电弱重子生成机制进展 PROGRESS OF ELECTROWEAK BARYOGENESIS

晁伟 (Wei Chao) Center for advanced quantum studies, physics department, Beijing Normal University

05 AUG 2022 @威海新物理研讨会

Outline

- Brief overview of EWPT&EWBG
- Recent Progress of EWBG:
 - The tension between the non-observation of CPV and the requirement of a large CP phase by the EWBG (EWBG from spontaneous CPV or other exotic physics)
 - The tension between observable stochastic gravitational wave and a sizable BAU generated by the EWBG (EWBG at high bubble wall velocity)
 - Progress in the calculation of CPV source term. (The VEV insertion method)

Matter-antimatter asymmetry of the Universe

- * No anti-galaxy was observed
- * The abundance of the primordial elements and the height of the CMB power spectrum depend on the ratio of of baryon to photons

Baryon asymmetry:

 $Y_B = \frac{\rho_B}{s} = (8.59 \pm 0.11) \times 10^{-11}$

(Planck 2015)

Baryogenesis via first order EWPT

Excess of matter over anti-matter in the Universe!

Baryon number violation
 C&CP violation
 Departure from thermal equilibrium

First order electroweak phase transition if baryon asymmetry is generated during the EWPT without CPT violation.

Electroweak Baryogenesis

Generate BAU during the electroweak phase transition

The fate of the EWBG

* 许多"新物理"理论都有其寿命! 很无奈~~

The effective potential in the SM

$$\begin{split} J_{\mathcal{B}(\mathcal{F})}(x) &= \int_{0}^{\infty} dtt^{2} \ln \left(1 \mp \exp\{-\sqrt{t^{2}} + x\}\right) & V_{T} &= \frac{T^{4}}{2\pi^{2}} \left\{ \sum_{i \in \mathcal{B}} n_{i} J_{\mathcal{B}} \left[\frac{m_{i}^{2}(h, s, \xi)}{T^{2}} \right] - \sum_{i \in \mathcal{A}} n_{i} J_{\mathcal{B}} \left[\frac{m_{i}^{2}(h, s, \xi)}{T^{2}} \right] \right\} \\ & \bullet \mathbf{V}_{0}; \quad \text{The tree-level potential} & \bullet \mathbf{V}_{T}; \quad \text{Finite temperature contribution} \\ & \mathbf{V}_{eff} = V_{0} + V_{CW} + V_{T} + V_{Daisy} & \text{ finite temperature contribution} \\ & \bullet \mathbf{V}_{eff} = V_{0} + V_{CW} + V_{T} + V_{Daisy} & \text{ finite temperature contribution} \\ & \bullet \mathbf{V}_{cw}; \quad \text{Coleman-Weinberg term} & \bullet \mathbf{V}_{ring}; \quad \text{The ring contribution} \\ & V_{CW} = \frac{1}{64\pi^{2}} \sum_{i} (-1)^{2s_{i}} n_{i} m_{i}^{4}(h, s, \xi) \left[\log \frac{m_{i}^{2}(h, s, \xi)}{\mu^{2}} - C_{i} \right] & V_{T}^{ring} = \frac{T}{12\pi} \sum_{i} n_{i} \left\{ (m_{i}^{2}(h, s))^{3/2} - (M_{i}^{2}(h, s, T))^{3/2} \right\} \\ & \text{More explicitly:} \\ & \text{FWPT is usually studied} & \text{Imposed of the landau-gauge!} \\ & V_{i}^{T^{so}}(h, T) = \frac{T^{4}}{2\pi^{2}} \left[J_{\mathcal{B}} \left(\frac{m_{i}^{2}}{\mu^{2}} \right) + 2s J_{\mathcal{B}} \left(\frac{m_{i}^{2}}{\mu^{2}} \right) + J_{\mathcal{B}} \left(\frac{m_{i}^{2}}{\mu^{2}} \right) + J_{\mathcal{B}} \left(\frac{m_{i}^{2}}{\mu^{2}} \right) \right] - \text{"free"}, \end{aligned}$$

Symmetric phase

The barrier between the symmetric and the broken phase usually comes from the gauge fields

$$V_{\text{eff}}(\phi, T) = \mathcal{A}(T)\phi^2 + \mathcal{B}(T)\phi^3 + \mathcal{C}(T)\phi^4 + \cdots$$

SM Higgs is too heavy to saturate first order EWPT

2.Correlated with the dark matter

2. Strongly first order VS First order

 First order EWPT: Bubble nucleation
 Strongly first order EWPT: Sphaleron decoupling inside the bubble

$$\Gamma_{\rm sph.}(T) \sim (gT)^4 e^{-E_{sph}/T} < H(T) \approx 1.66 \sqrt{g_*} T^2 / M_{plank}$$

* The exact value of v/T needs to be clarified case by case.

