

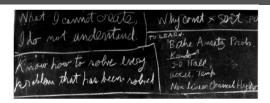
香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

Generative Al meets Physics

Kai Zhou (CUHK Shenzhen)

12.Oct , Lattice QCD 2025 , Huizhou

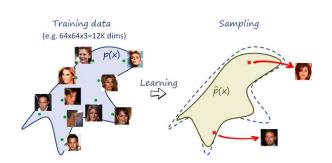
Generative Models



Want to **model** the observed data's underlying but unknown **distribution**, to further:

- Understand/Inference the data (inherent structure, properties, features...)
- · Sample according to the distribution

"What I can not create, I do not understand"



Suppose observation dataset :

$$\mathbf{X} = \{x^{(1)}, x^{(2)}, ..., x^{(N)}\} \stackrel{i.i.d}{\sim} p_{data}(x)$$

We use parametric model to approach the data distribution:

$$p_{\theta}(x) \rightarrow p_{data}(x)$$

Often use NN to parametrize transformation $\log p_{\theta}(\mathbf{x}) = \log p_{\theta}(f_{\theta}(\mathbf{z}_0))$

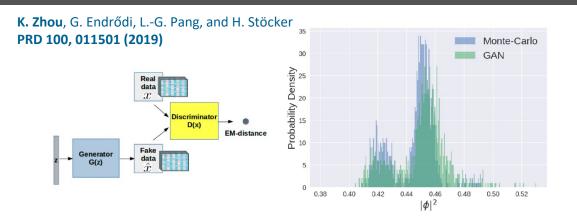
Maximize Likelihood Estimation: (given training samples)

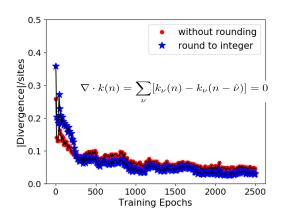
$$\theta^* = \underset{\theta}{\operatorname{arg max}} \log p_{\theta}(\mathbf{X}) = \underset{\theta}{\operatorname{arg max}} \frac{1}{N} \sum_{i=1}^{N} \log p_{\theta}(x^{(i)})$$

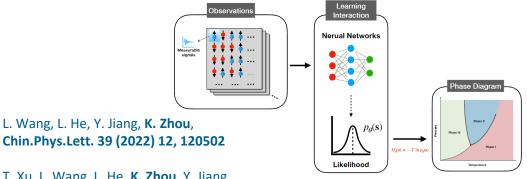
Reverse KL Divergence : Sample many $\mathbf{z}_0 \sim p_0(\mathbf{z}_0)$ (given unnormalized target distribution, e.g., Action)

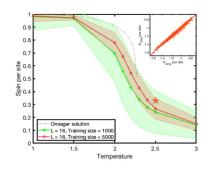
$$\theta^* = \operatorname*{arg\,min}_{\theta} \frac{1}{N} \sum_{i=1}^{N} [\log p_{\theta}(f_{\theta}(\mathbf{z}_0)) - \log \tilde{p}_{target}(f_{\theta}(\mathbf{z}_0))]$$

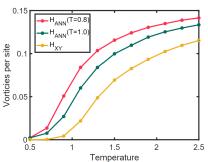
Given an ensemble of data from the target distribution











T. Xu, L. Wang, L. He, **K. Zhou**, Y. Jiang, **Chin.Phys.C 48 (2024) 10, 103101**

With unnormalized probability distribution – Hamiltonian/Action known

Reverse KL divergence

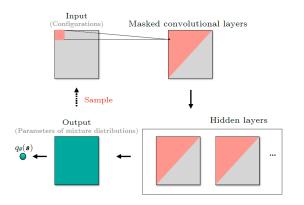
$$D_{\mathrm{KL}}(q_{\theta} \parallel p) = \sum_{\mathbf{s}} q_{\theta}(\mathbf{s}) \ln \left(\frac{q_{\theta}(\mathbf{s})}{p(\mathbf{s})} \right) = \beta (F_q - F) \qquad F_q = \frac{1}{\beta} \sum_{\mathbf{s}} q_{\theta}(\mathbf{s}) \left[\beta E(\mathbf{s}) + \ln q_{\theta}(\mathbf{s}) \right]$$

$$p(\mathbf{s}) = \frac{\mathrm{e}^{-\beta E(\mathbf{s})}}{Z}$$

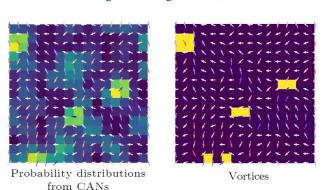
O Autoregressive Net $q_{\theta}(\mathbf{s}) = \prod_{i=1}^{N} q_{\theta}(s_i \mid s_1, \dots, s_{i-1})$

D. Wu, Lei Wang and P. Zhang, PRL122,080602(2019)

Continuous Autoregressive Net for XY model



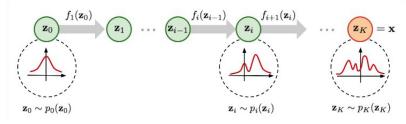
L. Wang, Y. Jiang, L. He, K. Zhou, CPL 39, 120502 (2022)



Flow based generative model given unnormalized distribution

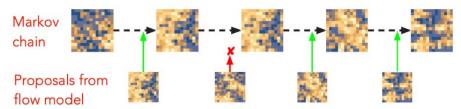
A series (Flow) of invertible/bijective transformations for p(z)

compose several invertible transformations to form the flow:



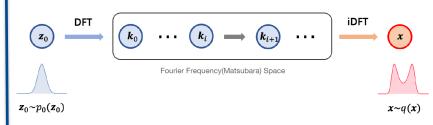
$$p_i(\mathbf{z}_i) = p_{i-1}(f_i^{-1}(\mathbf{z}_i)) |\det J_{f_i^{-1}}| = p_{i-1}(\mathbf{z}_{i-1}) |\det J_{f_i}|^{-1}$$

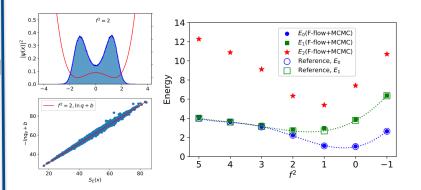
$$\to \log p(\mathbf{x}) = \log p_0(f^{-1}(\mathbf{x})) + \sum_{i=1}^{K} \log |\det J_{f_i}| = \log p_0(\mathbf{z}_0) - \sum_{i=1}^{K} \log |\det J_{f_i}|$$



Albergo +, 1904.12072; Boyda +, 2008.05456; Favoni +, 2012.12901; Abbott +, 2208.03832; Abbott +, 2211.07541; Abbott +, 2305.02402; Bulgarelli+ 2412.00200 (SU(3)); Abbott +, arXiv:2502.00263 K.C, G. K., S. R., D. R., P. S., **Nature Reviews Physics** 5, 526-535 (2023)

