

BESIII实验进展

Guangshun Huang(黄光顺)

(on behalf of the BESIII Collaboration)

University of Science and Technology of China

第五届中国格点量子色动力学研讨会

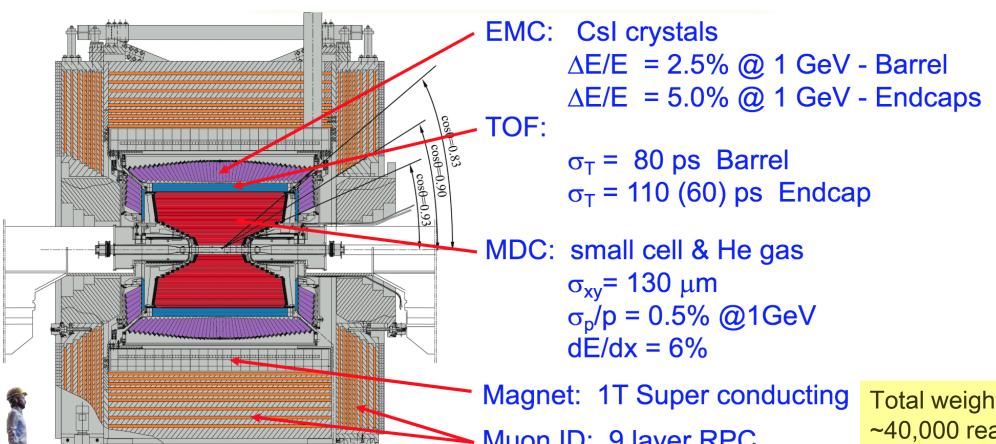
中国科学院近代物理研究所惠州研究部, 2025.10.11

Outline

- Introduction
- Highlights on recent results
 - > Hadron production and structure
 - **►** Light hadron spectroscopy
 - Charmed meson and baryon
 - > CPV in hyperon decays
 - **→** Charmonium(-like) states
- Prospects for the future
- Summary

Disclaimer: selected topics only, not possible to cover all.

Beijing Electron-Positron Collider II (BEPCII)

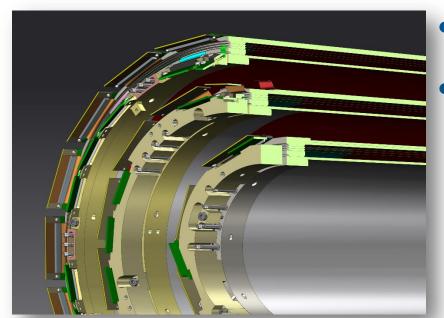


G.S. Huang: BESIII Overview 5th CLQCD, Huizhou 2025.10

BESIII detector

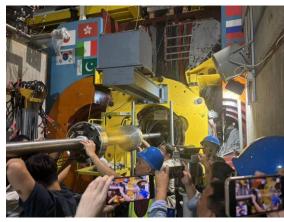
The detector is designed for neutral and charged particle with excellent resolution, PID, and large coverage.

Muon ID: 9 layer RPC


Trigger: Tracks & Showers

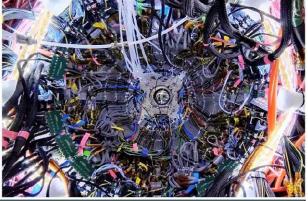
Total weight 730 ton, ~40,000 readout channels, Data rate: 5kHz, 50Mb/s

Has been in full operation since 2008, all subdetectors are in very good status!



Cylindrical Gas Electron Multiplier Inner Tracker (CGEM-IT)

- Three layers of cylindrical triple GEM to replace the inner MDC
- Improve spatial resolution along the beam axis ($< 300 \mu m$), rate capability, and radiation hardness



Extraction of inner draft chamber on Sep. 14th

Status and timeline

- Software review on Dec. 1st, 2023
- Performance review on Feb. 20th 2024
- Overall assessments of Installation (March, 2024)
- Installation in October 2024 during the BEPCII-upgrade

Ready for installation on Oct. 2nd

Completed on Oct 18th!

Europe (19)

Asia (6)

Pakistan (2): COMSATS
Institute of Information
Technology
University of the Punjab,
University of Lahore
Mongolia (1): Institute of
Physics and Technology
Korea (1): Chung-Ang
University
India (1): Indian Institute of
Technology madras

Thailand (1): Suranaree

University of Technology

Germany (6): Bochum University, GSI Darmstadt, Helmholtz Institute Mainz, Johannes Gutenberg University of Mainz, Universitaet Giessen, University of Münster Italy (3): Ferrara University. INFN, University of Torino Netherlands (1): KVI/University of Groningen Russia (3): Budker Institute of Nuclear Physics, Dubna JINR, Lebedev Physical Institute

