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Very brief introduction of inflation

1. Solves the causality
preglen

2. Solves the flatness a
problem

3. Solves the magnetic
monopole problem

4. Generates the seed of

Dark Energy
Accelerated Expansion

Big Bang Expansion

large scale structure




Very brief introduction of inflation
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e To solve the problems, 40 to 60 e-folds is required,
BUT we can only observe ten!




Slow roll models

V(9)
* We usually assume
a potential.
e Use it to calculate
NG, 1 ..
Measured by No measurement

CMB and LSS
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Slow roll models

|A¢| rI\J Mpl V(o)
* We usually assume
a potential.
e Use it to calculate
Ng, T ... )
Measured by No measurement
CMB and LSS

* The inflaton must couple to some spectator field.
 The masses or couplings in the spectator sector can be
changed drastically due to the evolution of the inflaton field.



A spectator sector IS Necessa 'y

* ¢: inflaton field o spectator field
Example 1:  Vi(¢,0) = —l(u2 — c2¢*)o* + é04 + 1 e
’ 2 4 8A?
Vi(¢.0)
V()

Example 2: L, =—(1—



Phase transitions in the spectator
sector

Evolution of Phase transitions in

spectator sector

inflaton

¢: inflaton field o: order parameter in the spectator sector

Vi(¢,0)
V(9) ok A=-1

We focus on first-order phase transitions in this talk.



Outline

e Conditions for first-order phase transitions to
happen during inflation.

* Properties of GWSs from first order phase transition
during inflation.

* Possible detections.
* Summary



First-order phase transition durmg
inflation

] I
 Bubble nucleation rate: v Tymie 5 .
t
e Phase transition starts: O(1) =/ dt'H3Iymie54()
. _ oH m; ¢ m,
The bounce: Si log( ;5 H ~ log A2, H

* First order phase transiton: Sy > 1 ) H* < mi

* Total energy density dominated by the inflaton sector:
ms < 3M§1H2

H* < m, < 3M3H"




First-order phase transition during
inflation

I
— = Iomie_s4

V

S, becomes smaller during

Vi(¢,0)

new vacuum fracion

ds .
« B = —d—:, determines the

rate of the phase
transition.

* Phase transition completes if § > H. SO



First-order phase transition during
inflation

* Bubble radius also determined by £.

Rbubble = 8 < H™!
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First order phase transition during
inflation

dS, dS, 2¢ ) s 9.9
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First order phase transition during
inflation

dSy dSy 2(/b 2 2 2 2
® = | — = = —
P= 1t |~ diog2, o (1- 4 e = — (" = 07)
8 dS, Lo M,
) = 5| (2€)7/% x
H dl 2
08 'ueff ¢ (1 - cébng)

N,: e-fold before the end of the inflation.



First order phase transition during

inflation
o DB
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% ~ O(10) — O(100)

N,: e-folds before the end of the inflation



Outline

* Properties of GWSs from first order phase transition
during inflation.



Generic features of GW spectrum

dp
dlogk

Oscillatory

uv

k'p%H kp%Agl

k,: Physical momentum when it is produced.
A,: Duration of the phase transition.



How to calculate GW?

e In E&M: (%F“’/ = JY
 We solve the Green’s function first.
 We convolute the Green’s function with the source.

* In GR: G, = 8rGT,,
* We solve the Green’s function first. (instantaneous and local source)
* We convolute the Green’s function with the source.



GW from instantaneous and local
sources (qualitative study)

/

2a
* EO.M.of GW Rl + Th;j — V2hi; = 1672Gna’0y;

ds® = a? (T) [—de + (523 + hz])dazzdaﬂ]

* For an instantaneous and local source, the source can be
seen as delta funtion in both space and time.

oij ~ 0(x)0(T —7")

* E.O.M. in Fourier space

2 /
B (7,K) + ' (1,k) + k*h(r, k) = 167G ya~ ' T6(T — 7')
a



GW from instantaneous and local
sources (qualitative study)

e h'(1,k)+ 2FCL/h’(T, k) + k*h(1,k) = 167G na T (7 — ')
| | ﬂ \ B~ sinlkr]
_______ ANRTTNRTATAVAVAY
u U The horizon fixes the
amplitude of h
1k
—00 T’ i > H(7) kTA ~ (




GW from instantaneous and local
sources (qualitative study)

/
¢ (rK) + R (7 k) + Kh(r,k) = 167G ya To(r — 7'
ﬂ ﬂ ﬂ h' ~ sin[k7']

sink(r —7') h ~ constant




GW from instantaneous and local
sources (qualitative study)

2a’

* 1'(r,k)+ —H(r,k) + k*h(r,k) = 167G ya ' Té(1 — 7')
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GW from instantaneous and local
sources (qualitative study)

e The conformal time between the source and the horizon is
fixed.

