Majorana中微子物理

李玉峰

中科院高能所/中国科学院大学

2022-08-02

ν Oscillations

e→e

µ→μ

μ→μ

e→e

μ→е

μ→τ

Data from various types of neutrino experiments: (a) solar, (b) long-baseline reactor, (c) atmospheric, (d) long-baseline accelerator, (e) short-baseline reactor, (f,g) long baseline accelerator (and, in part, atmospheric).

(a) KamLAND [plot]; (b) Borexino [plot], Homestake, Super-K, SAGE, GALLEX/GNO, SNO; (c) Super-K atmosph. [plot], DeepCore, MACRO, MINOS etc.; (d) T2K (plot), MINOS, K2K; (e) Daya Bay [plot], RENO, Double Chooz; (f) T2K [plot], MINOS, NOvA; (g) OPERA [plot], Super-K atmospheric.

From E. Lisi

v Oscillations: robustness

Neutrino Oscillations:

➢ Different neutrino sources and oscillation channels point to the same set of mass and mixing parameters → 3 flavor mixing

Quantum mechanical v Oscillations

$$|\nu(t=0)
angle = |
u_{lpha}
angle = U_{lpha1} |
u_1
angle + U_{lpha2} |
u_2
angle + U_{lpha3} |
u_3
angle$$

 $E_k^2 = p^2 + m_k^2 \qquad t = L$ $P_{\nu_\alpha \to \nu_\beta}(L) = |\langle \nu_\beta | \nu(L) \rangle|^2 = \sum_{k,j} U_{\beta k} U_{\alpha k}^* U_{\beta j}^* U_{\alpha j} \exp\left(-i\frac{\Delta m_{kj}^2 L}{2E}\right)$

The oscillation probabilities depend on U and $\Delta m_{kj}^2 \equiv m_k^2 - m_j^2$

Global picture

Neutrino mass ordering & CP

Neutrino mass spectrum

Absolute neutrino masses: beta-decay

$$^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \bar{\nu}_{e}$$

<0.8 eV (90 C.L.

Future Prospect:

- KATRIN: 200 meV
 - Systematic limit: ~100 meV
 - Project 8: 40 meV

 10^{-1}

8

Absolute neutrino masses: cosmology

PDG 2020	Model	95% CL (eV)	Ref.
CMB alone			
Pl18[TT+lowE]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.54	[16]
Pl18[TT,TE,EE+lowE]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.26	[16]
$\overline{\text{CMB}}$ + probes of background evolution	L		
$\overline{\text{Pl18}[\text{TT+lowE}]} + \text{BAO}$	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.16	[16]
Pl18[TT, TE, EE+lowE] + BAO	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.13	[16]
Pl18[TT,TE,EE+lowE]+BAO	$\Lambda \text{CDM} + \sum m_{\nu} + 5$ params.	< 0.515	[18]
$\overline{\text{CMB} + \text{LSS}}$			
Pl18[TT+lowE+lensing]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.44	[16]
Pl18[TT,TE,EE+lowE+lensing]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.24	[16]
$\overline{\text{CMB} + \text{probes of background evolution}}$	+ LSS		
$\overline{\text{Pl18}[\text{TT+lowE+lensing}] + \text{BAO}}$	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.13	[16]
Pl18[TT, TE, EE+lowE+lensing] + BAO	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.12	[16]
Pl18[TT, TE, EE+lowE+lensing] + BAO+Pan	theon $\Lambda \text{CDM} + \sum m_{\nu}$	< 0.11	[16]

Cosmology: sum of neutrino masses

- > Data sets and model dependence
- > Current best limit: ~120 meV
- > Future projection \rightarrow 60 meV

v masses: Dirac versus Majorana

Two possibilities to define neutrino mass:

> Dirac mass

Left & right handed v's

Lepton number conservation

Majorana mass

Only left handed v's

Lepton number violation

v masses: Dirac versus Majorana

	1 st Generation	2 nd Generation	3 rd Generation
Quarks:	$ \begin{pmatrix} u_L \\ d_L \end{pmatrix} u_R \\ d_R $	$\begin{pmatrix} c_L \\ s_L \end{pmatrix} \begin{array}{c} c_R \\ s_R \\ \end{array}$	$ \begin{pmatrix} t_L \\ b_L \end{pmatrix} $
Leptons:	$ \begin{pmatrix} \nu_{eL} \\ e_L \end{pmatrix} \begin{bmatrix} \nu_{eR} \\ e_R \end{bmatrix} $	$ \begin{pmatrix} \nu_{\mu L} \\ \mu_L \end{pmatrix} \begin{bmatrix} \nu_{\mu R} \\ \mu_R \end{bmatrix} $	$ \begin{pmatrix} \nu_{\tau L} \\ \tau_L \end{pmatrix} \begin{bmatrix} \nu_{\tau R} \\ \tau_R \end{bmatrix} $

Standard Model extension: $\nu_R \Rightarrow$ Dirac mass Lagrangian

 $\mathscr{L}_{\rm D} \sim m_{\rm D} \,\overline{\nu_L} \nu_R$

 $\mathscr{L}_{\mathsf{Y}} \sim y \, \overline{L_L} \widetilde{\Phi} \nu_R \quad \xrightarrow{\mathsf{Symmetry}} \quad y \, v \, \overline{\nu_L} \nu_R$ Breaking

Extremely small Yukawa couplings are needed to get $m_D \leq 1 \text{ eV}$:

$$y \lesssim 10^{-11}$$

It is considered unnatural, unless there is a protecting BSM symmetry.