Sweden (1): Uppsala University

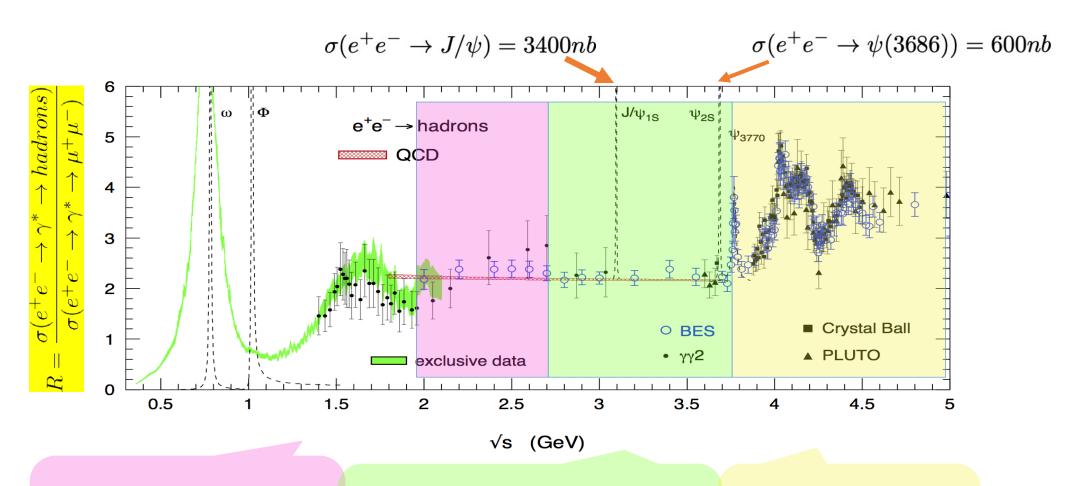
Turkey (1): Turkish Accelerator Center Particle Factory Group

UK (3): University of Manchester, University of Oxford, University of Bristol

Poland (1): National Centre for Nuclear Research

China (**63**)

Institute of REPUBLIFIED Energy Physics, Beijing Institute of Petro-chemical Technology, Beilang University, China Center of Advanced Science and Technology, Fuday University, Guangxi Normal University, Guangxi University, Hangzhou Normal University, Henan Normal University, Henan University of Science and Technology, Huazhong Normal University, Huangshan College, Hunan University, Hunan Normal University, Henan University of Technology Institute of modern physics, Jilin University, Lanzhou University, Liaoning Normal University, Liaoning University, Nanjing Normal University, Nanjing University, Nankai University, North China Electric Power University, Peking University, Qufu normal university, Shanxi University, Shanxi Normal University, Sichuan University, Shandong Normal University, Shandong University, Shandong Jiaotong University, South China Normal University, Southeast University, Sun Yat-sen University, Tsinghua University, University of Chinese Academy of Sciences, University of Jinan, University of Science and Technology of China, University of Science and Technology Liaoning, University of South China, Wuhan University, Xinyang Normal University, Zhejiang University, Zhengzhou University, YunNan University, China University of



~700 members From 93 institutions in 16 countries

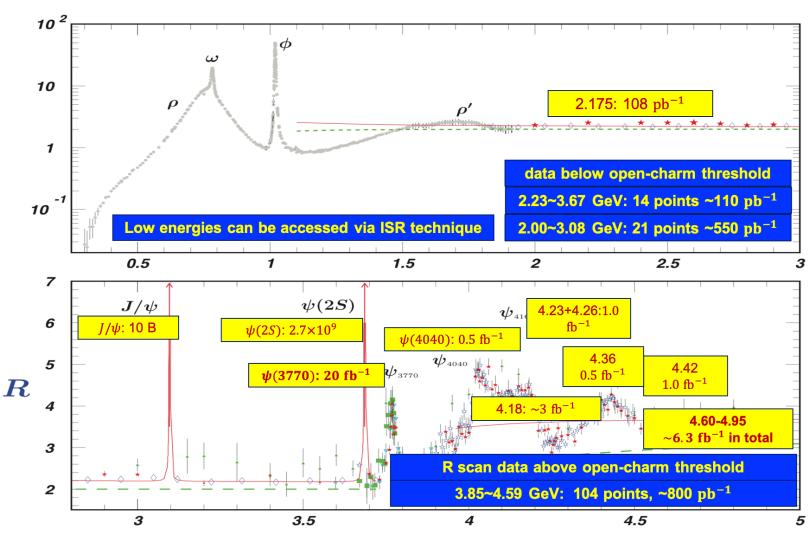
Geosciences, ...