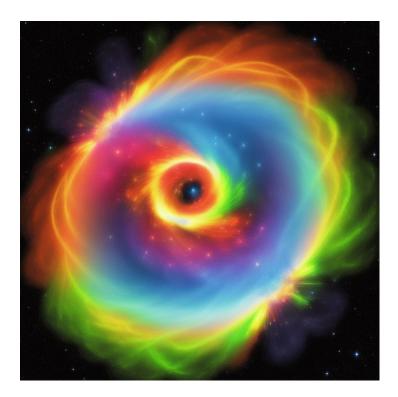
Fourier Flow Model





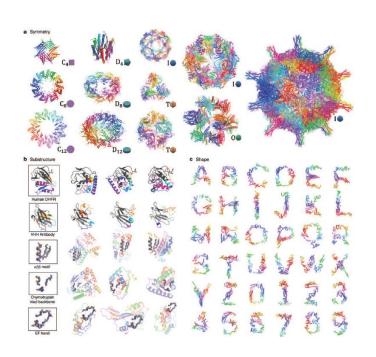
S.C, O. S, S. Z, B. C, H. S, L. W, **K. Zhou**, **PRD107, 056001(2023)**

Diffusion Model

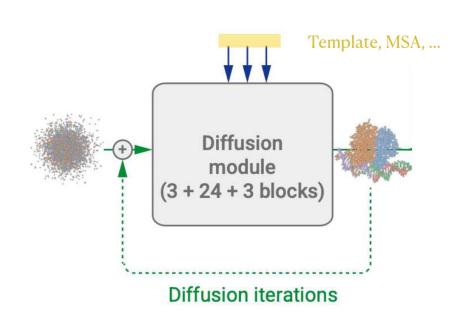


"A heavy quark move inside quark-gluon plasma"

Diffusion Model for protein structure prediction and design

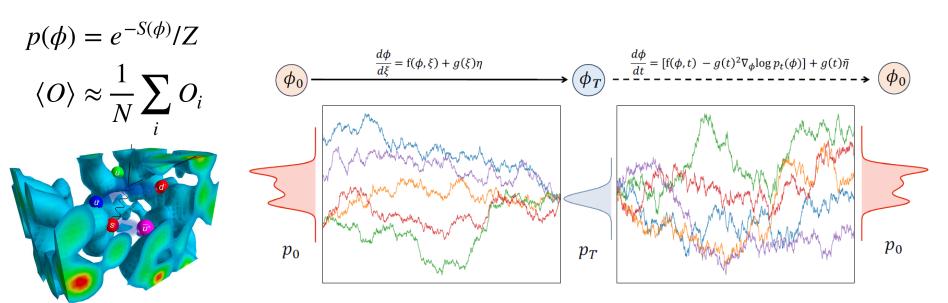


Ingraham et al, Chroma, Nature 2023 https://generatebiomedicines.com/chroma



Abramson et al, AlphaFold3, Nature 2024 https://deepmind.google/technologies/alphafold/

Diffusion Model on lattice QFT configurations



- L. Wang, G. Aarts, **K. Zhou**, **JHEP 05 (2024) 060**
- L. Wang, G. Aarts, K. Zhou, arXiv:2311.03578 (NeurIPS 2023 workshop "ML&Physical Sciences")
- G. A, D. E. H, L. W, K. Zhou, arXiv:2410:21212 (NeurIPS 2024 workshop "ML&Physical Sciences) → "Best Physics for Al Paper" Award
- Q. Zhu, G. Aarts, W. Wang, K. Zhou, L. Wang, arXiv:2410.19602 (NeurIPS 2024 workshop "ML&Physical Sciences)
- G.Aarts, D.E.H, L.W, K. Zhou, arXiv:2510.01328

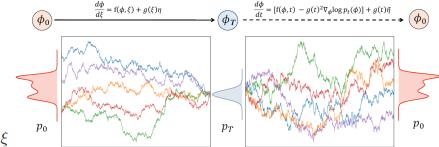
Diffusion Model for field configurations

Forward diffusion SDE

$$\frac{d\phi}{d\xi} = f(\phi, \xi) + g(\xi)\eta(\xi) \quad \langle \eta(\xi)\eta(\xi') \rangle = 2\alpha\delta(\xi - \xi')$$

Backward diffusion SDE

$$\frac{d\phi}{dt} = \left[f(\phi, t) - g^2(t) \nabla_{\phi} \log p_t(\phi) \right] + g(t) \bar{\eta}(t) \quad \underline{t} \equiv T - \xi$$



- O Score matching Training $\mathcal{L}_{\theta} = \sum_{i=1}^{N} \sigma_i^2 \mathbb{E}_{p_0(\phi_0)} \mathbb{E}_{p_i(\phi_i|\phi_0)} \left[\|s_{\theta}(\phi_i, \xi) \nabla_{\phi_i} \log p_i(\phi_i|\phi_0)\|_2^2 \right]$
- O Sample generation SDE in variance exploding scheme : $\frac{d\phi}{d\tau} = g_{\tau}^2 \nabla_{\phi} \log q_{\tau}(\phi) + g_{\tau} \bar{\eta}(\tau) \qquad \tau \equiv T t$

$$\frac{\partial p_{\tau}(\phi)}{\partial \tau} = \int d^n x \left\{ g_{\tau}^2 \frac{\delta}{\delta \phi} \left(\bar{\alpha} \frac{\delta}{\delta \phi} + \nabla_{\phi} S_{\rm DM} \right) \right\} p_{\tau}(\phi). \qquad \qquad \boxed{p_{\rm eq}(\phi) \propto e^{-S_{\rm DM}/\bar{\alpha}}}$$
$$\nabla_{\phi} S_{\rm DM} \equiv -\nabla_{\phi} \log q_{\tau}(\phi)$$

O A flow of <u>effective action</u> will be learned in DMs sampling from a DM is equivalent to optimizing a stochastic trajectory to approach the "equilibrium state" L. Wang, G. Arts, K. Zhou, JHEP 05(2024) 060

Stochastic Quantization

$$\frac{\partial \phi(x,\tau)}{\partial \tau} = -\frac{\delta S_E[\phi]}{\delta \phi(x,\tau)} + \eta(x,\tau)$$

$$\langle \eta(x,\tau) \rangle = 0, \quad \langle \eta(x,\tau) \eta(x',\tau') \rangle = 2\alpha \delta(x-x') \delta(\tau-\tau')$$

 τ : fictitious time, α : diffusion constant

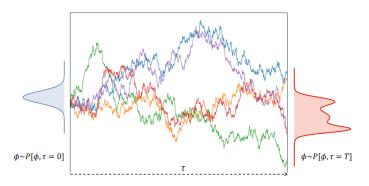
Fokker-Planck equation

$$\frac{\partial P[\phi, \tau]}{\partial \tau} = \alpha \int d^n x \left\{ \frac{\delta}{\delta \phi} \left(\frac{\delta}{\delta \phi} + \frac{\delta S_E}{\delta \phi} \right) \right\} P[\phi, \tau]$$