* The phase of h at the source is fixed.
 The value of b/ at the horizon oscillates with k.
« h' is the initial condition for

later evolution.




Quasi-de Sitter inflation as an
example

1
Q= ———

Hr




De Sitter inflation as an example

16nGNHT; ;T 1 1 1 :
hij(1,k) = — . J [(/m‘ — kT’) cosk(r —7') + (1 - kQTT/) sin k(1 — 7'/)]

— k=2
— k=3
— k=4




De Sitter inflation as an example




After inflation

* h/ (k) is the initial amplitude for the GW oscillation after
inflation.

* All the modes start to oscillate with the same phase.

* Example, in RD, the oscillation is sin kt /kT

h

0.05 0.10




After inflation

* h/ (k) is the initial amplitude for the GW oscillation after
inflation.

* All the modes start to oscillate with the same phase.
* Example, in RD, the oscillation is sin kt /kT

h' ~ sin[k7']

The end of inflation

‘/jif




Another way to see the oscillatory
pattern

* What is the spatial configuration of A from an instantaneous
and local source?

* In Minkovski space

167TGNT /
S h = - o(tr—1" —7r)
h Shell with radius |t — T’
T—T7 =2




Another way to see the oscillatory
pattern

* What is the spatial configuration of A from an instantaneous
and local source?

* |In de Sitter space

sink(r — 7’)

k

hij(1,k) = —16nGNHT;; 7O(T — ) [

1 1 |
-+ (E — /-c27-’> cosk(t —1') + PRy sink(t —7')



Another way to see the oscillatory
pattern

* What is the spatial configuration of A from an instantaneous
and local source?
* In de Sitter space L(;(T 7 x|)
dmx

A

sink(r — 7’)

k

hij(1,k) = —16nGNHT;; 7O(T — ) [

1 1 |
-+ (E — k27-’> cosk(t —1') + PRy sink(t —7')

\ l
Y
1 /
—O(t— 71— |x|)
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Another way to see the oscillatory
pattern

* What is the spatial configuration of A from an instantaneous
and local source?

* |In de Sitter space

T 1
ht,x) ~ —6(t—7 —2)+ —O(t—7 —x
(%) ~ 0 )+ 6 )
Similar to Minkovski Intrinsic in de Sitter
Decreases with both x and t constant

Vanishes out of horizon



de Sitter inflation as an example

1
¢« AtT1>0  h(1,x) ~ E@(’T’| — )

* A ball of GW, with radius |7’]
* huniformally distributed inside the GW balls.
e All the balls have the same radius.




Spectrum of GW from a real source

o |kT'| > (the mode produced inside horizon)
Na
* At the end of inflation
167G NG (k)

W) = R [ 4 ) cosli(r = )

» After inflation (damped oscillation)
hij(1,k) = hi; (k)€ (kr)
E(n) = & (k)a™" sin(n + ¢)

1 2

« pow =



Spectrum of GW from a real source
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Generic features of GW spectrum

* Inflation models
« de Sitter inflation _dp_ L
g~g N 1 dlogk [58(k)gg(k)} k31 + S(kpAp) cos 2k(ty — 10)]

* tP inflation
Gl ~ kT
e Evolution after inflation

* |InRD, gé ~ 11

* |n MD, (cjé N k_z

SNt s o) ky~H kA



Comparing scenarios

t* x MD-RD, 1= 0.1|1,] dS x (MD-)RD
10~ ‘ : . : : ‘ : ‘
BlHint = 20 10713} Blter=20 RD
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Different inflation scenarios Temporary MD betwteen

) Different slopes in the UV intlation and RD

and oscillatory parts T,: MD-RD transition



Spectrum distortion by inflation

Flat space-time Quasi de Sitter

Model
dependent

Model
dependent

Cai, Pi, Sasaki, 1909.13728



Outline

* Conditions for first-order phase transitions to
complete during inflation.