Rich Physics at τ-charm Energy Region

- Hadron form factors
- R values and QCD

- Light hadron spectroscopy
- Gluonic and exotic states
- Physics with τ lepton

- XYZ particles
- Charm mesons
- Charm baryons

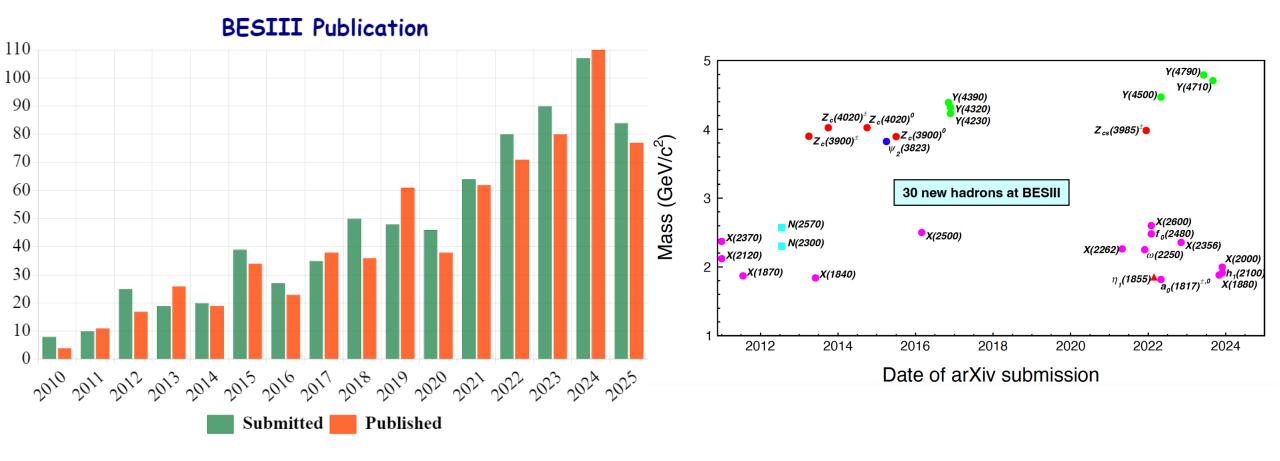


BESIII data samples: rich physics

Data sets collected so far include

- \geq 10 \times 10⁹ J/ ψ events
- \geq 2.7 \times 10⁹ ψ (2*S*) events
- $> 20 \text{ fb}^{-1} \psi(3770)$
- Scan data between
 - 1.84-1.97 GeV (13 points, 25 pb⁻¹)
 - 2.0 3.08 GeV,
 - and above 3.74 GeV
- ➤ Large datasets for XYZ studies: scan with >500 pb⁻¹ per energy point space 10 – 20 MeV apart
- Entangled hadron pair-productions near thresholds: form-factors, relative phase, polarization and CP violation.

Totally about 50 fb-1 integrated luminosity from 1.84-4.95 GeV



Hadron structure & dynamics in the non-perturbative QCD regime

Publications and achievements

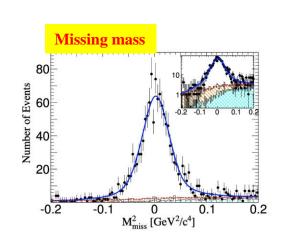
707 published/752 submitted so far ~20% PRL + Nature (Phys./Commu.) 110 papers published in 2024

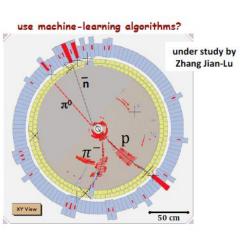
Advantage: unique data near to the thresholds