3. Typical temperatures

Critical temperature T_c: **Bubble nucleation Temperature T**: **PT completed Temperature T**_d: **Relationships** $T_c > T_n > T_d$

$$V_{\rm eff}(\phi_{\rm symmetric}, T)|_{T_C} = V_{\rm eff}(\phi_{\rm broken}, T)|_{T_C}$$

$$\int_{t_n}^{t_n} T_{\rm eff}(\phi_{\rm broken}, T)|_{T_C} = V_{\rm eff}(\phi_{\rm broken}, T)|_{T_C}$$

$$\int_{0}^{t_{n}} \Gamma V_{H}(t) dt = \int_{T_{n}}^{\infty} \frac{dT}{T} \left(\frac{2\zeta M_{\rm pl}}{T}\right)^{4} e^{-S_{3}/T} = \mathcal{O}(1),$$
Quirós, ACTA PHYSICA POLONICA B 2008

ΓBubble nucleation rate $V_H(t)$ One-horizon volume

$$T(T_d) = \frac{4\pi}{3} \int_{T_d}^{T_c} \frac{dT}{T} \frac{\Gamma(T)}{H(T)^4} v_w^3 \left(1 - \frac{T_d}{T}\right)^3 \equiv 1$$

H(T)	Hubble constant
v_w	Bubble wall velocity
f(T)	Friction of the universe covered by the broken phase

4. Bubble nucleation

Bubble nucleation rate per unit time per unit volume	$\Gamma_n(T) \approx T^4 \left(\frac{S_3(T)}{2\pi T}\right)^{3/2} \exp\left[-\frac{S_3(T)}{T}\right]$
Euclidean equation of motion	$\frac{d^2\phi}{dr^2} + \frac{2}{r}\frac{d\phi}{dr} - V''(\phi) = 0$
Euclidean action for the solution of EoM	$S_3 = 4\pi \int r^2 dr \left[\frac{1}{2} \left(\frac{d\phi}{dr} \right)^2 + V(\phi) \right]$
Bounce solution to the EoM	$V(z) = \frac{1}{2}v(T)\left[1 + \tanh\left(3\frac{z}{L_w}\right)\right]$
	Vacuum expectation value $\langle \phi \rangle \neq 0 \qquad \langle \phi \rangle = 0$
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\\\ \end{array}\\ \left\begin{array}{c} \end{array}\\\\ \end{array}\\\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \left\begin{array}{c} \end{array}\\\\ \end{array}\\\\ \end{array}\\ \end{array}\\ \end{array}\\ \left\begin{array}{c} \end{array}\\\\ \end{array}\\\\ \end{array}\\ \end{array}\\ \left\begin{array}{c} \end{array}\\\\ \end{array}\\ \end{array}\\ \left\begin{array}{c} \end{array}\\\\ \end{array}\\ \end{array}\\ \left\begin{array}{c} \end{array}\\\\ \end{array}\\ \end{array}\\ \left\begin{array}{c} \end{array}\\\\ \end{array}$ \left\left(\begin{array}{c} \end{array}\\\\ \end{array} \left(\begin{array}{c} \end{array}\\\\ \left(\\\\ \end{array} \left(\\\\ \end{array} \left(\\\\ \bigg \left(\\ \bigg \left(\\ \left) \\ \left(\\ \left)
-10 -5 0 5 10 r	$V_r \approx 0 \qquad V_r > 0 V_r = 0$ Fluid velocity

during the EWPT

Iw

5. Physical parameters relating to PT

Vw	Bubble wall velocity	calculated numerically
/ w	Bubble wall width	calculated numerically
α	Released energy to radiation energy	$\alpha = \Lambda / \rho_{\rm rad}$
ĸ	The efficiency factor	$\kappa = \frac{3}{\varepsilon v_w^3} \int w(\xi) v^2 \gamma^2 \xi^2 d\xi$
Λ	Latent heat	$\Lambda = \Delta \left(V - \frac{dV}{dt}T \right)$
		α
Vw	Relevant to the calculation of baryon number density generated	K Relevant to the calculation of stochastic gravitational wave spectrum emitted