Equilibrium solution (long-time limit),

$$P_{\sf eq}[\phi] \propto e^{-rac{1}{lpha}S_{\!\scriptscriptstyle E}[\phi]}$$

One can construct stochastic process to reproduce the quantum path integral with its equilibrium:



Thermal equilibrium limit → Quantum distribution

• Set the diffusion constant as $\alpha = \hbar$

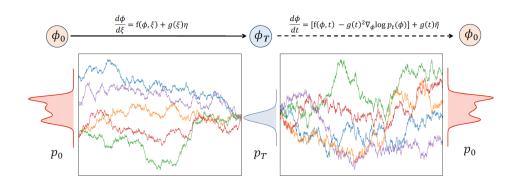
$$P_{\mathsf{eq}}[\phi] \sim e^{-\frac{1}{\hbar}S_E[\phi]} = P_{\mathsf{quantum}}[\phi]$$

Diffusion Model as SQ

O DM generation SDE and Stochastic Quantization:

$$\frac{\partial \phi(x,\tau)}{\partial \tau} = g^2(\tau) \nabla_{\phi} \log P(\phi;\tau) + g(\tau) \eta(x,\tau)$$

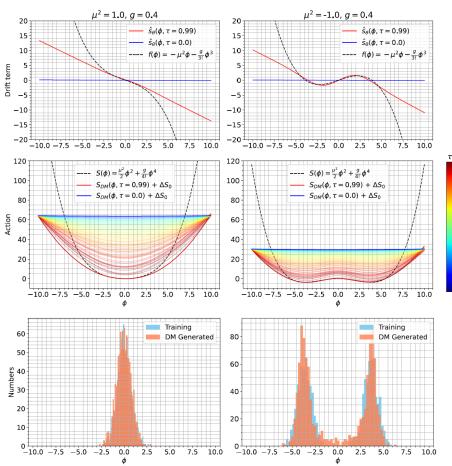
$$\frac{\partial \phi(x,\tau)}{\partial \tau} = -\nabla_{\phi} S(\phi) + \sqrt{2} \eta(x,\tau)$$



Similarities and differences:

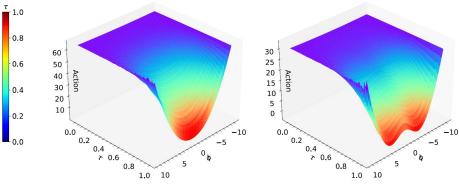
- ✓ SQ: fixed drift, determined from known action constant noise variance (but can be generalised using kernels) thermalisation followed by long-term evolution in equilibrium
- ✓ DM: drift and noise variance time-dependent, learn from data evolution between $0 \le \tau \le T = 1$, many short runs

Effective Action on A Toy model



Flow of the effective action

$$S(\phi) = \frac{\mu^2}{2}\phi^2 + \frac{g}{4!}\phi^4, \qquad f(\phi) = -\frac{\partial S(\phi)}{\partial \phi} = -\mu^2\phi - \frac{g}{3!}\phi^3$$



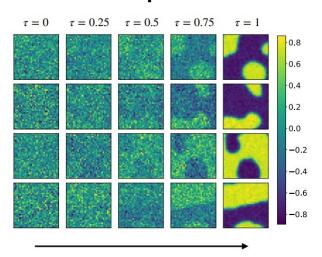
$$S_{\mathrm{DM}}(\phi, \tau) = \int^{\phi} \hat{s}_{\theta}(\tilde{\phi}, \tau) d\tilde{\phi}$$

DM on 2d scalar ϕ^4 model

o 32x32 lattice, HMC generated <u>5120 configurations</u> as training set

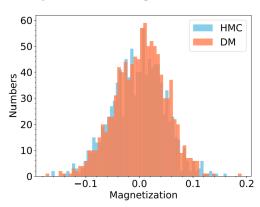
$$S_E = \sum_{x} [-2\kappa \sum_{\mu=1}^{d} \phi(x)\phi(x+\hat{\mu}) + (1-2\lambda)\phi(x)^2 + \lambda\phi(x)^4].$$

Broken phase:



numerous "bulk" patterns emerge

symmetric phase:



data-set	$\langle M \rangle$	χ_2	U_L
Training (HMC)	0.0012 ± 0.0007	2.5160 ± 0.0457	0.1042 ± 0.0367
Testing (HMC)	0.0018 ± 0.0015	2.4463 ± 0.1099	-0.0198 ± 0.1035
Generated (DM)	0.0017 ± 0.0015	2.4227 ± 0.1035	0.0484 ± 0.0959

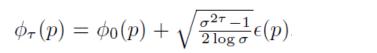
Relation to (inverse) RG

o Forward diffusion kernel: gaussian smoothing

$$p_{\xi}(\phi_{\xi}|\phi_0) = \mathcal{N}\left(\phi_{\xi}; \phi_0, \frac{1}{2\log\sigma}(\sigma^{2\xi} - 1)\mathbf{I}\right)$$

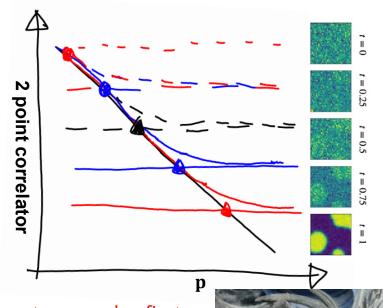
$$\phi_{\tau}(\mathbf{x}) = \phi_{0}(\mathbf{x}) + \sqrt{\frac{\sigma^{2\tau} - 1}{2 \log \sigma}} \epsilon(\mathbf{x}) \text{ with } \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

o In Fourier space:



o With decreasing cut scale because of the gradually increasing noise level!

In FRG, the high frequency (short-distance) degrees of freedom is progressively integrated out!



How correlations evolve (destroyed and rebuilt) in DM?

forward process:

$$\dot{x}(t) = K(x(t), t) + g(t)\eta(t)$$

$$0 \le t \le T$$

backward process:

noise profile
$$\ g(t) = \sigma^{t/T}$$

$$x'(au) = -K(x(au), T - au) + g^2(T - au)\partial_x \log P(x, T - au) + g(T - au)\eta(au)$$
 score $au = T - t$

two main schemes:

- au \circ variance-expanding (VE): no drift K(x,t)=0
 - o variance-preserving (VP) or denoising diffusion probabilistic models (DDPMs):

linear drift
$$K(x(t),t)=-rac{1}{2}k(t)x(t)$$

Formal solution for forward process in DM

o forward process:

$$\dot{x}(t) = K(x(t), t) + g(t)\eta(t)$$

noise profile $\sigma^{t/T}$

backward process:

$$x'(au) = -K(x(au), T - au) + g^2(T - au)\partial_x \log P(x, T - au) + g(T - au)$$
score
 $au = T$

two main schemes:

- \circ variance-expanding (VE): no drift K(x,t)=0
- o variance-preserving (VP) or denoising diffusion probabilistic models (DDPMs):

linear drift
$$K(x(t),t)=-rac{1}{2}k(t)x(t)$$

- \circ initial data from target ensemble $x_0 \sim P_0(x_0)$
- solution: $x(t) = x_0 f(t,0) + \int_0^t ds \, f(t,s) g(s) \eta(s)$
- with $f(t,s)=e^{-rac{1}{2}\int_s^t ds'\,k(s')}$

G. Arts, D. E Habib, L. Wang, K. Zhou, Mach. Learn.: Sci. Tecnol. 6(2025)025004

Correlations evolution in forward process in DM

$$\mu_n(t) = \mathbb{E}[x^n(t)]$$

and cumulants or connected n-point functions $\kappa_n(t)$

$$\kappa_n = \mu_n - \sum_{m=2}^{n-2} {n-1 \choose m-1} \kappa_m \mu_{n-m}$$

second moment/cumulant:

(assume: first moment vanishes:
$$\,x_0
ightarrow x_0 - \mathbb{E}_{P_0}[x_0]\,$$
)

$$\kappa_2(t) = \mu_2(t) = \mu_2(0)f^2(t,0) + \Xi(t)$$

$$\Xi(t) = \int_0^t ds \int_0^t ds' \, f(t,s) f(t,s') g(s) g(s') \mathbb{E}_{\eta}[\eta(s) \eta(s')] = \int_0^t ds \, f^2(t,s) g^2(s)$$

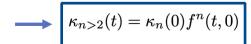
higher-order moment and cumulants:

$$\kappa_3(t) = \mu_3(t) = \kappa_3(0) f^3(t, 0)
\mu_4(t) = \mu_4(0) f^4(t, 0) + 6\mu_2(0) f^2(t, 0) \Xi(t) + 3\Xi^2(t)
\kappa_4(t) = \mu_4(t) - 3\mu_2^2(t)
\kappa_4(t) = \left[\mu_4(0) - 3\mu_2^2(0)\right] f^4(t, 0) = \kappa_4(0) f^4(t, 0)$$

variance-expanding scheme: no drift

$$f(t,0) = 1$$

higher cumulants conserved!



o in variance-expanding scheme (f(t,0)=1 , no drift): distribution at end of forward process as correlated as target distribution

Correlations evolution in forward process in DM

$$\mu_n(t) = \mathbb{E}[x^n(t)]$$

and cumulants or connected n-point functions $\,\kappa_n(t)\,$

$$\kappa_n = \mu_n - \sum_{m=2}^{n-2} {n-1 \choose m-1} \kappa_m \mu_{n-m}$$

o second moment/cumulant:

(assume: first moment vanishes:
$$\,x_0 o x_0 - \mathbb{E}_{P_0}[x_0]\,$$
)

$$\kappa_2(t) = \mu_2(t) = \mu_2(0)f^2(t,0) + \Xi(t)$$

$$\Xi(t) = \int_0^t ds \int_0^t ds' \, f(t,s) f(t,s') g(s) g(s') \mathbb{E}_{\eta} [\eta(s) \eta(s')] = \int_0^t ds \, f^2(t,s) g^2(s)$$

o higher-order moment and cumulants:

$$\kappa_3(t) = \mu_3(t) = \kappa_3(0) f^3(t, 0)$$

$$\mu_4(t) = \mu_4(0)f^4(t,0) + 6\mu_2(0)f^2(t,0)\Xi(t) + 3\Xi^2(t)$$

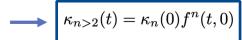
$$\kappa_4(t) = \mu_4(t) - 3\mu_2^2(t)$$

$$\kappa_4(t) = \left[\mu_4(0) - 3\mu_2^2(0)\right] f^4(t,0) = \kappa_4(0) f^4(t,0)$$

variance-expanding scheme: no drift

$$f(t,0) = 1$$

higher cumulants conserved!



$$\kappa_{n>2}(t) = \kappa_n(0) e^{-\frac{n}{2}kt}$$

(constant drift)
$$k(t) = k$$
, such that $f(t, 0) = \exp(-kt/2)$

Generating functions – simple structures

 \circ $\,$ proof to all orders: generating functionals $\,Z[J]=\mathbb{E}[e^{J(t)x(t)}]\,$

$$W[J] = \log Z[J]$$

average over both noise and target distribution

$$Z_{\eta}[J] = \mathbb{E}_{\eta}[e^{J(t)x(t)}] = \frac{\int D\eta \, e^{-\frac{1}{2} \int_0^t ds \, \eta^2(s) + J(t) \left[x_0 f(t,0) + \int_0^t ds \, f(t,s) g(s) \eta(s) \right]}}{\int D\eta \, e^{-\frac{1}{2} \int_0^t ds \, \eta^2(s)}}$$

o noise average:

$$Z_{\eta}[J] = e^{J(t)x_0 f(t,0) + \frac{1}{2}J^2(t)\Xi(t)}$$

total average:

$$Z[J] = \mathbb{E}[e^{J(t)x(t)}] = e^{\frac{1}{2}J^2(t)\Xi(t)} \int dx_0 P_0(x_0)e^{J(t)x_0f(t,0)}$$

cumulants

$$W[J] = \log Z[J] = \frac{1}{2}J^2(t)\Xi(t) + \log \int dx_0 P_0(x_0)e^{J(t)x_0f(t,0)}$$

o 2nd cumulant:

$$\kappa_2(t) = rac{d^2W[J]}{dJ(t)^2}\Big|_{J=0} = \Xi(t) + \mathbb{E}_{P_0}[x_0^2]f^2(t,0)$$

G. Arts, D. E Habib, L. Wang, **K. Zhou**, **Mach. Learn.: Sci. Tecnol. 6(2025)025004**

higher-order

$$\kappa_{n>2}(t) = \frac{d^n W[J]}{dJ(t)^n} \Big|_{J=0} = \frac{d^n}{dJ(t)^n} \log \mathbb{E}_{P_0}[e^{J(t)x_0 f(t,0)}] \Big|_{J=0} = \kappa_n(0) f^n(t,0)$$

Toy model: double Gaussians

o sum of two Gaussians:

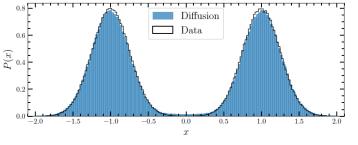
$$P_0(x) = \frac{1}{2} \left[\mathcal{N}(x; \mu_0, \sigma_0^2) + \mathcal{N}(x; -\mu_0, \sigma_0^2) \right]$$

moment-generating function:

$$Z[j] = \mathbb{E}\left[e^{jx}
ight] = e^{rac{1}{2}\sigma_0^2 j^2}\cosh(\mu_0 j)$$

cumulant-generating function:

$$W[j] = \frac{1}{2}\sigma_0^2 j^2 + \log \cosh(\mu_0 j)$$



only second cumulant depends on σ_0^2 :

$$\kappa_2 = \mu_0^2 + \sigma_0^2, \qquad \kappa_4 = -2\mu_0^4, \qquad \kappa_6 = 16\mu_0^6, \qquad \kappa_8 = -272\mu_0^8 \qquad \text{etc}$$