 $\rightarrow \bar{p}\nu\bar{\nu}$

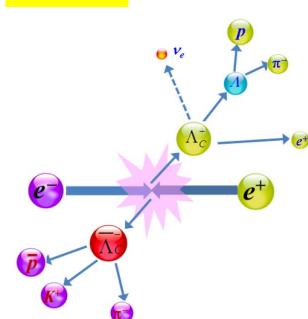
Double tag

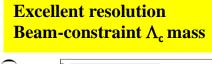
 $\Sigma^+ \to p \pi^0$

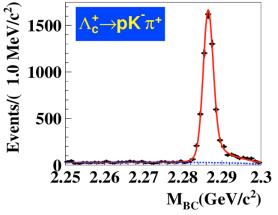

Known initial 4-momentum

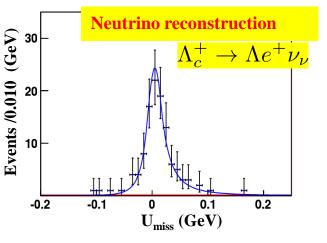

Known beam energy: pair productions

Decay with neutron & π^0

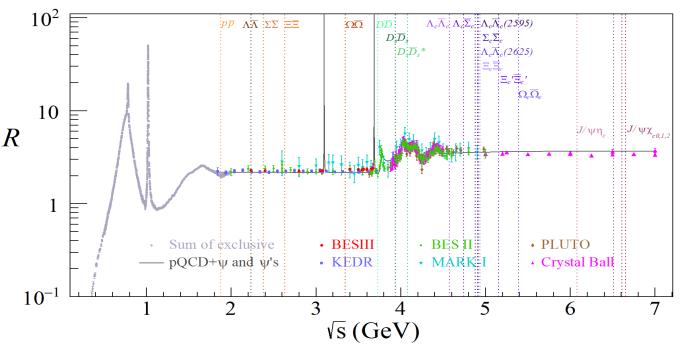

Decay with invisibles: neutrinos

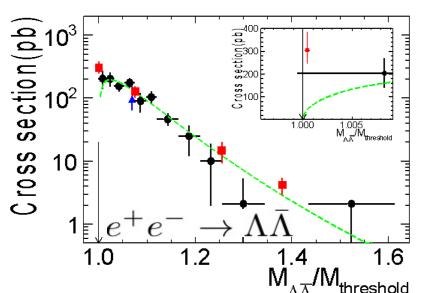

Missing mass or missing energy

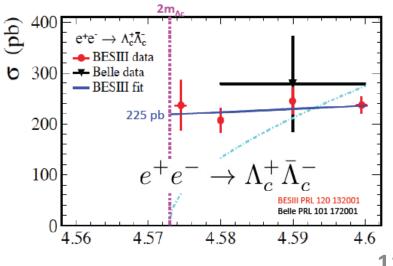




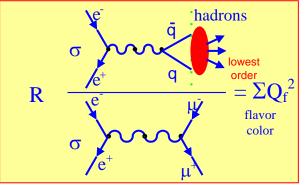
Single tag

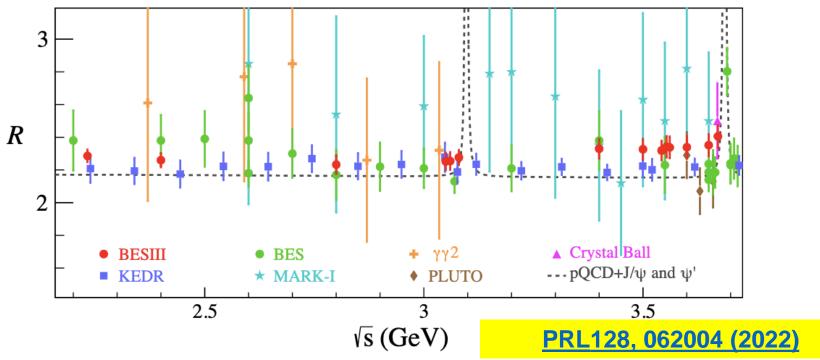





Advantage: data near to the thresholds

- Meson and Baryon pairs productions near thresholds: form-factors, relative phase;
- Hyperon and charmed baryon entangled **Spin polarization;**
- CP violation with quantum-entangled hadron pairs.

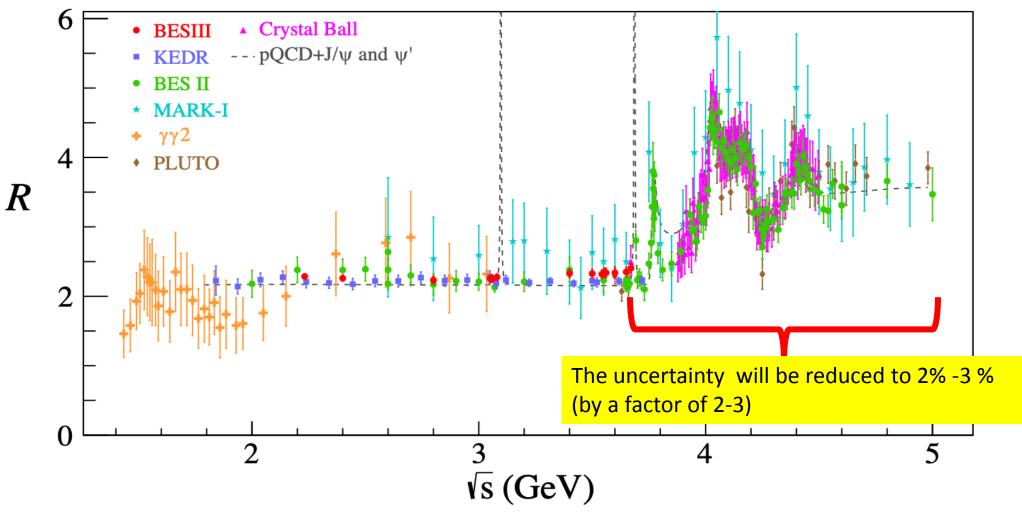

Best precision on σ : 3% (systematic dominant) G.S. Huang: BESIII Overview



Updated R values at BESIII

- 14 fine-scan data points from 2.23-3.67 GeV
- Important inputs for SM-prediction of g-2

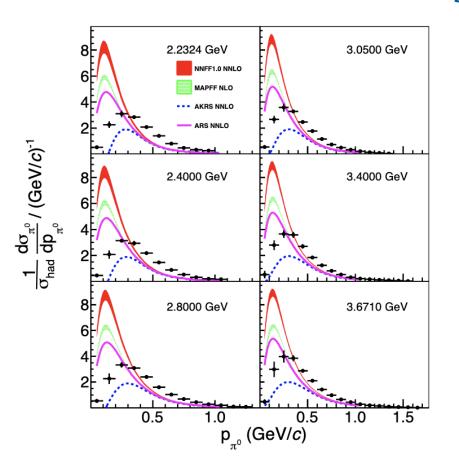
Comparing BESIII *R* values with previously published results:

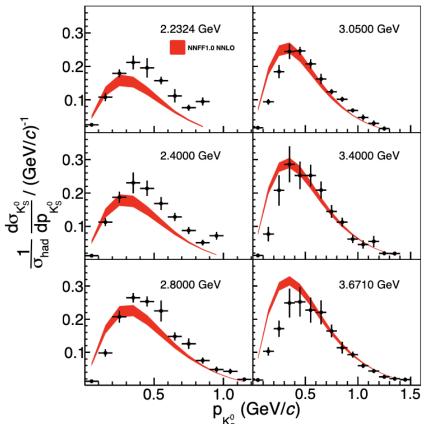


- **▶** The accuracy is better than 2.6% below 3.1 GeV and 3.0% above.
 - **Larger than the pQCD prediction by 2.7** σ between 3.4 ~ 3.6 GeV.