Δ

during the EWPT

6. Types of bubble from fluid dynamics

supersonic Fluid at rest in front of the wall

subsonic Fluid at rest behind the wall

supersonic

$$v_w > c_s = v_- > v_+$$

Outline

- * Brief overview of EWPT&EWBG
- Recent Progress:
 - The tension between the non-observation of CPV and the requirement of a large CP phase by the EWBG (EWBG from spontaneous CPV or other exotic physics)
 - The tension between observable stochastic gravitational wave and a sizable BAU generated by the EWBG (EWBG at high bubble wall velocity)
 - Progress in the calculation of CPV source term. (The VEV insertion method)

Fate of the EWBG

Three Detection methods

Conventional EWBG mechanism might be found or excluded in the near future when these three detection methods are combined.

A typical example: Wino-catalyzed EWBG is excluded by the ACME result(intensity frontier) and the Higgs search results at the LHC(energy frontier).

Questions: Is there a mechanism of electroweak baryogenesis that can escape from these hunters?

The tension

The tension between the requirement of a large CP phase by the EWBG and the non-observation of CPV in EDM experiments

Our little aim: a EWBG with less signature

Exploring a scenario of electroweak baryogenesis that may escape from the combined detection of the cosmic, energy and intensity frontiers.

Our little aim: a EWBG with less signature

The model:

SM+ complex scalar singlets

*
$$V_0$$
: The tree-level potential
 $V_{eff} = V_0 + V_{CW} + V_T + V_{Daisy}$
* V_{cw} : Coleman-Weinberg term
 $V_{CW} = \frac{1}{64\pi^2} \sum_i (-1)^{2s_i} n_i m_i^4(h, s, \xi) \left[\log \frac{m_i^2(h, s, \xi)}{\mu^2} - C_i \right]$
 V_{T} : Finite temperature contribution
* V_{T} : V_{T} : Finite temperature contribution
* V_{T} : V_{T} : V_{T} : V_{T} : V_{T} = V

BAU during the EWPT

CP phase the **EWPT**

EoM for three background fields:

 $\frac{d^2\phi_i}{dr^2} + \frac{2}{r}\frac{d\phi_i}{dr} = \bar{V}'(\vec{\phi})$

Bubble wall width:

BAU during the EWPT

Source term and Transport equations

$$\zeta \overline{\mathfrak{t}_L} S t_R + (M_{\mathfrak{t}}) \overline{\mathfrak{t}_L} \mathfrak{t}_R + \text{h.c.}$$

All equations

$$\begin{aligned}
\partial^{\mu}Q_{\mu} &= +\Gamma_{m_{t}}\mathcal{R}_{T}^{-} + \Gamma_{Y_{t}}\delta_{t} + \Gamma_{y'}\delta_{t'} + 2\Gamma_{s}\delta_{s} \\
\partial^{\mu}T_{\mu} &= -\Gamma_{m_{t}}\mathcal{R}_{T}^{-} - \Gamma_{Y_{t}}\delta_{t} - \Gamma_{s}\delta_{s} - \Gamma_{\zeta}\delta_{t} \\
&+ \Gamma_{t}^{+}\mathcal{R}_{t}^{+} + \Gamma_{t}^{-}\mathcal{R}_{t}^{-} + S_{top}^{CPV} \\
\partial^{\mu}\mathfrak{t}_{\mu} &= +\Gamma_{m_{t}}\mathcal{R}_{\Lambda}^{-} - \Gamma_{t}^{+}\mathcal{R}_{t}^{+} - \Gamma_{t}^{-}\mathcal{R}_{t}^{-} + \Gamma_{\zeta}\delta_{t} - S_{top}^{CPV} \\
\partial^{\mu}\mathfrak{t}_{\mu}' &= -\Gamma_{m_{t}}\mathcal{R}_{\Lambda}^{-} - \Gamma_{y'}\delta_{t'} \\
\partial^{\mu}S_{\mu} &= -\Gamma_{\zeta}\delta_{t} \\
\partial^{\mu}H_{\mu} &= -\Gamma_{Y_{t}}\delta_{t} - \Gamma_{y'}\delta_{t'}
\end{aligned}$$
(13)

Another solution: EW symmetry non-restoration

Push the sphaleron to multi-TeV scale !