v masses: Dirac versus Majorana

	1 st Generation	2 nd Generation	3 rd Generation
Quarks:	$ \begin{pmatrix} u_L \\ d_L \end{pmatrix} $	$\begin{pmatrix} c_L \\ s_L \end{pmatrix} \begin{array}{c} c_R \\ s_R \\ \end{array}$	$\begin{pmatrix} t_L \\ b_L \end{pmatrix} \begin{array}{c} t_R \\ b_R \end{array}$
Leptons:	$\begin{pmatrix} \nu_{eL} \\ e_L \end{pmatrix} \begin{bmatrix} \nu_{eR} \\ e_R \end{bmatrix}$	$\begin{pmatrix} \nu_{\mu L} \\ \mu_L \end{pmatrix} \frac{\nu_{\mu R}}{\mu_R}$	$\begin{pmatrix} \nu_{\tau L} \\ \tau_L \end{pmatrix} \begin{bmatrix} \nu_{\tau R} \\ \tau_R \end{bmatrix}$

Majorana Mass Lagrangian for SM ν_L

$$\mathscr{L}_{L}^{\mathsf{M}} \sim m_{L} \, \overline{\nu_{L}^{\mathsf{c}}} \nu_{L} = -\nu_{L}^{\mathsf{T}} \, \mathcal{C}^{\dagger} \, \nu_{L}$$

No Majorana Neutrino Mass in the SM

$$u_L^{\, {\mathcal T}} \, {\mathcal C}^\dagger \,
u_L$$
 has $I_3 = 1$ and $Y = -2 \Longrightarrow$

Needs Y= +2 Higgs triplet (type II), or (type I)

The introduction of ν_R leads

 $\mathscr{L}_{R}^{\mathsf{M}} \sim m_{R} \overline{\nu_{R}^{c}} \nu_{R}$ singlet under SM symmetries!

Dirac and Majorana mass Lagrangian

Low energy 3v Majorana mixing

$$\nu_{\alpha} = \sum_{k=1}^{3} U_{\alpha k} \nu_{k} \quad \text{for} \quad \alpha = e, \mu, \tau \quad \text{with} \quad \boxed{\nu_{k} = \nu_{k}^{c}}$$

Standard Parameterization of Mixing Matrix (as CKM)

$$\begin{split} & \mathcal{U} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix} \\ c_{ab} \equiv \cos \vartheta_{ab} & s_{ab} \equiv \sin \vartheta_{ab} & 0 \le \vartheta_{ab} \le \frac{\pi}{2} & 0 \le \delta_{13}, \lambda_{21}, \lambda_{31} < 2\pi \\ \\ OSCILLATION \\ PARAMETERS & \begin{cases} 3 \text{ Mixing Angles: } \vartheta_{12}, \vartheta_{23}, \vartheta_{13} \\ 1 \text{ CPV Dirac Phase: } \delta_{13} \\ 2 \text{ independent } \Delta m_{kj}^2 \equiv m_k^2 - m_j^2 \text{: } \Delta m_{21}^2, \Delta m_{31}^2 \end{cases} \\ 2 \text{ CPV Majorana Phases: } \lambda_{21}, \lambda_{31} \iff |\Delta L| = 2 \\ \end{split}$$

In v Oscillations Dirac = Majorana

Evolution of Amplitudes:
$$i \frac{d\psi_{\alpha}}{dx} = \frac{1}{2E} \sum_{\beta} \left(UM^2 U^{\dagger} + 2EV \right)_{\alpha\beta} \psi_{\beta}$$

difference: $\begin{cases} \text{Dirac:} & U^{(D)} \\ \text{Majorana:} & U^{(M)} = U^{(D)} D(\lambda) \end{cases}$
 $D(\lambda) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & e^{i\lambda_{21}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{i\lambda_{N1}} \end{pmatrix} \Rightarrow D^{\dagger} = D^{-1}$
 $M^2 = \begin{pmatrix} m_1^2 & 0 & \cdots & 0 \\ 0 & m_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & m_N^2 \end{pmatrix} \implies DM^2 = M^2 D \implies DM^2 D^{\dagger} = M^2$
 $U^{(M)} M^2 (U^{(M)})^{\dagger} = U^{(D)} DM^2 D^{\dagger} (U^{(D)})^{\dagger} = U^{(D)} M^2 (U^{(D)})^{\dagger}$

Majorana-Dirac confusion theorem

Majorana neutrinos and their electromagnetic properties

Boris Kayser Division of Physics, National Science Foundation, Washington, D. C. 20550 (Received 29 January 1982)

Phys.Rev.D 26 (1982) 1662

 $SU(2)_L \times U(1)$ to one-loop order. Lastly, we compare the electromagnetic interactions of a Majorana and a Dirac neutrino in the massless limit. We find that they conform to what seems to be a general rule: If all weak currents are left-handed, then the difference between a Majorana and a Dirac neutrino becomes invisible as the mass goes to zero. This occurs in spite of gross differences between these particles when the mass is not negligible.

The practical Majorana-Dirac confusion theorem

Practical Majorana-Dirac Confusion Theorem

- Only left-handed weak interactions exist
- Experiments with neutrinos of negative helicity and antineutrinos of positive helicity
- The Majorana Dirac difference ~ m²_v

$$|\nu_e\rangle \sim |L\rangle + \left(\frac{m}{E}\right)|R\rangle.$$

> Best Bet: $0v2\beta$ -decay

Neutrinoless Double-Beta Decay

$$E_{B}(Z, N) = a_{V}A - a_{S}A^{2/3} - a_{C}\frac{Z(Z-1)}{A^{1/3}} - a_{A}\frac{(N-Z)^{2}}{A} + \delta_{P}(Z, N)$$
Pairing term due to spin-coupling:

 $\delta_{\mathrm{P}}(Z, N) = \begin{cases} a_{\mathrm{P}} A^{k_{\mathrm{P}}} & \text{if both } Z \text{ and } N \text{ are even } (A \text{ is even}) \\ -a_{\mathrm{P}} A^{k_{\mathrm{P}}} & \text{if both } Z \text{ and } N \text{ are odd } (A \text{ is even}) \\ 0 & \text{if } A \text{ is odd} \end{cases}$

Two-Neutrino Double- β Decay: $\Delta L = 0$

 $\mathcal{N}(A,Z)
ightarrow \mathcal{N}(A,Z+2) + e^- + e^- + ar{
u}_e + ar{
u}_e + ar{
u}_e$

$$(T_{1/2}^{2\nu})^{-1} = G_{2\nu} |\mathcal{M}_{2\nu}|^2$$

Goeppert Mayer (1935)

Furry (1939)

d

second order weak interaction process

in the Standard Model

Neutrinoless Double- β Decay: $\Delta L = 2$

$$\mathcal{N}(A,Z)
ightarrow \mathcal{N}(A,Z+2) + e^- + e^-$$

$$(\,\mathcal{T}^{0
u}_{1/2})^{-1}=\,\mathcal{G}_{0
u}\,|\mathcal{M}_{0
u}|^2\,|m_{etaeta}|^2$$

effective

Majorana $|m_{\beta\beta}| = \left|\sum_{k} U_{ek}^2 m_k\right|$ mass

arXiv:2203.12169, 2203.12169, 1902.04097 etc.