* Properties of GWSs from first order phase transition
during inflation.

e Possible detections.

* Summary



Redshifts of the GW signal

Instantaneous
reheating
GW a4 a=? a=? a*
e | 0 4 _
Radiation | a® 3 a a a4
a, Aout a, Ayre

Phase transition Out of horizon End of inflation  Reenters horizon



Redshifts of the GW signal

Instantaneous

GW a~* a*
Canceled
Radiation | a® a=*
Ay
Phase transition Out of horizon End of inflation  Reenters horizon

() - (5)
ny Aout B



GWs produced in flat space-time

N >

lat 2 2.8
Apyacdlog ky, 5] 338 + 2.8k>-8

Huber and Konstandin, 0806.1828

00 ~q, (Hne) 0K
GW ~ SER 3 63-84—2.8]62'8



Spectrum distortion by inflation

Flat space-time Quasi de Sitter

Model
dependent

Model
dependent
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Spectrum distortion by inflation

Flat space-time Quasi de Sitter

Model
dependent

Model
dependent

Hin ° A vac ’
o~ () (52)
b Pinf
—12 Hinf ° A,0vac ’
~ 10 X
0.18) \0.1pins

5 2
~ 10_17 % Hinf Apvac
0.018) \0.1pis




First order phase transition during
inflation

* Assume quasi-dS inflation, RD re-entering and fast reheating

HY [1 2k Apc\2  dpfat
Qaw (koday) = Qr—5 [— +3(7fp/3_1)cos< P )] ( P ) PGw

kg 2 \ Hinf Pinf Apvacd 1Og kp
Dilution factor = Smearing Suppressed by
the energy
. faction
Redshift
oy \ 1/3
ftoday _ CL(T*) gﬁs) TcMB

fx ay g(];) 30 3mz, \1Y4
i * gﬁR)ﬂz 8GN
— N,

e N,: e-folds before the end of inflation



First order phase transition during

inflation

* Primordial stachastic GW signals = Hint = 10'* GeV

Apvac/pimf = 0.3
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First order phase transition during
inflation

e CMB B modes

Apvac/pinf =0.1
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Simulation with the CLASS package.



First order phase transition during
inflation

* Signal strength is also sensitive to intermediate
stages

Kination domination

107 F — Hy=10"Gev V/ / N i
[ N.=20 EPTA -
107"} O -
L - - - H,=10"GeV T
= 107°F N.=10 -
U B
S 107PF prH=20 1
10-17F B/ Hing=50 i
| B/Hins=100
10—19_ _
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Summary

* First-order phase transitions can happen in
a spectator sector during inflation.

* We show that there is an oscillatory
feature in the spectrum.

* The slopes of the spectrum can tell us
information about the inflation model and
evolution of the universe when the modes
re-enter the horizon.

* If we are lucky enough, such a signal can
be detected by future GW detectors.

0.010
0.005

0.001
5.x107*
1.x10™
5.x107°

1.x1075

Hif =30 Hiy =10 GeV

Ng=59

10 50
Multipole moment

100
/




Backups



Summary

]CPQ’/H kpzA;I

We study the features of classical GWs produced from
instantaneous sources during inflation.

We show that there is an oscillatory feature in the
spectrum.

The slopes of the spectrum can tell us information about the
inflation model and evolution of the universe when the
modes re-enter the horizon.

First order phase transition during inflation can be realized
with simple models.

If we are lucky enough, such a signal can be detected by
future GW detectors.