Outline

- * Brief overview of EWPT&EWBG
- **Recent Progress of EWBG:**
 - The tension between the non-observation of CPV and the requirement of a large CP phase by the EWBG(EWBG from spontaneous CPV or exotic physics)
 - The tension between observable stochastic gravitational wave and a sizable BAU generated by the EWBG (EWBG at high bubble wall velocity)
 - Progress in the calculation of CPV source term. (The VEV insertion method)

The "tension"

BAU favors low bubble wall velocity, Gravitational wave favors high wall velocity

$$\begin{array}{l} \textbf{Bubble}\\ \textbf{collision} \\ h^{2}\Omega_{\mathrm{coll}}(f) = 1.67 \times 10^{-5} \left(\frac{H_{n}}{\beta}\right)^{2} \left(\frac{\kappa\alpha}{1+\alpha}\right)^{2} \left(\frac{100}{g_{*}}\right)^{\frac{1}{3}} \times \left(\frac{0.11v_{w}^{3}}{0.42+v_{w}^{2}}\right) \left[\frac{3.8(f/f_{\mathrm{coll}})^{2.8}}{1+2.8(f/f_{\mathrm{coll}})^{3.8}}\right], \\ \textbf{Sound wave} \\ h^{2}\Omega_{\mathrm{sw}}(f) = 2.65 \times 10^{-6} \left(\frac{H_{n}}{\beta}\right) \left(\frac{\kappa_{v}\alpha}{1+\alpha}\right)^{2} \left(\frac{100}{g_{*}}\right)^{\frac{1}{3}} \times v_{w} \left(\frac{f}{f_{\mathrm{sw}}}\right)^{3} \left[\frac{7}{4+3(f/f_{\mathrm{sw}})^{2}}\right]^{7/2} \\ \textbf{For updated results, see Li-gong's talk} \\ \textbf{MHD} \\ \textbf{turbulence} \\ h^{2}\Omega_{\mathrm{turb}}(f) = 3.35 \times 10^{-4} \left(\frac{H_{n}}{\beta}\right) \left(\frac{\kappa_{\mathrm{tu}}\alpha}{1+\alpha}\right)^{3/2} \left(\frac{100}{g_{*}}\right)^{\frac{1}{3}} \times v_{w} \frac{(f/f_{\mathrm{tu}})^{3}}{(1+f/f_{\mathrm{tu}})^{11/3}(1+8\pi f/h_{n})} \end{array}$$

$$M_{ij}^{2}(y) = M_{ij}^{2}(x) + (x - y)^{\mu} \partial_{\mu} M_{ij}^{2}(x)$$
Valid in slowly varying
bubble wall background
$$S_{CPV}^{2} = 2Im[M^{2}\partial_{\mu}M^{2}] \int d^{4}y(y - x)^{\mu} \times (G_{RR}^{<}(x, y)G_{LL}^{>}(y, x) - G_{RR}^{>}(x, y)G_{LL}^{<}(y, x))$$

BAU via the VEV insertion method

Improved transport equations

Physics relevant: fraction of plasma that can stay ahead of a bubble wall velocity.

BAU vs Bubble wall velocity

Conclusion: BAU smoothly evolves to zero with the increase of the wall velocity

Outline

- * Brief overview of EWPT&EWBG
- **Recent Progress of EWBG:**
 - The tension between the non-observation of CPV and the requirement of a large CP phase by the EWBG(EWBG from spontaneous CPV or from exotic physics)
 - The tension between observable stochastic gravitational wave and a sizable BAU generated by the EWBG (EWBG at high bubble wall velocity)
 - Progress in the calculation of CPV source term. (The VEV insertion method)

A third tension

EWBG via the WKB approximation vs via the "VEV-insertion" method

Traditional VEV-insertion method

A scalar case in the CTP formalism : analog to stop induced BAU

$$\mathscr{L} = (\partial_{\mu}\phi)^{\dagger}(\partial^{\mu}\phi) - \phi^{\dagger}\mathscr{M}^{2}\phi \qquad \qquad \mathscr{M}^{2} = \begin{pmatrix} M_{LL}^{2} & M_{LR}^{2} \\ M_{RL}^{2} & M_{RR}^{2} \end{pmatrix}$$