 \mathcal{U}

 u_e

The **0v2β**-decay rate

Leptonic tensor in the $\beta\beta_{0\nu}$ amplitude:

$$\begin{aligned} \mathcal{A}_{\mu\nu} &= -\sum_{k,j} \overline{e}(x) \gamma_{\mu} \left(1 - \gamma_{5}\right) U_{ek} \nu_{k}(x) \overline{\nu_{j}^{c}}(y) U_{ej} \left(1 - \gamma_{5}\right) \gamma_{\nu} e^{c}(y) \\ \mathcal{A}_{\mu\nu} &\propto \sum_{k} U_{ek}^{2} \int \frac{\mathrm{d}^{4} p}{(2\pi)^{4}} \overline{e}(x) \gamma_{\mu} \left(1 - \gamma_{5}\right) \frac{\not p + m_{k}}{p^{2} - m_{k}^{2}} \left(1 - \gamma_{5}\right) \gamma_{\nu} e^{c}(y) e^{-ip \cdot (x - y)} \end{aligned}$$

The **0v2β**-decay signature

Light-v Exchange in a Nucleus

Phase-space factor

 $[T_{1/2}^{O\nu}]^{-1} = \mathbf{G}(Z, N) |\mathbf{M}_{O\nu}|^2 m_{\beta\beta}^2$

- Nuclear matrix element

"Traditional" part of matrix element:

$$M_{O\nu} = M_{O\nu}^{GT} - \frac{g_V^2}{g_A^2} M_{O\nu}^F + \dots x g_A^2$$

with

$$M_{Ov}^{GT} = \langle F | \sum_{i,j} H(r_{ij}) \, \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j \, \tau_i^+ \tau_j^+ \, |I\rangle + \dots$$
$$M_{Ov}^F = \langle F | \sum_{i,j} H(r_{ij}) \, \tau_i^+ \tau_j^+ \, |I\rangle + \dots$$
$$H(r) \approx \frac{2R}{\pi r} \int_0^\infty dq \frac{\sin qr}{q + \overline{E} - (E_i + E_f)/2} \quad \text{roughly} \propto 1/r$$

Corrections are from "forbidden" terms, weak nucleon form factors, many-body currents, other effects of high-energy physics that depend on framework.

[Jonathan Engel @ Mini Workshop: Nuclear Theory of Neutrinoless Double-Beta Decay, 22 July 2020]

See also review, arXiv:1610.06548.

Recent Values

Light-v-Exchange Matrix Elements

Significant spread. And all the models may miss important physics.

Uncertainty hard to quantify.

[Jonathan Engel @ Mini Workshop: Nuclear Theory of Neutrinoless Double-Beta Decay, 22 July 2020]

The Way Forward: Ab Initio Nuclear Theory

Starts with chiral effective field theory.

Nucleons, pions sufficient below chiral-symmetry breaking scale.

[Jonathan Engel @ Mini Workshop: Nuclear Theory of Neutrinoless Double-Beta Decay, 22 July 2020]

β decays (e⁻ capture) challenge for nuclear theory

Martinez-Pinedo et al. PRC53 2602(1996)

$$\langle F | \sum_{i} [g_A \sigma_i \tau_i^-]^{\text{eff}} | I \rangle$$
, $[\sigma_i \tau]^{\text{eff}} \approx 0.7 \sigma_i \tau$
Phenomenological models
need $\sigma_i \tau$ "quenching"

Gysbers et al. Nature Phys. 15 428 (2019)

Ab initio calculations including meson-exchange currents do not need any "quenching"

[Javier Menendez @ Mini Workshop: Nuclear Theory of Neutrinoless Double-Beta Decay, 22 July 2020]

Effective Majorana Neutrino Mass

7 out of 9 parameters of light Majorana neutrinos !

> Neutrino oscillation and non-oscillation measurements contribute to the prediction of $m_{\beta\beta}$!

Experimental Bounds (90 C.L.)

$\beta\beta^-$ decay experiment		$T_{1/2}^{0 u}$ [y]	m_{etaeta} [eV]
$\frac{{}^{48}_{20}\text{Ca}}{}^{20}_{22}\text{Ti}$	ELEGANT-VI	$> 1.4 imes 10^{22}$	< 6.6 - 31
	Heidelberg-Moscow	$> 1.9 imes 10^{25}$	< 0.23 - 0.67
76 6 76 50	IGEX	$> 1.6 imes 10^{25}$	< 0.25 - 0.73
$_{32}$ Ge $\rightarrow _{34}$ Se	Majorana	> 4.8 $ imes$ 10 ²⁵	< 0.20 - 0.43
	GERDA	> 8.0 $ imes$ 10 ²⁵	< 0.12 - 0.26
$ ightarrow rac{82}{34} m Se ightarrow rac{82}{36} m Kr$	NEMO-3	$> 1.0 imes 10^{23}$	< 1.8 - 4.7
$100_{42}^{00}\text{Mo} \rightarrow 100_{44}^{100}\text{Ru}$	NEMO-3	$>2.1 imes10^{25}$	< 0.32 - 0.88
$\overset{116}{_{48}}Cd \rightarrow \overset{116}{_{50}}Sn$	Solotvina	$> 1.7 imes 10^{23}$	< 1.5 - 2.5
$^{128}_{52}$ Te $ ightarrow$ $^{128}_{54}$ Xe	CUORICINO	$> 1.1 imes 10^{23}$	< 7.2 - 18
$^{130}_{52}$ Te $ ightarrow$ $^{130}_{54}$ Xe	CUORE	$> 1.5 imes 10^{25}$	< 0.11 - 0.52
136 You 136 Po	EXO	$> 1.1 imes 10^{25}$	< 0.17 - 0.49
$_{54} \wedge e \rightarrow _{56} Da$	KamLAND-Zen	$> 1.1 imes 10^{26}$	< 0.06 - 0.16
$\overset{150}{_{60}}Nd \rightarrow \overset{150}{_{62}}Sm$	NEMO-3	$>2.1 imes10^{25}$	< 2.6 - 10