Outline

* GWs from a source with finite duration during
inflation



Generic features of GW spectrum

* Instantaneous source

A A < |7

e

.T* T = O
k' = kt, + kptp

cos k(1" — 73) = cos[k(T« — T0) + kpt,)]

= cos|k(T,. — T0)] cos kpt, — sin|k(7, — 70)] sin kpt,



Generic features of GW spectrum

* kp K A;l coskpt, = 1, sink,t, =0

A3k 8mGN [gé(k)gg(k)r
pcw (T) :/(277)3 Va*(1)a?(7y)

cos® k(1, — TO)Tij(Oa kp)Ti§(07 kp)

~

Tij(07kp) = /dtpTij(Ta kp)

(TijTij) 1, «n;* independent of k. Cai, Pi and Sasaki, 1909.13728

kAL 1 < |kt,|, an oscillating feature in the GW spectrum

dpcw 4GN|Tij(O,O)|2 o T
dlogh = w2V ai(nai(r) | oM (B)] K cos k(r. —mo)




Generic features of GW spectrum

e Finite size effect

dpcw _ AGNIT0,0) [0z ]? s o
= (k)G (k)| K k(r, —
Tlosk = mVai(ai(r) L (EORIGE (6)] k° cos® k(r, — 70

1 1 o
5 T 5 cos (T« — 70)
Oscillating

dpg% _ 2Gn|Ti;(0,0)[
dlogk  m2Va*(71)a?(74)

{ [éé(k)ég(k)] i k° [1+ S(kpA,) cos 2k(T, — 7'0)]}

Smearing factor

\

1\

)

1\

TN

W -z omooo—EZ====c====°
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Generic features of GW spectrum

 The UV part of the spectrum
* k,A, > 1, the oscillation pattern is completely smeared out.

dplw _ 2GN|Tij (ko kp)* [ T2 00aF ] 13
_ “(k k)| k
dlog k 72V a4 (1) a2(ry) [50( )G ( )]

Completely smeared out



Generic features of GW spectrum

* The IR part of the spectrum k7| < 1
« G/ is flat, no oscillation pattern in the spectrum either,

2

dpgw _ 4GN|Ti;(0,0) [ [* _, si 1017 15
dlogk 7r2VcJL4(T) /T“ e [80('“)] K

]\




Generic features of GW spectrum

Co-mczving scale
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Generic features of GW spectrum

* Shape of the spectrum

dp )
dlogk [f:‘é(k)é({(k)] k® [1 + S(kpA,) cos 2k(Tx — 70)]

EOIRS
N3 k) PI€ (R)GE (R)2H?




Examples

* |Inflation models
: : : . . H .
e Quasi-de Sitter inflation  G{ = (— —) , Mp=0

k
= p 275 (3 1 ™
o D i F — a=l(— i-p — [ =
t¥ inflation G =ay " (—km) v- F<2 + _1+p) 0= 5 g,
. . H 1
In tP inflation, we have the slow-roll parameter e= m =
. . . g~(]; ~ ]{;_1ie
e Evolution after inflation
 InRD El ~ k! w | pla) | p
’ MD 0 | a®2/3
- 5 RD 1/3 | a=* | 1/2
* |n MD, Ey ~ k A -1 a’ | oo
Cosmic string | -1/3 | a2 | 1
e IntP 58 ~ P/ (P=1) Domain wall | -2/3 | a=! | 2
’ kination 1 a=% | 1/3




Comparing scenarios

t* x MD-RD, 1= 0.1|1,] dS x (MD-)RD
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Different inflation scenarios Temporary MD betwteen

) Different slopes in the UV intlation and RD

and oscillatory parts T,: MD-RD transition



Outline

* GWs from first order phase transition during
inflation



Why first order phase transition
during inflation?

* For phase transition to finish

R=A,< H_;

inf

_ s,
dt

la 2 .
dpGy (Hmf> L Bk
Apyacdlogk, 5] 338 4 2.8k5-8

Huber and Konstandin, 0806.1828

B ~ AT > iy




Models of first order phase
transition during inflation

e Models in the literature:

* Open inflation
K. Sugimura, D. Yamauchi, M. Sasaki, 1110.4773

* GUT phase transition at the beginning of inflation
H. Jiang, T. Liu, S. Sun, Y. Wang, 1512.07538

* Obtained the correct UV behavior of the GW spectrum
Y-T. Wang, Y. Cai, Y-S. Piao, 1801.03639



Models of first order phase
transition during inflation

* Simple models: ¢ : inflaton field,

__l 2 _ 242)02 + A 1 4
Vi(,0) = =5 (12 = F¢?)o* + ot +—8Az"
1 A o2
Va(9,0) = =5 (u* = 2¢?)o? + Jo' + Zo log
_ 1 2 A K 4
V‘%(qbuo.) 2( C¢) +380' +40' .

