon)^{1/2} \times \frac{M_{\text{pl}}}{\phi \left(1 - \frac{\mu^2}{c^2 \phi^2} \right)}$$

$$\int_{\phi_{
m end}}^{\phi_{
m PT}} rac{d\phi}{\sqrt{2\epsilon}M_{
m pl}} = N_{
m e}$$

$$\frac{\beta}{H} \sim \left| \frac{dS_4}{d \log \mu_{\text{eff}}^2} \right| \times \frac{\Lambda^2}{\mu_{\text{eff}}^2} \times \frac{1}{N_e}$$

•
$$\frac{\beta}{H} \sim \left| \frac{dS_4}{d \log \mu_{\text{eff}}^2} \right| \times \frac{\Lambda^2}{\mu_{\text{eff}}^2} \times \frac{1}{N_e}$$

0.25

0.30

$$V_1(\phi, \sigma) = -\frac{1}{2}(\mu^2 - c^2\phi^2)\sigma^2 + \frac{\lambda}{4}\sigma^4 + \frac{1}{8\Lambda^2}\sigma^6$$

0.05

0.20

$$\frac{\beta}{H} \sim \mathcal{O}(10) - \mathcal{O}(100)$$

Assume quasi-dS inflation, RD re-entering and fast reheating

$$\Omega_{\mathrm{GW}}(k_{\mathrm{today}}) = \Omega_R \frac{H_{\mathrm{inf}}^4}{k_p^4} \left[\frac{1}{2} + \mathcal{S}(k_p \beta^{-1}) \cos \left(\frac{2k_p}{H_{\mathrm{inf}}} \right) \right] \frac{\Delta \rho_{\mathrm{vac}}}{\rho_{\mathrm{inf}}} \frac{d\rho_{\mathrm{GW}}^{\mathrm{flat}}}{\Delta \rho_{\mathrm{vac}} d \log k_p}$$
 Dilution factor Smearing Suppressed by the energy faction

Redshift

$$\frac{f_{\rm today}}{f_{\star}} = \frac{a(\tau_{\star})}{a_1} \left(\frac{g_{*S}^{(0)}}{g_{*S}^{(R)}}\right)^{1/3} \frac{T_{\rm CMB}}{\left[\left(\frac{30}{g_{*}^{(R)}\pi^2}\right)\left(\frac{3H_{\rm inf}^2}{8\pi G_N}\right)\right]^{1/4}}$$

$$e^{-N_e} \qquad N_e: \text{e-folds before the end of inflation}$$

First order phase transition during inflation

First order phase transition during inflation

CMB B modes

Summary

- We study the features of classical GWs produced from instantaneous sources during inflation.
- We show that there is an oscillatory feature in the spectrum.
- The slopes of the spectrum can tell us information about the inflation model and evolution of the universe when the modes re-enter the horizon.
- First order phase transition during inflation can be realized with simple models.
- If we are lucky enough, such a signal can be detected by future GW detectors.

Deep inside the horizon

Out of the horizon

• What is the spatial configuration of h_{ij} ?

- What is the spatial configuration of h_{ij} ?
- In de Sitter space

$$h_{ij}(\tau, \mathbf{k}) = -16\pi G_N H T_{ij} \tau \Theta(\tau - \tau') \left[\frac{\sin k(\tau - \tau')}{k} \right]$$

$$+\left(\frac{1}{k^2\tau} - \frac{1}{k^2\tau'}\right)\cos k(\tau - \tau') + \frac{1}{k^3\tau\tau'}\sin k(\tau - \tau')\right]$$

- What is the spatial configuration of h_{ij} ?
- In de Sitter space

$$\frac{\tau}{4\pi x}\delta(\tau - \tau' - |\mathbf{x}|)$$

$$h_{ij}(\tau, \mathbf{k}) = -16\pi G_N H T_{ij} \tau \Theta(\tau - \tau') \left[\frac{\sin k(\tau - \tau')}{k} \right]$$

$$+\left(\frac{1}{k^2\tau} - \frac{1}{k^2\tau'}\right)\cos k(\tau - \tau') + \frac{1}{k^3\tau\tau'}\sin k(\tau - \tau')\right]$$

$$\frac{1}{4\pi}\Theta(\tau - \tau' - |\mathbf{x}|)$$

- What is the spatial configuration of h_{ij} ?
- In de Sitter space

$$h(\tau, \mathbf{x}) \sim \frac{\tau}{4\pi x} \delta(\tau - \tau' - x) + \frac{1}{4\pi} \Theta(\tau - \tau' - x)$$

Similar to Minkovski

Intrinsic in de Sitter

Decreases with both x and τ

constant

Vanishes out of horizon

• At
$$\tau \to 0$$
 $h(\tau, \mathbf{x}) \sim \frac{1}{4\pi}\Theta(|\tau'| - x)$

- A ball of GW, with radius $|\tau'|$
- h uniformally distributed inside the GW balls.
- All the balls have the same radius.