Effective neutrino mass from 0v2β-decay

0v2β-decay: effective neutrino mass limit as in 2021

Light v mechanism: current limits

$\mathbf{m}_{\boldsymbol{\beta}\boldsymbol{\beta}}$: Decomposition

Three different regions:

> QD: m_{1/3}>10 meV

- Hierarchical:
 m_{1/3}<1 meV
- Cancelation:[1, 10] meV

29

I: Quasi-Degenerate region

$$|m_{etaeta}| \simeq m_
u \sqrt{1 - s_{2artheta_{12}}^2 s_{lpha_2}^2}$$

Extraction of the CP phase by comparing with beta decay or cosmology probe

II: Hierarchical Region

> Independent of the absolute neutrino masses (NO & IO)

$|m_{etaeta}| \simeq \sqrt{\Delta} m_{\mathsf{A}}^2 (1 - s_{2artheta_{12}}^2 s_{lpha_2}^2)$

$|m_{\beta\beta}| \simeq |s_{12}^2 \sqrt{\Delta m_{\mathsf{S}}^2} + e^{i\alpha} s_{13}^2 \sqrt{\Delta m_{\mathsf{A}}^2}|$

III: Cancelation region

Xing & Zhao, 1612.08538: The critical threshold point is just ~1 meV !

Fine structure: towards the meV goal

- The critical threshold point could serve as the ultimate goal for 0v2β searches.
- The possibility of falling into the well is very small.
- Have unique (otherwise impossible) constraints on non-oscillation parameters

33

Implications for beta-decay and cosmology

 $8.9~{\rm meV} \leq m_\beta \leq 12.6~{\rm meV}\;, \quad 59.2~{\rm meV} \leq \Sigma \leq 72.6~{\rm meV}$

> (much) better than the projected sensitivities of future beta decay and cosmology probes!

Experimental Design

Sensitivity:

Background free Background dominate

- A factor of 2 on the mass needs factor of 16 in M × t × B × ΔE
- Very challenging improvement for tonscale experiments or even more

A brief history

- 1935 Mayer proposed double beta decay
- 1937 Majorana fermion proposed
- 1939 Furry proposed neutrinoless double beta decay
- 1948 first counter experiment (Geiger counters, $T_{1/2}(0v) > 3 \cdot 10^{15} y$)
- 1950 first evidence for $2\beta 2v$ decay of ¹³⁰Te in first geochemical experiment: T_{1/2} ~ 1.4 · 10²¹ y
- 1950-1965 a few tens experiments with sensitivity $\sim 10^{16}$ - 10^{19} y
- $T_{1/2}(^{76}Ge) > 5 \cdot 10^{21} \text{ y}$; Ge(Li) detector, 1973 (E. Fiorini et al.)
- T_{1/2}(⁴⁸Ca) > 2 · 10²¹ y; streamer chamber + magnetic field + plastic scint., 1970 (C. Wu et al.)
- T_{1/2}(⁸²Se) > 3.1 · 10²¹ y; streamer chamber + magnetic field + plastic scint., 1975 (C. Wu et al.)
- 1987 first detection of evidence for $2\beta 2v$ decay ⁸²Se
 - 36

Beijing experiment

Physics Letters B 265 (1991) 53-56 North-Holland

PHYSICS LETTERS B

A search for neutrinoless double β decay of ⁴⁸Ca \Rightarrow

Ke You ^a, Yucan Zhu ^a, Junguang Lu ^a, Hanseng Sun ^a, Weihua Tian ^a, Wenheng Zhao ^a, Zhipeng Zheng ^{a,b}, Minghan Ye ^{a,b}, Chengrui Ching ^{b,c}, Tsohsiu Ho ^{b,c}, Fengzhu Cui ^d, Changjiang Yu ^d and Guojing Jiang ^d

^a Institute of High Energy Physics, Academia Sinica, P.O. Box 918, Beijing 100039, China

- ^b China Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing 100080, China
- ^c Institute of Theoretical Physics, Academia Sinica, P.O. Box 2735, Beijing 100080, China
- ^d Institute of Optics and Fine Mechanics, Academia Sinica, Changchun, China

Received 10 December 1990; revised manuscript received 5 June 1991

A search for the neutrinoless double β decay of ⁴⁸Ca is carried out in a coal mine near Beijing. Large scintillation crystals of natural CaF₂ were used as both detector and β source. Results obtained after a total of 7588.5 h of data taking give 9.5×10^{21} yr (76% confidence level) as the lower limit of the half-life of neutrinoless double β decay of ⁴⁸Ca.

Latest ⁴⁸Ca

Table I: Present results on neutrinoless DBD

Ettore Fiorini, Nuclear Physics B (Proc. Suppl.) 168 (2007) 11–16

 9.5×10^{21} yr at the 76% C.L. from the statistical error of background (365 events in signal

window). For the 2ν DBD of 48 Ca, there are two experiments that have measured the half-

life with $(4.3^{+2.4}_{-1.1}[\text{stat}] \pm 1.4[\text{syst}]) \times 10^{19} \text{ yr } [7] \text{ and } (4.2^{+3.3}_{-1.3}) \times 10^{19} \text{ yr } [8]$, respectively.