V2(9,0)

o . spectator




First order phase transition during
inflation

* Bubble nucleation rate: ; = Iymie=Ss
Y /
* Phase transition starts: O(1) =/ dt’' H=3 Iym?e=54(t)

) . oH m? o m,
The bounce: 5S4~ log <?ﬁ ~ log 72 M, H

* First order phase transiton: S, > 1

H* < my < 3M;H?



First order phase transition during

inflation
B dSy B dSy 2q§
* B_E_dlogugﬂfx gb(l—“—Q) Ngff:_(,u —C

1l o ooy Ay, 1 4 005 040 045 020 025 o030 He
Vl(gb,a) = ——(,LL —C ¢ )O' + -0+ —0 ’ ' . : . .
CosmoTransitions



First order phase transition during

inflatio

dSy
» B=1




First order phase transition during

inflation

3 S, A2 1
H ldloe 2| = 2. N,
Oglueff lueff €

B 3800

T H N,
é 500
H N,

N,: e-folds before the end of inflation

S S S S S B Y N S SO B //\
005 010 0415 020 0.25 0.30 Hert

5
— ~ O(10) — O(100
Vl(cb,a)=—%(u2—c2¢2)02+204+$06 H {0) (100)



First order phase transition during
inflation

* Assume quasi-dS inflation, RD re-entering and fast reheating

4

H: 1 2k Apyac  dpliat
QGW(ktoday) e inf [_ ‘l‘S(kpB_l) COS ( p )] P PGW

R
kg 2 \ Hinf Pinf A,Ovacd 108; kp
Dilution factor = Smearing Suppressed by
the energy
. faction
Redshift
oy \ 1/3
ftoday _ CL(T*) gﬁs) TcMB
f* a1 g(];) 30 3H2Z, 1/4
i * gﬁR)ﬂz TGN
— N, : .
e N,: e-folds before the end of inflation



First order phase transition during

inflation

* Primordial stachastic GW signals = Hint = 10'* GeV

Apva,c/pinf = 0.1
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First order phase transition during
inflation

e CMB B modes

p
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Summary

]CPQ’/H kpzA;I

We study the features of classical GWs produced from
instantaneous sources during inflation.

We show that there is an oscillatory feature in the
spectrum.

The slopes of the spectrum can tell us information about the
inflation model and evolution of the universe when the
modes re-enter the horizon.

First order phase transition during inflation can be realized
with simple models.

If we are lucky enough, such a signal can be detected by
future GW detectors.



GW from instantaneous and local
sources (qualitative study)

2 /
o B'(7,k) + I (r,k) + k*h(r,k) = 167G ya ' To(7 — ')
a
et %»H(T) ta 15 %<<H(T) t=0

Deep inside the horizon Out of the horizon



de Sitter inflation as an example

* What is the spatial configuration of h;;?

* In Minkovski space 167G N T
_ . h= o(r—1" —71)
T=T1 4rr
h Shell with radius |t — 7|
T—17 =

T—1 =




de Sitter inflation as an example

* What is the spatial configuration of h;;?

* In de Sitter space

sink(r — 7’)

k

hij(1,k) = —16nGNHT;; 7O(T — ) [

1 1 |
-+ (E — /-c27-’> cosk(t —1') + PRy sink(t —7')



de Sitter inflation as an example

* What is the spatial configuration of h;;?

* In de Sitter space .
- 0(r =7 = |x])

4
/'

sink(r — 7’)

k

hij(1,k) = —16nGNHT;; 7O(T — ) [

1 1 |
-+ (E — k27-’> cosk(t —1') + PRy sink(t —7')

\ J
Y
1 /
—6(r— 7 — |x)
A7




de Sitter inflation as an example

* What is the spatial configuration of h;;?

* In de Sitter space

T 1
ht,x) ~ —6(t—7 —2)+ —O(t—7 —x
(%) ~ 0 )+ 6 )
Similar to Minkovski Intrinsic in de Sitter
Decreases with both x and t constant

Vanishes out of horizon



de Sitter inflation as an example

1
¢« AtT1>0  h(1,x) ~ E@(’T’| — )

* A ball of GW, with radius |7’]
* huniformally distributed inside the GW balls.
e All the balls have the same radius.