G.S. Huang: BESIII Overview 5th CLQCD, Huizhou 2025.10

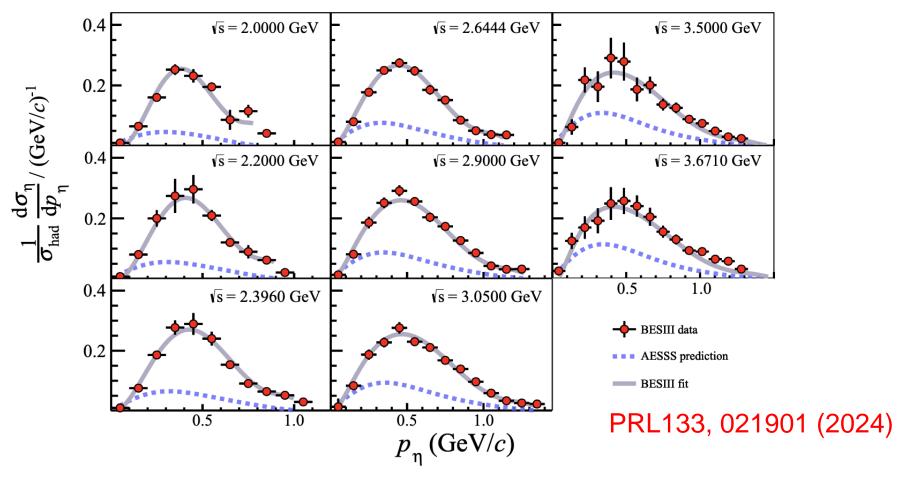
The R program at BESIII




R values in full range 1.84 - 4.95 GeV to come soon.

G.S. Huang: BESIII Overview 5th CLQCD, Huizhou 2025.10

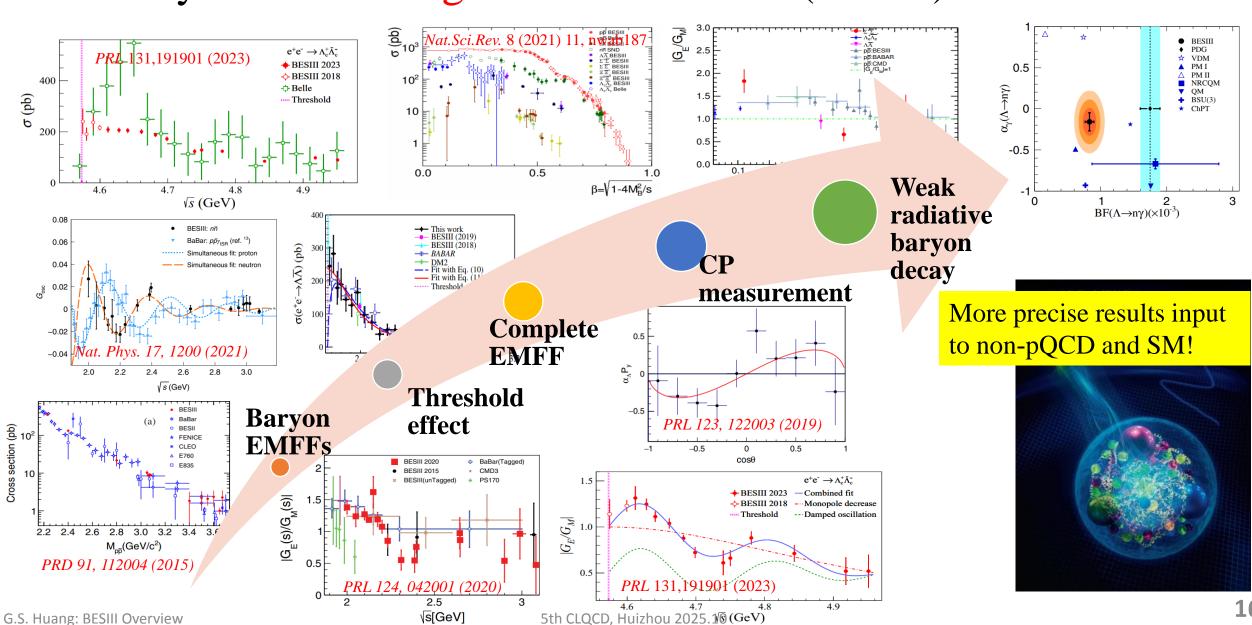
Inclusive π^0 and K_S productions in e^+e^- annihilations



PRL 130, 231901 (2023)

- Broad relative hadron energy range z_h from 0.1 to 0.9 with precision of around 3% at $z_h \sim 0.4$.
- Results significantly deviate from several theoretical calculations based on the existing FFs
- Provide brand new inputs in low-energy region to global fits of fragmentation function

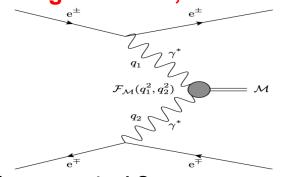
Inclusive η productions in e^+e^- annihilations



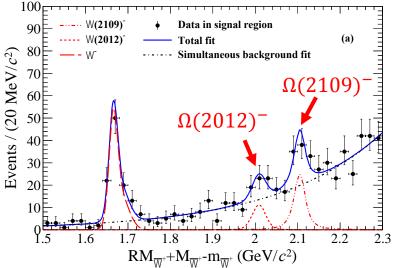
- Wide hadron energy fraction coverage $z_h \in (0.1, 0.9)$;
- Disagreement with theory prediction, especially at lower energy.