The lower limits of DBD to the excited states of ⁴⁸Ti and single β decay to ⁴⁸Sc have been

Nucleus	Experiment	%	$Q_{\beta\beta}$	Enrich (%)	Technique	T_{0v} (y)	<m_></m_>
⁴⁸ Ca	Elegant IV	0.19	4271		scintillator	>1.4x10 ²²	7-45
⁷⁶ Ge	Heidelberg-Moscow	7.8	2039	87	ionization	$>1.9 \times 10^{25}$	0.12 - 1
⁷⁶ Ge	IGEX	7.8	2039	87	Ionization	$>1.6 \times 10^{25}$	0.14 - 1.2
			87	ionization	1.2×10^{25}	0.44	
Search for neutrino-less double beta decay of 4° Ca by CaF ₂ scintillator			97	tracking	>1.x10 ²³	1.8-4.9	
I. Ogawa ª,*, R. Hazama ª, H. Miyawaki ª, S. Shiomi ª, N. Suzuki ª,			95-99	tracking	$>4.6 \times 10^{23}$	0.7-2.8	
Y. Ishikawa ^a , G. Kunitomi ^a , Y. Tanaka ^a , M. Itamura ^a , K. Matsuoka ^a , S. Ajimura ^a , T. Kishimoto ^a , H. Ejiri ^b , N. Kudomi ^b ,			83	scintillator	$>1.7 \times 10^{23}$	1.7 - ?	
	K. Kume ^b , H. Ohsumi ^c , K. Fusl	himi ^d	T	he most stringent lowe	r limit for the half-life	of 0ν DBD $(T_{1/2}^{0\nu})$ of 48	³ Ca was obtain
a Curr	by Beijing group [6] using 37 kg of CaF ₂ scintillation crystals. They derived the limit						

^a Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
 ^b Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan
 ^c Faculty of Culture and Education, Saga University, Honjo, Saga 840-8502, Japan
 ^d Faculty of Integrated Arts and Science, The University of Tokushima, Tokushima 770-8502, Japan

Received 24 March 2003; received in revised form 21 October 2003; accepted 27 October 200

Nuclear Physics A 730 (2004) 215–22 obtained to be around 10²⁰ yr by the experiment [9].

Abstract

A CaF₂ scintillation detector system (ELEGANT VI) has been operating at Oto Cosmo Observatory to study double beta decays of ⁴⁸Ca. No events were observed around the *Q*-value energy region after the analysis of 4.23 kg yr data. To derive the lower limit for the half-life of the neutrino-less double beta decay of ⁴⁸Ca, the expected number of background events in that energy region was estimated by a Monte Carlo simulation using the measured activities of ²¹⁴Bi and ²²⁰Rn inside CaF₂ crystals. A new lower limit is obtained to be 1.4×10^{22} yr at the 90% C.L. An experimental sensitivity is 5.9×10^{21} yr at the 90% C.L. © 2003 Elsevier B.V. All rights reserved.

An active and competitive community (2010s-2020s)

CUPID (Zn⁸²Se, Li₂¹⁰⁰MoO₄, TeO₂), AMoRE (¹⁰⁰Mo), CANDLES (⁴⁸Ca), ZICOS (⁹⁶Zr), AXEL (¹³⁶Xe), DCBA (¹⁰⁰Mo/ ¹⁵⁰Nd), COBRA (<u>CdZnTe</u>), ...

⁷⁶Ge

Ge Roadmap

Yoann KERMAIDIC @ Neutrino2020

¹⁰⁰Mo

CUORE: > 3.2 x 10²⁵ yrs (90% C.L.)

CUPID preCDR

Enriched to >95% in ¹⁰⁰Mo ¹⁰⁰Mo Q-value: 3034 keV

https://	arxiv.org/	/abs/1907.09376

Parameter	CUPID Baseline
Crystal	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$
Detector mass (kg)	472
100 Mo mass (kg)	253
Energy resolution FWHM (keV)	5
Background index (counts/(keV·kg·yr))	10^{-4}
Containment efficiency	79%
Selection efficiency	90%
Livetime (years)	10
Half-life exclusion sensitivity (90% C.L.)	$1.5 \times 10^{27} \text{ y}$
Half-life discovery sensitivity (3σ)	$1.1 \times 10^{27} { m y}$
$m_{\beta\beta}$ exclusion sensitivity (90% C.L.)	$10{-}17 \text{ meV}$
$m_{\beta\beta}$ discovery sensitivity (3 σ)	12-20 meV

T. O'Donnell @ Neutrino2020

¹³⁶Xe

nEXO Sensitivity

Sensitivity as a function of time for the baseline design

¹³⁶Xe or ¹³⁰Te

Present

KamLAND-Zen

KLZ-800 (2020): > 8×10²⁵ yrs

KLZ-800 (5 <u>yrs</u>): > 5×10²⁶ <u>yrs</u>

KamLAND2-Zen: > 2×10²⁷ yrs SNO+

Commissioning

(47% full@2020.04)

0.5% loading (3 yrs):

2.5% loading (4 yrs):

> 1×10²⁷ vrs

> 2×10²⁶ yrs

JUNO-ββ

Chin. Phys. C 41 (2017) 053001

50 tons ¹³⁶Xe (5 yrs): > 1.8×10²⁸ yrs

JUNO can hold >100 tons ¹³⁰Te **THEIA** (THEIA-25: 25 kton) (THEIA-100: 100 kton)

Eur. Phys. J. C (2020) 80:416

49.5 tons ¹³⁶Xe (10 yrs): > 2.0×10²⁸ yrs

~31.4 tons ¹³⁰Te (10 yrs): > 1.1×10²⁸ yrs 39

44

JUNO-ββ

Future prospect of JUNO

After the completion of the primary physics goals, JUNO can be upgraded by loading ¹³⁶Xe or ¹³⁰Te into LS, for searching for 0vββ (~2030)