Green's function of GW in inflation

Generic features

• For
$$|k\tau'| > \eta_A$$
, $h^f = k^{-1} \cos k(\tau' - \tau_0') \tilde{\mathcal{G}}_0^f(k)$

• For
$$|k\tau'| < \eta_B$$
, $h^f = \left[a(\tau') \int_{\tau'}^0 a^{-2}(\tau_1) d\tau_1 \right]$

h^f in a generic inflation model

Generic features

source Model dependent

• For
$$|k\tau'| > \eta_A$$
, $h^f = k^{-1} \cos k(\tau' - \tau_0') \tilde{\mathcal{G}}_0^f(k)$

• For
$$|k\tau'| < \eta_B$$
, $h^f = \left[a(\tau') \int_{\tau'}^0 a^{-2}(\tau_1) d\tau_1 \right]$

Independent of k

$$\eta_A$$
 η_B

Outline

- Motivations
- Phase transi
- GWs from an instantaneous source during inflation
- GWs from a source with finite duration during inflation
- GWs from first order phase transition during inflation
- Summary

Properties of universe undergoing an accelerated expansion

• The metric
$$ds^2 = -dt^2 + a^2(t)(\delta_{ij} + h_{ij})dx^i dx^j$$

Conformal time

GW in transverse traceless part of *h*

$$ds^{2} = a^{2}(\tau) \left[-d\tau^{2} + (\delta_{ij} + h_{ij}) dx^{i} dx^{j} \right]$$

- Inflation
 - $\ddot{a} > 0$, $d\tau = a^{-1}(t)dt$, τ has a finite upper bound. We shift τ so that $\tau \leq 0$.
 - $|\tau|$ is the size of the comoving horizon.

• E.O.M. of GW
$$h_{ij}^{\prime\prime}+rac{2a^{\prime}}{a}h_{ij}^{\prime}-
abla^{2}h_{ij}=16\pi^{2}G_{N}a^{2}\sigma_{ij}$$

 For an instantaneous and local source, the source can be seen as delta funtion in both space and time.

$$\sigma_{ij} \sim \delta(\mathbf{x})\delta(\tau - \tau')$$

• E.O.M. in Fourier space

$$h''(\tau, \mathbf{k}) + \frac{2a'}{a}h'(\tau, \mathbf{k}) + k^2h(\tau, \mathbf{k}) = 16\pi G_N a^{-1} T \delta(\tau - \tau')$$

 $h \sim \frac{\sin k(\tau - \tau')}{a(\tau)}$

•
$$h''(\tau, \mathbf{k}) + \frac{2a'}{a}h'(\tau, \mathbf{k}) + k^2h(\tau, \mathbf{k}) = 16\pi G_N a^{-1}T\delta(\tau - \tau')$$

 $h \sim \frac{\sin k(\tau - \tau')}{a(\tau)}$

- The conformal time between the source and the horizon is fixed.
- The phase of h at the source is fixed.
- The value of h at the horizon oscillates with k.
- The amplitude h^f oscillates with k.
- h^f is the initial condition for later evolution.

•
$$a = -\frac{1}{H\tau}$$

$$h_{ij}(\tau, \mathbf{k}) = -\frac{16\pi G_N H T_{ij} \tau}{k} \left[\left(\frac{1}{k\tau} - \frac{1}{k\tau'} \right) \cos k(\tau - \tau') + \left(1 + \frac{1}{k^2 \tau \tau'} \right) \sin k(\tau - \tau') \right]$$

•
$$a = -\frac{1}{H\tau}$$

$$\bullet \qquad h_{ij}(\tau, \mathbf{k}) = -\frac{16\pi G_N H T_{ij} \tau}{k} \left[\left(\frac{1}{k\tau} - \frac{1}{k\tau'} \right) \cos k(\tau - \tau') + \left(1 + \frac{1}{k^2 \tau \tau'} \right) \sin k(\tau - \tau') \right]$$

•
$$a = -\frac{1}{H\tau}$$

$$\bullet \qquad h_{ij}(\tau, \mathbf{k}) = -\frac{16\pi G_N H T_{ij} \tau}{k} \left[\left(\frac{1}{k\tau} - \frac{1}{k\tau'} \right) \cos k(\tau - \tau') + \left(1 + \frac{1}{k^2 \tau \tau'} \right) \sin k(\tau - \tau') \right]$$

After inflation

- $h^f(k)$ is the initial amplitude for the GW oscillation after inflation.
- All the modes start to oscillate with the same phase.
- Example, in RD, the oscillation is $\sin k\tau / k\tau$

After inflation

- $h^f(k)$ is the initial amplitude for the GW oscillation after inflation.
- All the modes start to oscillate with the same phase.
- Example, in RD, the oscillation is $\sin k\tau / k\tau$