G.S. Huang: BESIII Overview 5th CLQCD, Huizhou 2025.10

Baryon Electromagnetic form factors (EMFF)

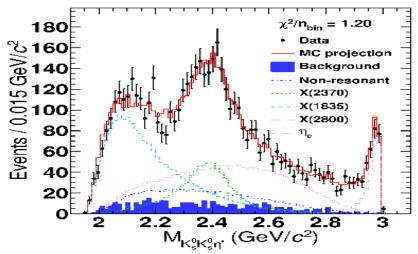

Highlight: light spectroscopy

Light hadrons via Electron-positron annihilations, charmonium decays, charmed hadron decays, two-photon processes ...

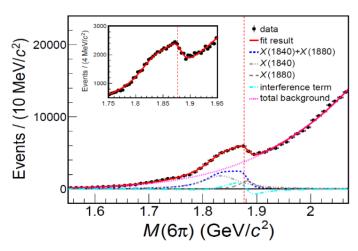

It is crucial to search for light exotic states: glueball, hybrid, multi-quark states ...

 $\gamma */Z^0$

Rich light scalars, missed excited baryons ...



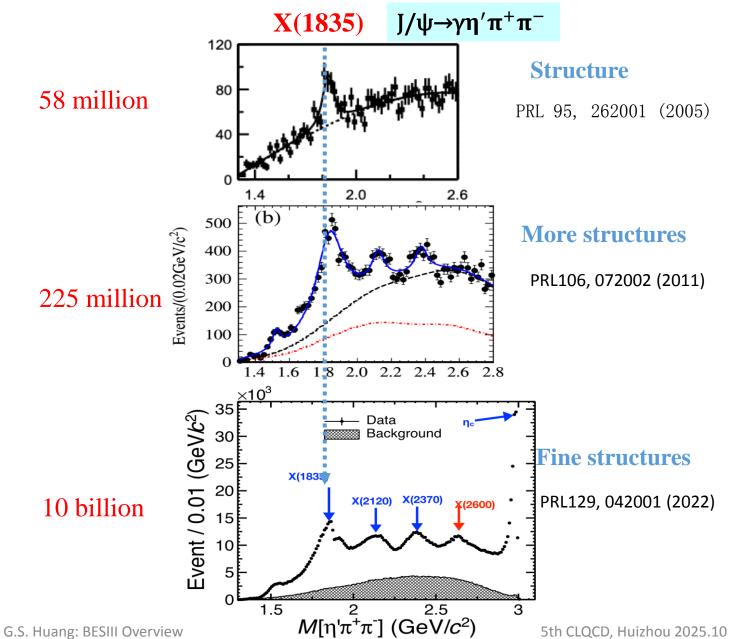
Evidence for Two Excited Ω^- Hyperons PRL 134, 131903 (2025)

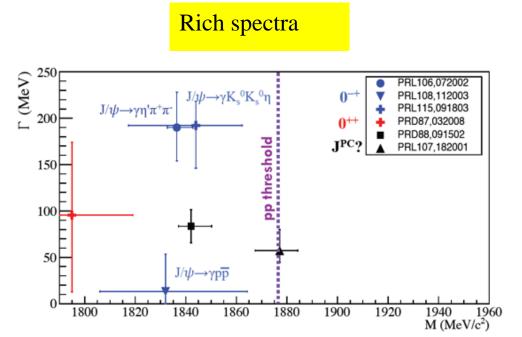

Discovered a Glueball-like Particle – X(2370)

Discovered a Glueball-like Particle – X(2370) PRL 132, 181901 (2024)

Discovery of fine structure near protonanti-proton threshold:: X(1840) and X(1880), PRL132, 151901 (2024)

00000


hadrons J/w

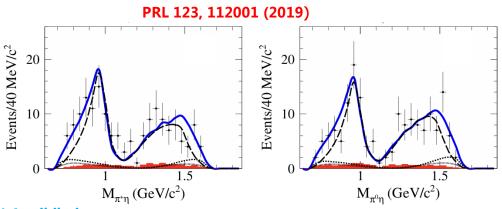

V000000000

17

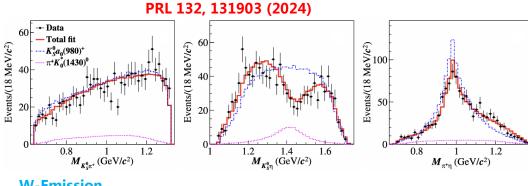
Hadron spectroscopy: high-statistics data

You never have enough J/ψ events

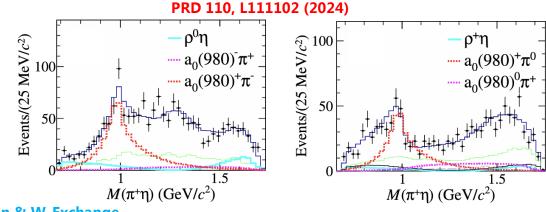
-The case for a J/ψ factory-


Stephen Lars Olsen

arXiv:2506.20975

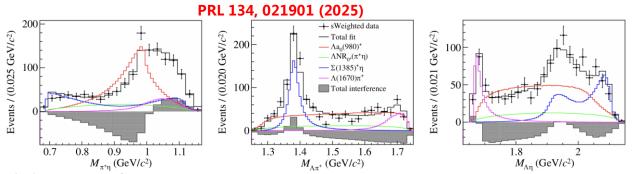

B€5 Highlight: light hadron from charmed hadron decays

 $\rightarrow a_0(980)$ and $f_0(980)$: two-quark $q\overline{q}$ or tetraquark $q^2\overline{q}^2$?