The most sensitive to probe the Majorana nature of neutrinos, aiming at a sensitivity level of |m_{ββ}|~ meV

Chin. Phys. C 41 (2017) 053001

~10² tons of $0v\beta\beta$ target;

best LS shielding;

excellent energy resolution (3%/vE);

ultra-low background

	Isotope	mass (ton)	<m<sub>ββ>, meV</m<sub>
KamLAND-Zen	¹³⁶ Xe	1	61-165
EXO	¹³⁶ Xe	0.2	93-286
nEXO	¹³⁶ Xe	5	7-22
GERDA	⁷⁶ Ge	1	10-40
Majorana	⁷⁶ Ge	1	10-40
SNO+	¹³⁰ Te	8	19-46
JUNO-ββ	¹³⁶ Xe	50	4-12
	¹³⁰ Te	100-200	2-6 ?

无中微子双β衰变 (NLDBD) – 国内研究 国内实验结果T_{1/2} (90% C.L.) 低温晶体量热器 (100Mo) 高压气体TPC (⁸²Se, ¹³⁶Xe) • PandaX-II (2019, CPC): > 2.1 x 10²³ yrs 高纯锗 (⁷⁶Ge) 第268期双清论坛 CDEX (2017, Sci.China) : "深地前沿物理研 液体闪烁体 (130Te) JUNO > 6.4 x 10²² yrs 讨会", 2020.11 **CDEX-300v** PandaX-III **NvDEx** CUPID-CJPL ■ BEGe和ICPC探测器 ■ 高压气氙TPC, 原型探测器 ■ 关键技术: 地面/地下晶体测试 自主研制 Topmetal-S芯片 验证阶段 (2021 - 2022)6-12自然丰度晶体 ■ 富集Ge探测器研制, • 目标: 30 e-■ 灵敏度分析: 2.7 x 10²⁶ yrs 首批2021底到CJPL • 实测:~50e-(90% CL, 140 kg*5 vrs) 45×45×45 mm3 high purity LMO crystal CUPID-CJPL-Demo样机实验 BEGe + LAr active shielding JHEP 06 (2021) 106 ■ 100 kg样机 (2022) Li2MoO (2022 - 2024)10 kg, 36块富集晶体 ■ PandaX-4T暗物质探测器也 可寻找0vββ, 预期灵敏度 CUPID-CJPL-200 10²⁵ yrs水平 (2024+)>1000块富集晶体 Sens: 9 x 10²⁶ yrs @ 5 yrs 19

Schechter Valle theorem

- $|m_{\beta\beta}| \text{ can vanish because of unfortunate cancellations among the } \nu_1, \nu_2, \\ \nu_3 \text{ contributions or because neutrinos are Dirac particles.}$
- However, $\beta\beta_{0\nu}$ decay can be generated by another BSM mechanism.
- In this case, Majorana masses are generated by radiative corrections:

Mass probe correlation

> What is the interpretation if out of the standard region?

Non-Standard Interpretations

mechanism	physics parameter	current limit	test
1. 1.4	<i>TT</i> ²	0.9 -17	oscillations,
light neutrino exchange	$ U_{ei} m_i $	0.2 eV	cosmology,
			I DV
heavy neutrino exchange	$\left \frac{S_{e_i}^2}{M}\right $	$2 \times 10^{-8} \text{ GeV}^{-1}$	LFV,
			collider
heavy neutrino and BHC	V_{ei}^2	$4 \times 10^{-16} \text{ GeV}^{-5}$	flavor,
neavy neutrino and rene	$\left M_{i} M_{W_{R}}^{4} \right $	1/10 007	collider
			flavor,
Higgs triplet and RHC	$\left \frac{(M_R)_{ee}}{m^2 M^4} \right $	$10^{-15} \text{ GeV}^{-1}$	collider
	$ {}^{m} \Delta_{R} {}^{m} W_{R} $		e^- distribution
			flavor,
λ -mechanism with RHC	$\left \frac{U_{ei} \tilde{S}_{ei}}{M^2} \right $	$1.4 \times 10^{-10} \text{ GeV}^{-2}$	collider,
	$ W \overline{W}_R $		e^- distribution
			flavor,
<i>n</i> -mechanism with RHC	$\tan \zeta \left U_{ei} \tilde{S}_{ei} \right $	6×10^{-9}	collider.
·/			e^{-} distribution
	$\lambda^{\prime 2}_{111}$		
short-range R	$\frac{1}{\Lambda_{SUSY}^5}$	$7 \times 10^{-18} \text{ GeV}^{-5}$	collider,
0 /	$\Lambda_{\rm SUSY} = f(m_{\tilde{g}}, m_{\tilde{u}_L}, m_{\tilde{d}_R}, m_{\chi_i})$		flavor
	$\operatorname{sin} 2\theta^b \lambda' - \lambda' - \begin{pmatrix} 1 & 1 \end{pmatrix}$	$2 \times 10^{-13} \text{ GeV}^{-2}$	
long-range R	$\left \begin{array}{ccc} \sin 2\theta & \lambda_{131} & \lambda_{113} \\ \overline{m_{\tilde{b}_1}^2} & - & \overline{m_{\tilde{b}_2}^2} \end{array} \right $		flavor,
	$\sim rac{G_F}{q} m_b rac{\left \lambda'_{131} \lambda'_{113} ight }{\Lambda^3_{ m SUSY}}$	$1 \times 10^{-14} \text{ GeV}^{-3}$	collider
Majarana	$ \langle a \rangle = \langle a \rangle ^2$	10-4 1	spectrum,
Majorons	$ \langle g_{\chi} \rangle $ or $ \langle g_{\chi} \rangle $	101	$\cos mology$

From Rodejohann

Heavy v mechanism: different probes

• with mass larger than $\approx 100 \text{ MeV}$

 $\mathcal{A}_{\mu\nu}^{lep} = \frac{1}{4} \sum_{i=1}^{3} \frac{V_{ei}^{2} \gamma_{\mu} (1+\gamma_{5})}{q^{2} - M_{N_{i}}^{2}} \gamma_{\nu} (1-\gamma_{5}) \approx \frac{-\gamma_{\mu} (1+\gamma_{5}) \gamma_{\nu}}{4} \sum_{i=1}^{3} \frac{V_{ei}^{2}}{M_{N_{i}}} \longrightarrow \left(\frac{1}{M_{N}}\right)_{\beta\beta}$

Nuclear matrix element exchange: Short range operators

Can also be probed in other experiments.