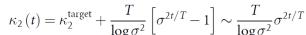
$$\kappa_4 = -2\mu_0^4, \qquad \kappa_6 = 16\mu_0^6,$$

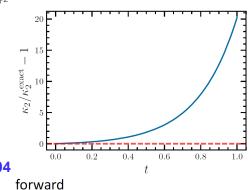
$$\kappa_8 = -272 \mu_0^{\circ}$$
 etc

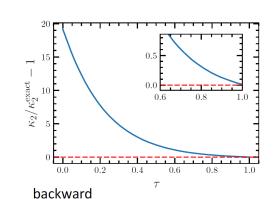
variance-expanding scheme

$$\kappa_2(t) = \kappa_2(0) + \Xi(t)$$

 $\Xi(t) = \int_0^t ds \, g^2(s) \sim \sigma^{2t/T}$

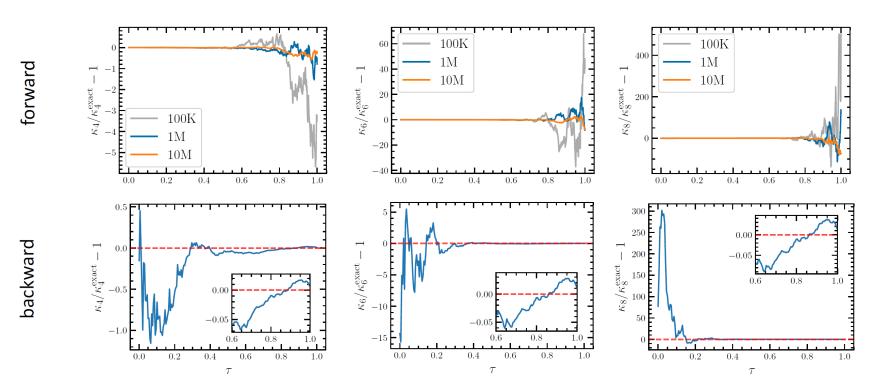






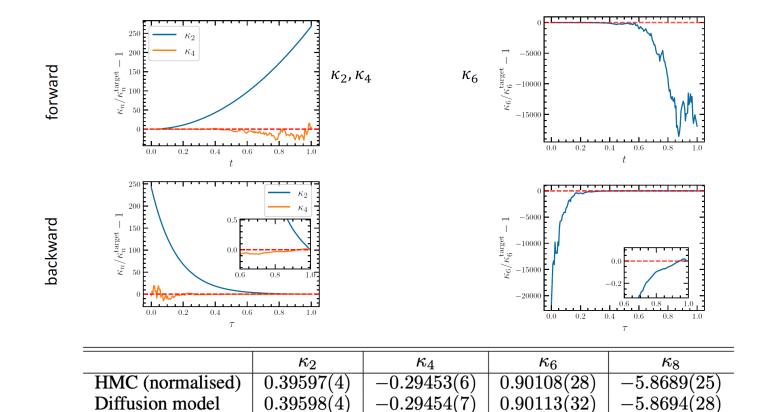
Higher-order cumulants – approximately constant (incomplete cancelation)

$$\kappa_{n>2}(t) = \kappa_n(0)$$



score has higher-order cumulants encoded: cumulants are reconstructed

2d scalar field theory in Variance Expanding scheme



$$\phi^4$$
: 32², $\kappa = 0.4$, $\lambda = 0.022$, 10^5 configurations

Distribution from Complex Langevin samplings

SQ works to complex Boltzmann weight one just extend $x \rightarrow z = x + iy$

$$\dot{z}(t) = K[z(t)] + \sqrt{2}\eta(t),$$
 $K(z) = \frac{d}{dz}\log\rho(z) = -\frac{dS(z)}{dz}$

Take Real and Imaginary part and consider Complex Langevin process

$$\dot{x}(t) = K_x[x(t), y(t)] + \sqrt{2N_x}\eta_x(t), \qquad K_x(x, y) = \operatorname{Re}\frac{d}{dz}\log\rho(z)\Big|_{z \to x + iy},$$

$$\dot{y}(t) = K_y[x(t), y(t)] + \sqrt{2N_y}\eta_y(t), \qquad K_y(x, y) = \operatorname{Im}\frac{d}{dz}\log\rho(z)\Big|_{z \to x + iy},$$

With the constraint $N_x - N_y = 1$ the F-P Eq. reads

$$\partial_t p(x, y; t) = \left[\partial_x \left(N_x \partial_x - K_x \right) + \partial_y \left(N_y \partial_y - K_y \right) \right] p(x, y; t)$$

O Thus
$$\langle O[x(t)+iy(t)] \rangle_{\eta} = \int dx dy \, p(x,y;t) O(x+iy)$$
O Get a real and semi-positive definite distribution $\int dx dy \, p(x,y) O(x+iy) = \int dx \, \rho(x) O(x)$

$$\int dxdy \, p(x,y)O(x+iy) = \int dx \, \rho(x)O(x+iy)$$

Score and Energy-Based DM to learn the distribution

O Network represented score is essential for DM generating samples

$$\mathbf{s}_{\theta}(\mathbf{x}, t) \approx \nabla \log p(\mathbf{x}, t)$$
 $\dot{\mathbf{x}}(t) = \frac{1}{2} \mathbf{K}[\mathbf{x}(t), t] - g^2(t) \mathbf{s}_{\theta^*}(\mathbf{x}, t) + g(t) \boldsymbol{\eta}(t)$

O No guarantee that the score is conservative (to be integrable) numerically

$$\mathbf{s}_{\theta}(\mathbf{x}, t) = \nabla \Phi_{\theta}(\mathbf{x}, t) + \mathbf{r}_{\theta}(\mathbf{x}, t), \qquad \nabla \cdot \mathbf{r}_{\theta}(\mathbf{x}, t) = 0,$$

The non-conservative component induce path-dependent integrated-score

$$\Phi_{\theta}(\mathbf{x}, t) = \Phi_{\theta}(\mathbf{0}, t) + \int_{\gamma: \mathbf{0} \to \mathbf{x}} d\mathbf{x}' \cdot \mathbf{s}_{\theta}(\mathbf{x}', t)$$

O For 2d case: decompose the score in a gradient and a curl

$$\mathbf{s}_{\theta}(\mathbf{x}, t) = \nabla \Phi_{\theta}(\mathbf{x}, t) + \nabla \times \mathbf{A}_{\theta}(\mathbf{x}, t)$$
 $\mathbf{A}_{\theta}(\mathbf{x}, t) = (0, 0, A_{\theta}(\mathbf{x}, t)),$

or

$$s_{x,\theta}(\mathbf{x},t) = \partial_x \Phi_{\theta}(\mathbf{x},t) + \partial_y A_{\theta}(\mathbf{x},t), \qquad s_{y,\theta}(\mathbf{x},t) = \partial_y \Phi_{\theta}(\mathbf{x},t) - \partial_x A_{\theta}(\mathbf{x},t).$$