Kadanoff-Baym equations: Wigner transforming of the Schwinger-Dyson equation

$$\begin{array}{l} \hline \textbf{CTP formalism:}\\ \textbf{see Yeling's talk} \end{array} & 2ik \cdot \partial_x G^{\lambda} = \frac{1}{2} e^{-i\diamond} \left([\mathscr{M}^2, G^{\lambda}] + [\Pi^{\lambda}, G^h] + \frac{1}{2} (\{\Pi^{\triangleright}, G^{<}\} - \{\Pi^{<}, G^{>}\}) \right) \\ \hline \textbf{Left-handed side:} \qquad \frac{1}{2} \partial_{\mu} \int \frac{d^4 k}{(2\pi)^4} ik^{\mu} \left(G^{>}(k, x) + G^{<}(k, x) \right) = - \partial_{\mu} \langle J^{\mu}(x) \rangle \\ \hline \textbf{Source term:} \qquad S_{LL} = - \int \frac{d^4 k}{(2\pi)^4} \left([\mathscr{M}^2, G^{>} + G^{<}] + [\Pi^{>} + \Pi^{<}, G^h] + \{\Pi^{>}, G^{<}\} - \{\Pi^{<}, G^{>}\} \right) \end{array}$$

Traditional VEV-insertion method

 $\Pi^{\lambda} = -M^2 G^{\lambda} M^2$

Self-energy is expanded to 2nd order:

$$S_{LL} = -2 \int d^4 y \operatorname{Re} \left[M_{LR}^2(x) G_{RR}^<(x, y) M_{RL}^2(y) G_{LL}^>(y, x) - M_{RL}^2(x) G_{RR}^>(x, y) M_{LR}^2(y) G_{LL}^<(y, x) \right]$$

$$M_{ij}^2(y) = M_{ij}^2(x) + (x - y)^{\mu} \partial_{\mu} M_{ij}^2(x)$$
Valid in slowly varying bubble wall backgroup

slowly varying all background

$$S_{CPV}^{2} = 2Im[M^{2}\partial_{\mu}M^{2}] \int d^{4}y(y-x)^{\mu} \times \left(G_{RR}^{<}(x,y)G_{LL}^{>}(y,x) - G_{RR}^{>}(x,y)G_{LL^{<}(y,x)}\right)$$

New insight

Self-energy is given as equilibrium approximation, expanding weightman functions to second order

 $G_{(1),II}^{ab} = \sum c G_{(0),II}^{ac} (\delta M^2)_{IJ} G_{(0),II}^{cb}$ Marieke Postma, Jorinde van de Vis and Graham White. $G_{(2),II}^{ab} = \sum^{c} cd \, G_{(0),II}^{ac} (\delta M^2)_{IJ} G_{(0),JJ}^{cd} (\delta M^2)_{JI} G_{(0),II}^{db}$ arXiv: 2206.01120 $\bar{S}^{(2)} = [\delta M^2, (G^{>}_{(1)} + G^{<}_{(1)})] + [M^2_d, (G^{>}_{(2)} + G^{<}_{(2)})] + [\Pi^{>} + \Pi^{<}, G^h_{(2)}] + \left(\{\Pi^{>}, G^{<}_{(2)}\} - \{\Pi^{<}, G^{>}_{(2)}\}\right)$ Commutation term: $S_{MII}^{(2)} = |m_{LR}|^4 \rho_L \rho_R \left[(2n_L - 1) - (2n_R - 1) \right] = 2 |m_{LR}|^4 \rho_L \rho_R (n_L - n_R),$ $\bar{S}_{C,LL}^{(2)} = \left(\{\Pi^{>}, G_{(2)}^{<}\} - \{\Pi^{<}, G_{(2)}^{>}\}\right)_{LL} = -2 |m_{LR}|^4 \gamma_L \rho_L^2 \rho_R (n_L - n_R) \frac{D_L^* D_L}{\gamma^2}$ **Collision term** $= -2 |m_{IR}|^4 \rho_I \rho_R (n_I - n_R)$ $\bar{S}^{(2)} = \bar{S}^{(2)}_{MIL} + \bar{S}^{(2)}_{CIL} = 0$

Discussion

其他方面的进展如bubble 动力学参见边立功老师的报告

■在后希格斯时代EWBG是否值得继续深入研究?

EWBG与低能精确测量的冲突如何解决?
EWBG与引力波信号之间有多强的关联?
如何从第一性原理出发来精确计算EWBG?
其他值得深入探索的冲突或者方向。。。