W-Annihilation

$$B(D_s^+ \to a_0 \pi, a_0 \to \pi \eta) = (1.46 \pm 0.27)\%$$



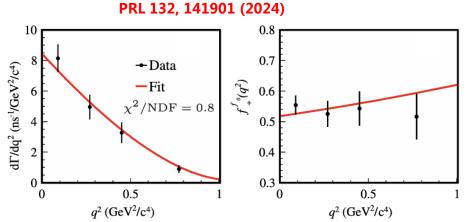
 $B(D^+ \to a_0^+ K_S^0, a_0 \to \pi \eta) = (1.33 \pm 0.06)\%$

W-Emission & W-Exchange

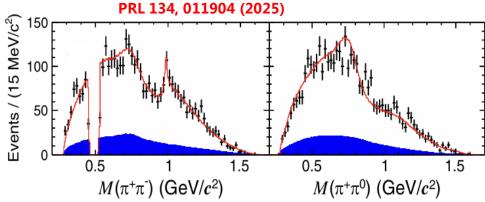
$$B(D^+ \to a_0^0 \pi^+) = (3.7 \pm 1.1); (a_0^+ \pi^0) = (9.5 \pm 1.3) \times 10^{-4}$$

 $B(D^0 \to a_0^+ \pi^-) = (5.5 \pm 0.9); (a_0^- \pi^+) = (0.7 \pm 0.2) \times 10^{-4}, a_0 \to \pi \eta$

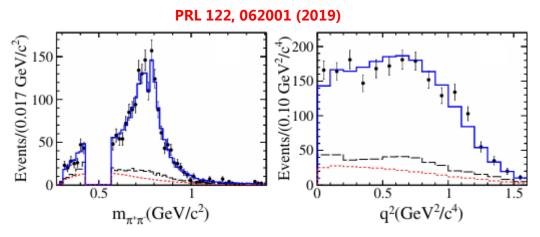
W-Emission & W-Exchange


$$B(\Lambda_c^+ \to a_0^+ \Lambda, a_0 \to \pi \eta) = (1.05 \pm 0.18)\%$$

All of the measured branching fractions deviate from the predictions made by $q\overline{q}$ model $\Rightarrow q^2\overline{q}^2$ and Final State Interaction?



B€5 Highlight: light hadron from charmed hadron decays

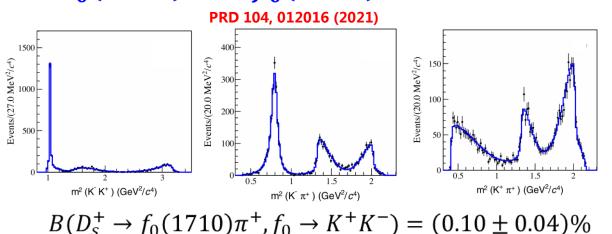

 $\rightarrow a_0(980)$ and $f_0(980)$: two-quark $q\overline{q}$ or tetraquark $q^2\overline{q}^2$?

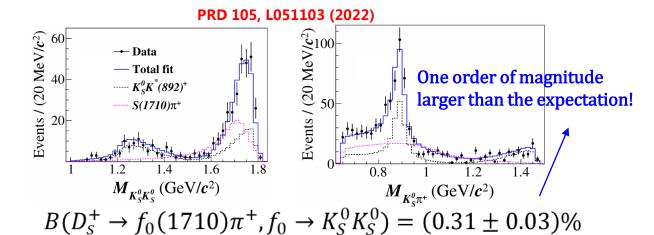
$$B(D_s^+ \to f_0 e^+ v_e, f_0 \to \pi^+ \pi^-) = (1.72 \pm 0.16) \times 10^{-3}$$

 $f_+^{f_0}(0) = 0.52 \pm 0.04$

$$B(D_s^+ \to f_0(980)\rho^+, f_0 \to \pi^+\pi^-) = (2.57 \pm 0.48) \times 10^{-3}$$

$$B(D^+ \to f_0 e^+ v_e, f_0 \to \pi^+ \pi^-) < 2.8 \times 10^{-5}$$


Theoretical predictions by JHEP12(2024)226	$q\overline{q}$	$q^2\overline{q}^2$	
$f_{+}^{f_0}(0)$	0.52 ± 0.02	0.53 ± 0.02	
$10^{-3}B(D_s^+ \to f_0 e^+ v_e)$	1.69 ± 1.39	1.72 ± 1.48	
$10^{-5}B(D^+ \to f_0 e^+ v_e^-)$	1.3 ± 0.1	2.9 ± 0.7	


Still being controversial!