Seesaw relation gives another constraint.

Heavy v mechanism: current limits

LNV process beyond 0vββ?

Other process may test the Majorana-Dirac properties:

(1) LNV rare decay of B and D mesons

(2) Neutrino-antineutrino oscillation process (Pontecorvo's initial dream)

(3) LNV same-sign di-lepton signal at collider

(4) Cosmic neutrino background detection

(5) Neutrino electro-magnetic properties

(6) Atomic process

Ultra-relativistic nus always with (m/E)²

• Z-decay:

$$\frac{\Gamma(Z \to \nu_{\rm D} \nu_{\rm D})}{\Gamma(Z \to \nu_{\rm M} \nu_{\rm M})} \simeq 1 - 3 \frac{m_{\nu}^2}{m_Z^2}$$

• Meson decays

$$BR(K^+ \to \pi^- e^+ \mu^+) \propto |m_{e\mu}|^2 = \left| \sum U_{ei} U_{\mu i} m_i \right|^2 \sim 10^{-30} \left(\frac{|m_{e\mu}|}{eV} \right)^2$$

neutrino-antineutrino oscillations

$$P(\nu_{\alpha} \to \bar{\nu}_{\beta}) = \frac{1}{E^2} \left| \sum_{i,j} U_{\alpha j} U_{\beta j} U^*_{\alpha i} U^*_{\beta i} m_i m_j \, \mathrm{e}^{-i(E_j - E_i)t} \right|^2$$

From W. Rodejohann

O

Detection of CNB

PTOLEMY

- first experiment
 100 g of tritium
 graphene target
 planned energy
 resolution 0.15 eV
- ★ CvB capture rate $\Gamma^{\rm D}_{\rm C\nu B} \sim 4 \ {\rm yr}^{-1}$ $\Gamma^{\rm M}_{\rm C\nu B} \sim 8 \ {\rm yr}^{-1}$ D = Dirac M = Majorana

PTOLEMY Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield (Betts et al, arXiv:1307.4738)

PTOLEMY

PTOLEMY

[PTOLEMY Lol, arxiv:1808.01892]

What if $0\nu 2\beta$ is observed?

Neutrinoless double beta decay: neutrino nature and masses!

> After the discovery of $0\nu 2\beta$

Distinguishing Mechanisms:

- Comparison of different mass probes: agreement or not ?
- > Other contributions: light/heavy sterile neutrinos, and more ...
- Decay products

individual electron energies, angular correlations, spectrum

> Nuclear aspects

multiple isotopes, decay to excited states, 0vECEC,

Thank you!

Discussion

a) Experimental efforts beyond 10²⁸ years isotope purchase, background etc.

b) Nuclear matrix elements

c) Beyond 0ν2β

d) If observed, what mechanism?

Oscillation Types

Tiny neutrino masses lead to observable macroscopic oscillation distances!

	$\left(10 \frac{\text{m}}{\text{MeV}} \left(\frac{\text{km}}{\text{GeV}} \right) \right)$	short-baseline experiments	$\Delta m^2 \gtrsim 10^{-1}{ m eV}^2$
L	$10^3 \frac{\text{m}}{\text{MeV}} \left(\frac{\text{km}}{\text{GeV}}\right)$	long-baseline experiments	$\Delta m^2 \gtrsim 10^{-3}{ m eV}^2$
$\overline{E} \gtrsim 1$	10 ⁴ km/GeV	atmospheric neutrino experiments	$\Delta m^2 \gtrsim 10^{-4} { m eV}^2$
	$10^{11} \frac{\text{m}}{\text{MeV}}$	solar neutrino experiments	$\Delta m^2 \gtrsim 10^{-11}{ m eV}^2$

Neutrino oscillations are the optimal tool to reveal tiny neutrino masses!

Categories of neutrino oscillations-I

Categories of neutrino oscillations-II

Categories of neutrino oscillations-III

$$\begin{split} U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix} \\ \\ LBL \ Accelerator \\ \nu_{\mu} \rightarrow \nu_{e} & (T_{2}K, MINOS, NO_{\nu}A) \\ LBL \ Reactor \\ \bar{\nu}_{e} \ disappearance & \begin{pmatrix} D_{aya} Bay, RENO \\ Double \ Chooz \end{pmatrix} \end{pmatrix} \\ \end{pmatrix} \\ \rightarrow \begin{cases} \Delta m_{A}^{2} \simeq |\Delta m_{31}^{2}| \simeq 2.5 \times 10^{-3} \text{ eV}^{2} \\ \sin^{2} \vartheta_{13} \simeq 0.022 \end{split}$$

Role of Precision Measurement (JUNO)

JUNO Physics Book: 1507.056131

	Nominal	+ B2B (1%)	+ BG	+ EL (1%)	+ NL (1%)
$\sin^2 \theta_{12}$	0.54%	0.60%	0.62%	0.64%	0.67%
Δm_{21}^2	0.24%	0.27%	0.29%	0.44%	0.59%
$ \Delta m_{ee}^2 $	0.27%	0.31%	0.31%	0.35%	0.44%

 Precision measurement can eliminate (almost) all the uncertainties from oscillation parameters