O Poisson Eq.: $\nabla^2 \Phi_{\theta}(\mathbf{x},t) = \nabla \cdot \mathbf{s}_{\theta}(\mathbf{x},t), \qquad \nabla^2 A_{\theta}(\mathbf{x},t) = - (\nabla \times \mathbf{s}_{\theta}(\mathbf{x},t))_z$

G. Arts, D. Habibi, L. Wang, **K. Zhou**, **arXiv: 2510.01328**

Score and Energy-Based DM to learn the distribution

- O Turn to energy-based models and impose directly $E_{\theta}(\mathbf{x},t) \approx -\log p(\mathbf{x},t)$
- O Take energy function $E_{\theta}(\mathbf{x},t) = \frac{1}{2} ||\mathbf{v}_{\theta}(\mathbf{x},t)||^2 \approx -\log p(\mathbf{x},t)$
- Leading to the approx. score which is conservative by construction

$$-\partial_i E_{\theta}(\mathbf{x}, t) = -\mathbf{v}_{\theta}(\mathbf{x}, t) \cdot \partial_i \mathbf{v}_{\theta}(\mathbf{x}, t) \approx \partial_i \log p(\mathbf{x}, t)$$

- Since requirement for differentiable energy function, choose smooth enough activation functions (e.g., SiLU/Mish).
- O The need for additional derivatives makes it more expensive.
- End point for score in Backward Process

SBM:
$$\mathbf{s}_{\theta}(\mathbf{x}) = \lim_{t \to 0} \mathbf{v}_{\theta}(\mathbf{x}, t),$$

EBM: $\mathbf{s}_{\theta}(\mathbf{x}) = -\nabla E_{\theta}(\mathbf{x}) = -\lim_{t \to 0} \nabla E_{\theta}(\mathbf{x}, t) = -\lim_{t \to 0} \mathbf{v}_{\theta}(\mathbf{x}, t) \cdot \nabla \mathbf{v}_{\theta}(\mathbf{x}, t).$

G. Arts, D. Habibi, L. Wang, **K. Zhou**, **arXiv: 2510.01328**

Complex-valued quartic model

O Quartic model with a complex mass

$$S = \frac{1}{2}\sigma_0 x^2 + \frac{1}{4}\lambda x^4, \qquad \sigma_0 = A + iB.$$

O Exact results for partition function

$$Z = \int dx \, e^{-S(x)} = \sqrt{\frac{4\xi}{\sigma_0}} e^{\xi} K_{-\frac{1}{4}}(\xi) \qquad \xi = \sigma_0^2 / (8\lambda)$$

O Sampling from CL process yields empirical **histogram 2d-distribution**, with no analytical expression

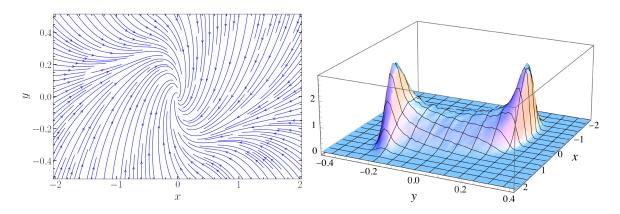


Figure 1: Complex-valued quartic model with parameters $\sigma_0 = 1 + i$ and $\lambda = 1$: CL drift in the complex plane (left) and histogram P(x, y) obtained by sampling the CL process (right)

Complex-valued quartic model

O **Train DMs with CL sampled data**, the obtained score at the end of Backward process

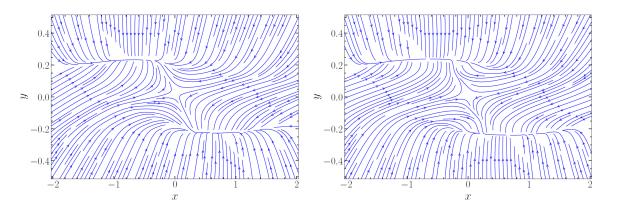


Figure 2: Learned scores in the quartic model at the end of the backward process, using a score-based (left) and energy-based (right) diffusion model.

- O CL drift used in CL process with noise in x direction only, while score in DMs with noise in both directions
- O CL drift is not integrable, and has attractive fixed point at the origin
- O DM score shows saddle point at the origin, with two peaks position attractive

Complex-valued quartic model

Drift in SBM is not conservative by analyzing the curl of the score, thus can not integrate the score directly

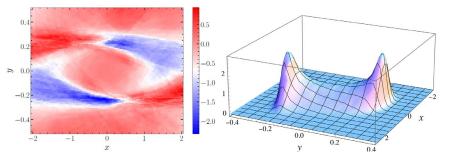
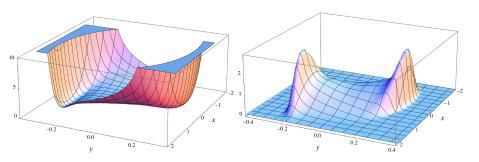


Figure 3: Quartic model using the score-based formulation: Curl of the score, averaged over 10 independently trained models (left) and histogram obtained by sampling data using the process learnt by the score-based model (right).

O EBM learned the Energy directly, the score (from gradient of energy) is conservative, with direct distribution

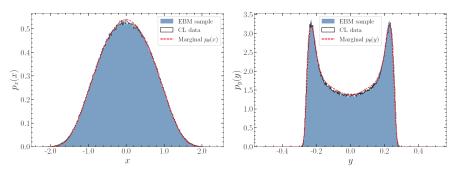


first time that a parametrization of distribution from a CL process is obtained in non-trivial case wo histrogram way

Figure 4: Quartic model: Energy $E_{\theta}(\mathbf{x})$ learned in the energy-based diffusion model (left) and the corresponding distribution $p_{\theta}(\mathbf{x}) \sim \exp[-E_{\theta}(\mathbf{x})]$ (right).