Green’s function of GW in inflation

 Generic features
e For|lkt'| > Bt — k=1 k(7' — 7! 724 k
|kT'| > 14, cos k(7" — 74)Gq (k)

0
. For|kt'| <ng, h! = [a(T/)/ CL_Q(Tl)dﬁ]

AVAVAV, |

Na 1B n—-20



GW from instantaneous and local
sources (qualitative study)

00 o - T

sink(r —7') h ~ constant







GW from instantaneous and local
sources (qualitative study)

2 /
o h'(1,k)+ —ah’(T, k) + k*h(1,k) = 167G na 'T6(7 — 1)
a
Deep inside the horizon, Out of the horizon

damped oscillation

k T
ﬁ < H(T)



GW from instantaneous and local
sources (qualitative study)

2 /
* W'(1,k)+ %h/(T, k) + k*h(1,k) = 167G na 'T6(7 — 1)
ﬂ Stop oscillating

sink(r —7') h ~ constant




h'in a generic inflation model

* Generic features source Model dependent
* For |kt'| > hf = k1 k(' — G (K
|kT'| > 14, cos k(1" — 719)Gq (k)
0

. For|kt'| <ng, h! = [a(T/)/ CL_Q(Tl)dﬁ]

( J
Y

Independent of k

AVAVAY. |

/

Na 1B n=20



Outline

* Motivations
* Phase transi
* GWs from an instantaneous source during inflation

* GWs from a source with finite duration during
inflation

* GWs from first order phase transition during
inflation

* Summary



Properties of universe undergoing
an accelerated expansion

* The metric  ds? = —dt? + az(t)(dz-j -+ hz-j)da:idazj

GW in transverse
 Conformal time traceless part of h

ds® = a®(7) [—dr? + (65 + hij)dz'dz? ]
* Inflation
e d > 0,dr = a 1(t)dt, T has a finite upper bound.
We shift T sothat 7 < 0.
* |1| is the size of the comoving horizon.



GW from instantaneous and local
sources (qualitative study)

/

2a
* EO.M.of GW Rl + Th;j — V2hi; = 1672Gna’0y;

* For an instantaneous and local source, the source can be
seen as delta funtion in both space and time.

oij ~ 0(x)0(T — 1)

* E.O.M. in Fourier space

2 /
B (7,k) + “ 1 (1, k) + k*h(1,k) = 167G ya" " T6(7 — 7')
a



GW from instantaneous and local
sources (qualitative study)

2 /
e h'(1,k)+ —ah/(T, k) + k*h(1,k) = 167G na T (7 — ')
a
ﬂ {‘ ﬁ ﬂ n The horizon fixes the
amplitude of h
_______ AR AARANATATANAATAY I
7’| > [7a]
U U U U h' ~ sin[k7’]
—00 T ko H(r) kty =0




GW from instantaneous and local
sources (qualitative study)

/
o (rK)+ S B (7,K) + k2h(r, k) = 167Gy To(r — 1)
a
(‘ m (V\n The horizon fixes the
ﬂ\ amplitude of h
7| > |74
U U U h' ~ sin[k7']
—00 T % > H(7) kTA ~ ()




GW from instantaneous and local
sources (qualitative study)

e The conformal time between the source and the horizon is
fixed.

* The phase of h at the source is fixed.
 The value of h at the horizon oscillates with k.

* The amplitude h/ oscillates with k.
« h/ is the initial condition for

later evolution.




Quasi-de Sitter inflation as an
example

1
Q= ———

Hr




De Sitter inflation as an example

16nGNHT; ;T 1 1 1 :
hij(1,k) = — . J [(/m‘ — kT’) cosk(r —7') + (1 - kQTT/) sin k(1 — 7'/)]

— k=2
— k=3
— k=4




De Sitter inflation as an example




After inflation

* h/ (k) is the initial amplitude for the GW oscillation after
inflation.

* All the modes start to oscillate with the same phase.

* Example, in RD, the oscillation is sin kt /kT

h

0.05 0.10




After inflation

* h/ (k) is the initial amplitude for the GW oscillation after
inflation.

* All the modes start to oscillate with the same phase.
* Example, in RD, the oscillation is sin kt /kT

h' ~ sin[k7']

The end of inflation

‘/jif