Global picture

		Normal Ord	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 7.1)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
	$\sin^2 heta_{12}$	$0.304\substack{+0.012\\-0.012}$	$0.269 \rightarrow 0.343$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$
ata	$\theta_{12}/^{\circ}$	$33.44_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$
ric a	$\sin^2 heta_{23}$	$0.573\substack{+0.016\\-0.020}$	$0.415 \rightarrow 0.616$	$0.575\substack{+0.016\\-0.019}$	$0.419 \rightarrow 0.617$
spire	$ heta_{23}/^{\circ}$	$49.2\substack{+0.9 \\ -1.2}$	$40.1 \rightarrow 51.7$	$49.3^{+0.9}_{-1.1}$	$40.3 \rightarrow 51.8$
ouin	$\sin^2 heta_{13}$	$0.02219\substack{+0.00062\\-0.00063}$	$0.02032 \rightarrow 0.02410$	$0.02238\substack{+0.00063\\-0.00062}$	$0.02052 \rightarrow 0.02428$
	$ heta_{13}/^{\circ}$	$8.57_{-0.12}^{+0.12}$	$8.20 \rightarrow 8.93$	$8.60\substack{+0.12\\-0.12}$	$8.24 \rightarrow 8.96$
WIUT 1	$\delta_{ m CP}/^{\circ}$	197^{+27}_{-24}	$120 \rightarrow 369$	282^{+26}_{-30}	$193 \rightarrow 352$
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.517^{+0.026}_{-0.028}$	$+2.435 \rightarrow +2.598$	$-2.498^{+0.028}_{-0.028}$	$-2.581 \rightarrow -2.414$

Unknowns

- > Mass ordering, CP violation, More new physics
- Dirac or Majorana Nature, Absolute neutrino masses,
- 65

 $Br(K^+ \to \pi^- e^+ e^+) < 6.4 \times 10^{-10}, Br(D^+ \to \pi^- e^+ e^+) < 1.1 \times 10^{-06};$ $Br(K^+ \to \pi^- e^+ \mu^+) < 5.0 \times 10^{-10}, Br(D^+ \to \pi^- e^+ \mu^+) < 2.0 \times 10^{-06};$ $Br(K^+ \to \pi^- \mu^+ \mu^+) < 8.6 \times 10^{-11}, Br(D^+ \to \pi^- \mu^+ \mu^+) < 2.2 \times 10^{-08};$ $Br(B^+ \to K^- e^+ e^+) < 3.0 \times 10^{-08}, Br(B^+ \to \pi^- e^+ e^+) < 2.3 \times 10^{-08};$ $Br(B^+ \to K^- e^+ \mu^+) < 1.6 \times 10^{-07}, Br(B^+ \to \pi^- e^+ \mu^+) < 1.5 \times 10^{-07};$ $Br(B^+ \to K^- \mu^+ \mu^+) < 4.1 \times 10^{-08}, Br(B^+ \to \pi^- \mu^+ \mu^+) < 4.0 \times 10^{-09};$ $Br(\Xi^- \to p\mu^-\mu^-) < 4 \times 10^{-08}, \quad Br(\Lambda_c^+ \to \Sigma^-\mu^+\mu^+) < 7.0 \times 10^{-04}$

Why different?

Conservation of Helicity: $[\hat{H}, \hat{h}] = 0$ for free particles after decoupling

$$\widehat{H} \equiv \gamma^0 m + \gamma^0 \overrightarrow{\gamma} \cdot \overrightarrow{p} = \begin{pmatrix} m & \overrightarrow{\sigma} \cdot \overrightarrow{p} \\ \overrightarrow{\sigma} \cdot \overrightarrow{p} & -m \end{pmatrix} \qquad \widehat{h} \equiv \frac{\overrightarrow{\Sigma} \cdot \overrightarrow{p}}{|\overrightarrow{p}|} = \frac{1}{|\overrightarrow{p}|} \begin{pmatrix} \overrightarrow{\sigma} \cdot \overrightarrow{p} & 0 \\ 0 & \overrightarrow{\sigma} \cdot \overrightarrow{p} \end{pmatrix}$$

In the rest frame of CvB, the background neutrinos are isotropic

Long et al., 14;
Zhang, Zhou, 16Dirac NeutrinosMajorana NeutrinosDecoupling
$$n(v_L) = n(z)$$
,
 $n(\overline{v}_R) = n(z)$, $n(v_R) \approx 0$
 $n(\overline{v}_L) \approx 0$ $n(v_L) = n(z)$
 $n(v_R) = n(z)$ Nowadays $n(v_{hL}) = n_0$,
 $n(\overline{v}_{hR}) = n_0$, $n(v_{hR}) \approx 0$
 $n(\overline{v}_{hL}) \approx 0$ $n(v_{hL}) = n_0$
 $n(v_{hR}) = n_0$ Total Rates $\Gamma_{CvB}^D = \overline{\sigma}n_0N_T$ $\overline{\sigma} \approx 3.8 \times 10^{-45} \, \mathrm{cm}^2$ $\Gamma_{CvB}^M = 2\overline{\sigma}n_0N_T$

Short baseline oscillations: Anomalies?

Minimal perturbation of 3ν mixing: effective 3+1 with $|U_{e4}|, |U_{\mu4}|, |U_{\tau4}| \ll 1$

0v2β-decay: the effective mass

 $m_{\beta\beta} = |U_{e1}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_{21}} m_2 + |U_{e3}|^2 e^{i\alpha_{31}} m_3 + |U_{e4}|^2 e^{i\alpha_{41}} m_4$

$$m^{(k)}_{\beta\beta} = |U_{ek}|^2 m_k$$

$$m_1 \ll m_4$$
 \downarrow
 $m_{\beta\beta}^{(4)} \simeq |U_{e4}|^2 \sqrt{\Delta m_{41}^2}$

warning: possible cancellation with $m^{(3
u)}_{etaeta}$

[Barry, Rodejohann, Zhang, JHEP 07 (2011) 091]
[Li, Liu, PLB 706 (2012) 406]
[Rodejohann, JPG 39 (2012) 124008]
[Girardi, Meroni, Petcov, JHEP 1311 (2013) 146]
[CG, Zavanin, JHEP 07 (2015) 171]