More quantitative comparison

$$p_x(x) = \int dy \, p_\theta(\mathbf{x}), \quad p_y(y) = \int dx \, p_\theta(\mathbf{x}), \quad p_\theta(\mathbf{x}) = \frac{\exp[-E_\theta(\mathbf{x})]}{\int dx \, dy \, \exp[-E_\theta(\mathbf{x})]}$$



O Higher order moments and cumulants

Re μ_2 Im μ_2 Re μ_4 Im μ_4 Exact 0.428142-0.1480100.423848-0.280132CL0.4281(5)-0.1481(2)0.4232(11)-0.2798(6)SBM0.4259(2)(5)-0.1473(1)(3)0.4237(4)(14)-0.2777(2)(9)EBM 0.4264(1)(37)0.4192(2)(61)-0.2795(1)(39)-0.1487(1)(15)MCMC-EBM 0.4254(2)(75)-0.1497(1)(31)0.4169(3)(122)-0.2802(2)(80)Re μ_6 Im μ_6 Re μ_8 $\text{Im } \mu_8$ -0.587746Exact 0.5804450.95105-1.39336CL0.5787(26)-0.5866(18)0.9482(87)-1.3901(84)SBM1.031(2)(14)-1.435(3)(14)0.594(1)(4)-0.5882(1)(3)EBM 0.569(1)(12)-0.5834(4)(11)0.918(2)(26)-1.374(2)(32)MCMC-EBM -0.584(1)(22)0.912(2)(49)-1.377(2)(61)0.565(1)(24)

MCMC-EBM: take energy function from EBM into MCMC

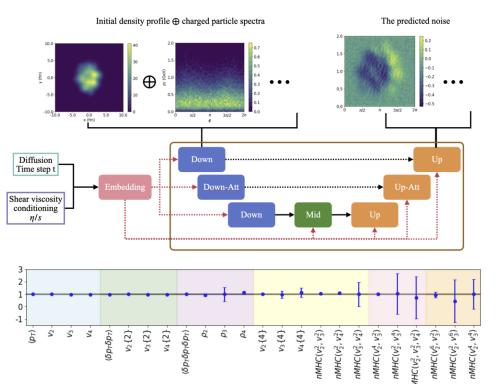
	Re κ_2	Im κ_2	Re κ_4	Im κ_4
Exact	0.428142	-0.148010	-0.060347	0.100083
$_{\mathrm{CL}}$	0.4280(5)	-0.1480(2)	-0.0606(6)	0.1003(5)
SBM	0.4259(2)(6)	-0.1473(1)(3)	-0.0554(2)(4)	0.0986(1)(4)
EBM	0.4273(2)(9)	-0.1478(1)(2)	-0.0607(2)(3)	0.1001(1)(4)
$\operatorname{MCMC-EBM}$	0.4254(2)(76)	-0.1497(1)(31)	-0.0602(2)(44)	0.1030(1)(62
	Re κ_6	$\text{Im } \kappa_6$	Re κ_8	Im κ_8
Exact	-0.00934	-0.19222	0.41578	0.5923
CL	-0.009(1)	-0.194(2)	0.414(5)	0.60(1)
SBM	-0.0131(4)(7)	-0.1863(6)(11)	0.423(2)(6)	0.557(3)(4)
EBM	-0.0102(4)(6)	-0.193(1)(2)	0.422(2)(5)	0.594(3)(8)
MCMC-EBM	-0.0124(4)(32)	-0.205(1)(20)	0.468(2)(51)	0.661(4)(81)

Generative diffusion model to heavy-ion collisions

An end-to-end generative diffusion model for heavy-ion collisions

arXiv:2410.13069, PRC(Letter)2025

Jing-An Sun,^{1,2} Li Yan,^{1,3} Charles Gale,² and Sangyong Jeon²



tor. We carried out (2+1)D minimum bias simulations of Pb-Pb collisions at 5.02 TeV, choosing the shear viscosity η/s to be one of three distinct values: 0.0, 0.1, and 0.2. For each value of η/s , we generate 12,000 pairs of initial entropy density profiles and final particle spectra, corresponding to 12,000 simulated events, as the training dataset. 70% of the total events are used for training and the rest are used for validation.

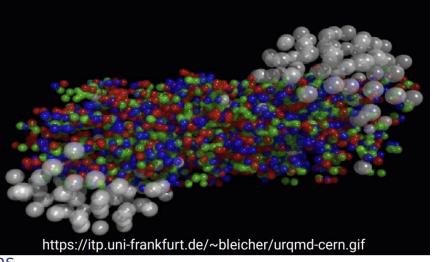
Considering that the spectra \mathbf{S}_0 depend on the initial entropy density profiles \mathbf{I} and the shear viscosity η/s , we train a conditional reverse diffusion process $p(\mathbf{S}_0|\mathbf{I},\eta/s)$ without modifying the forward process.

one single central collision event in just 10^{-1} seconds on a GeForce GTX 4090 GPU.

ble precision, as the traditional numerical simulation of hydrodynamics for one central event typically takes approximately 120 minutes (10^4 seconds) on a single CPU.

Point Cloud Diffusion Model for HICs – UrQMD cascade model

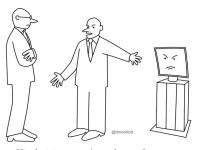
- Event-by-event collision output
- Microscopic non-equilibrium description
- hadrons on classical trajectories
 - stochastic binary scatterings
 - color string formation
 - resonance excitation and decays



- interactions based on scattering cross sections
- default setup effective EoS: Hadron Resonance Gas
- Non-trivial interactions can be added through QMD approach

Can we emulate UrQMD with DL?

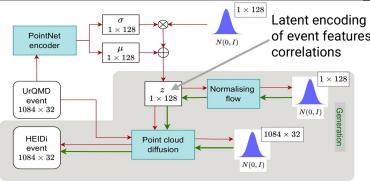
Point Cloud Diffusion Model for HICs – AI clone of simulation

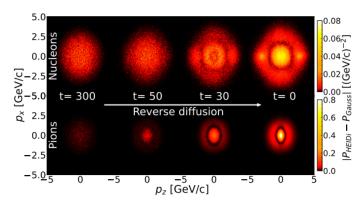


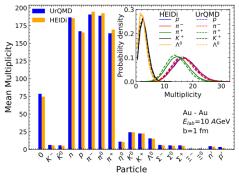
His decisions aren't any better than yours
— but they're WAY faster...

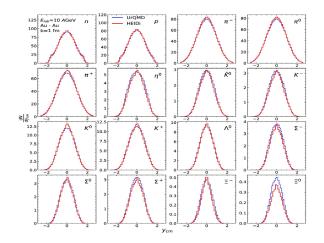
- 18k UrQMD simulation events for central Au-Au@10 AGeV collisions
- HEIDi: Heavy-ion Events through Intelligent Diffusion

PointNet encoder + Normalizing flow decoder + Pointcloud diffusion \rightarrow

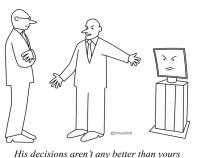








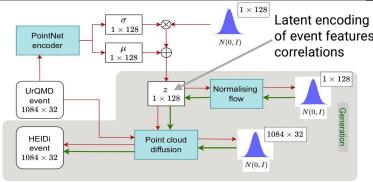
Point Cloud Diffusion Model for HICs – AI clone of simulation

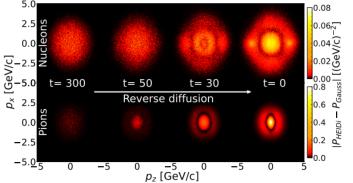


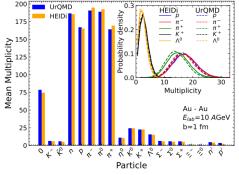
— but they're WAY faster...

- 18k UrQMD simulation events for central Au-Au@10 AGeV collisions
- HEIDi: Heavy-ion Events through Intelligent Diffusion

PointNet encoder + Normalizing flow decoder + Pointcloud diffusion →







Running time of UrQMD simulation

cascade: ~ 3 sec/event; with potential: ~ 3 min/event; hybrid: ~ 1 hour/event

- HEIDI on A100: ~ 30 ms/event
- Speedup 2 ~ 5 orders of magnitude

Summary

- Learn from Data: Generative AI can learn underlying Hamiltonian/Action
- Learn from Hamiltonian/Action: Generative AI can do variational simulation
- Diffusion model is with similarity to Stochastic Quantization,
 and learn a flow of effective action RG
- Higher-order cumulants is preserved in variance-exploding scheme DM
- DM (SBM, EBM) can study the distribution from complex Langevin process
- Generative AI, e.g., DM is also helping Heavy-Ion Collisions Fast Simulations

Thanks!

A series (Flow) of invertible/bijective transformations for p(z)

Normalizing: keep the probability to be normalized →

Change of variable theorem

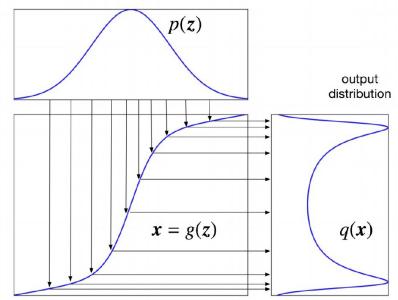
$$z \sim p(z)$$

$$x = g(z)$$

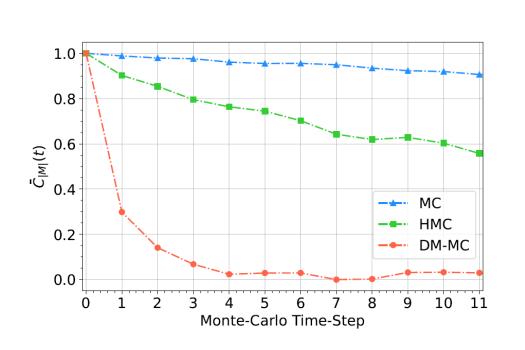
$$q(x) = p(z) \left| \frac{dz}{dx} \right|$$
$$= p(g^{-1}(x)) \left| \frac{dg^{-1}(x)}{dx} \right|$$

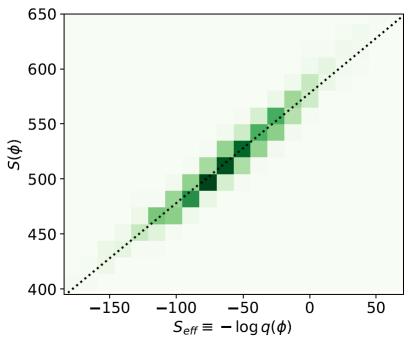
function computed by the network

input distribution

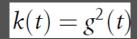


Autocorrelation time and finally captured effective Action



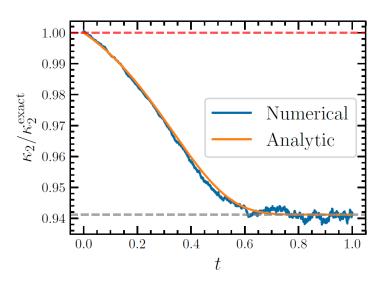


$$C_O(t) = \langle (O_{t_0} - \langle O_{t_0} \rangle)(O_{t_0+t} - \langle O_{t_0+t} \rangle) \rangle = \langle O_{t_0} O_{t_0+t} \rangle - \langle O_{t_0} \rangle \langle O_{t_0+t} \rangle$$

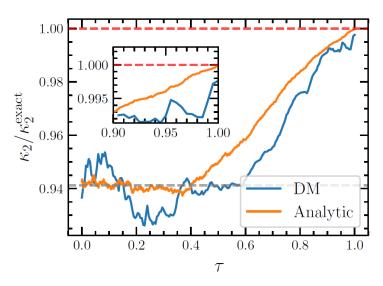


variance-preserving scheme

$$\kappa_2(t) = \mu^2(t) + \sigma^2(t) = (\mu_0^2 + \sigma_0^2 - 1) f^2(t, 0) + 1$$

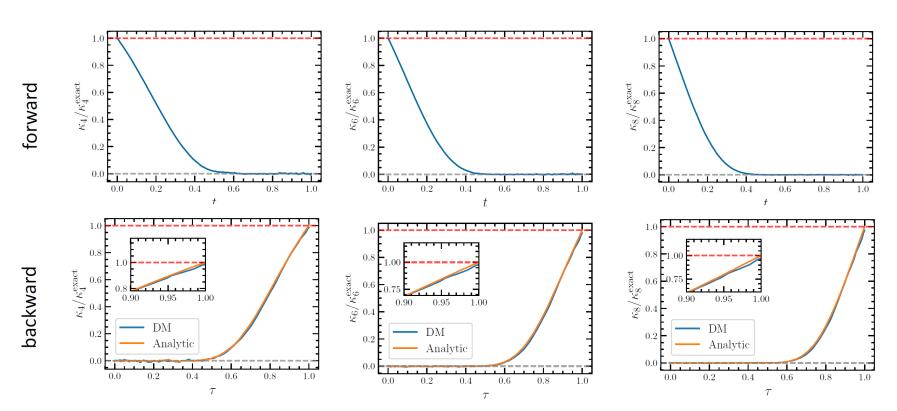


forward



backward

$$\kappa_{n>2}(t) = \kappa_n(0) f^n(t,0)$$



Comparison of the two schemes

	κ_2	κ_4	κ_6	κ_8
Exact	1.0625	-2	16	-272
Data	1.0624(5)	-2.000(2)	16.00(2)	-272.0(6)
Variance expanding	1.0692(6)	-2.001(2)	16.03(3)	-272.7(6)
Variance preserving (DDPM)	1.0609(5)	-1.976(2)	15.72(2)	-265.6(6)

expectation values at the end of the backward process

√ variance-expanding scheme slightly outperforms variance-preserving

A collision event output

- UrQMD outputs a list of final state hadrons along their momentum info
- Pointclouds: ideal representation

- Consider Au-Au 10 AGeV, impact parameter b=1 fm
 - An event= 1084 X 32
 - Empty rows=0,0,0,0,...
 - \circ p_x, p_y, p_z, One hot encoded PID
 - o 26 hadron species, spectator nucleons, empty particles

$$egin{aligned} \mathbf{X}^{(0)} &= \{\mathbf{x}_i^{(0)}\}_{i=1}^{1084} \ \mathbf{x}_i^{(0)} &= \{\mathbf{p}_i^{(0)}, \mathrm{ID}_i^{(0)}\}, \ \mathbf{p}_i^{(0)} &= (p_{x_i}^{(0)}, p_{y_i}^{(0)}, p_{z_i}^{(0)}) \end{aligned}$$