Highlight: light hadron from charmed hadron decays

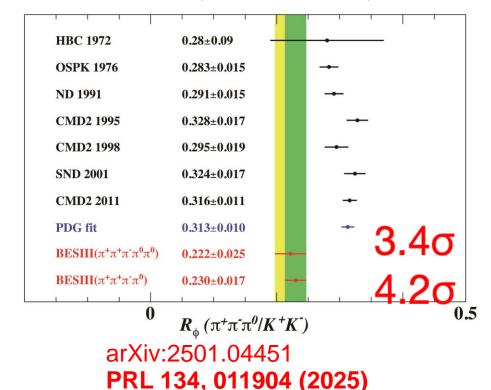
$a_0(1817) \text{ and } f_0(1710)$

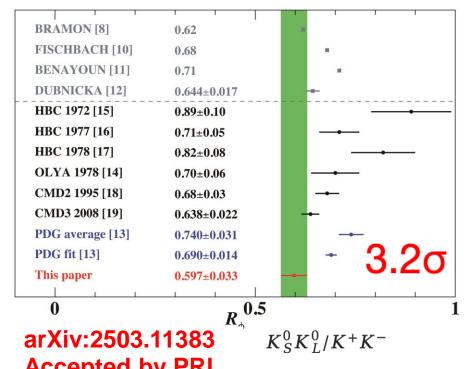
PRL 129, 182001 (2022)

Isospin-one partner of $f_0(1710)$ or X(1812)?

$$B(D_s^+ \to a_0(1817)^+\pi^0, a_0 \to K_S^0K^+) = (3.44 \pm 0.61) \times 10^{-3}$$

Mass: $(1.817 \pm 0.02) \text{GeV}/c^2$ Width: $(0.097 \pm 0.027) \text{GeV}/c^2$

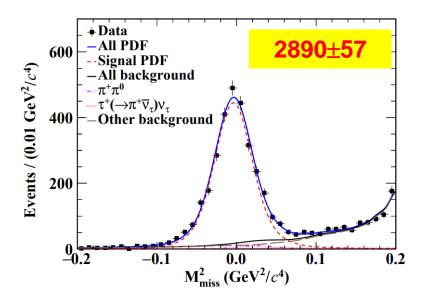

G.S. Huang: BESIII Overview 5th CLQCD, Huizhou 2025.10


Highlight: Puzzle of ϕ decays in charm

- ightarrow In $D_S^+ o\pi^+\pi^+\pi^-\pi^0$, $D_S^+ o\pi^+\pi^+\pi^-\pi^0\pi^0$ and $K_S^0K_L^0\pi^+$ decays, Relative Branching Fraction of ϕ meson deviate from PDG;
- More results are coming. New mechanism?

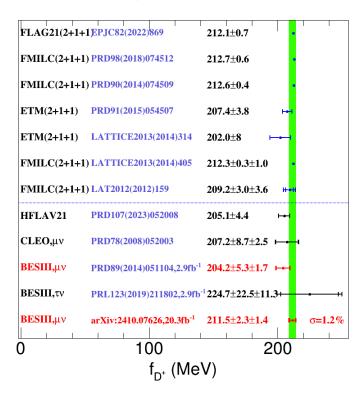
$$R_{\phi} = \frac{\mathcal{B}(\phi \to \pi^{+}\pi^{-}\pi^{0})}{\mathcal{B}(\phi \to K^{+}K^{-})}$$

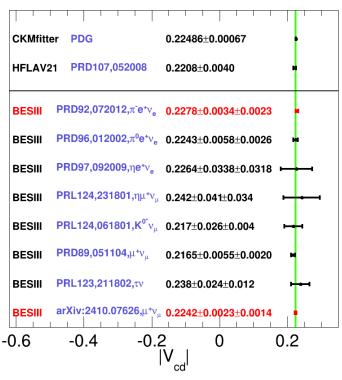
 $R_{\phi} = \frac{\mathcal{B}(\phi \to K_S K_L)}{\mathcal{B}(\phi \to K^+ K^-)}$



BESII Highlights: The most precise measurement of $D^+ \to \mu^+ \nu_\mu$

The most precise measurement of $D^+ \rightarrow \mu^+ \nu_\mu$ with 20.3 fb⁻¹@3.773 GeV


arXiv:2410.07626 PRL 135, 061801 (2025)

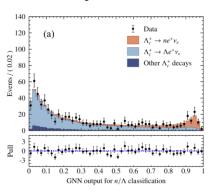

The most precise to date

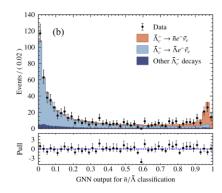
$$B[D^+ \to \mu^+ \nu] = (3.98 \pm 0.08 \pm 0.04) \times 10^{-4}$$

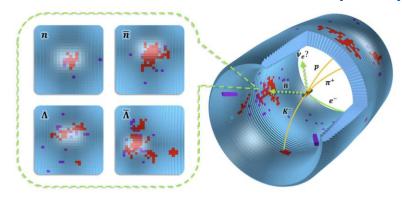
$$|\mathbf{f}_{D^+}|V_{cd}| = 47.53 \pm 0.48 \pm 0.27 \text{ MeV}$$

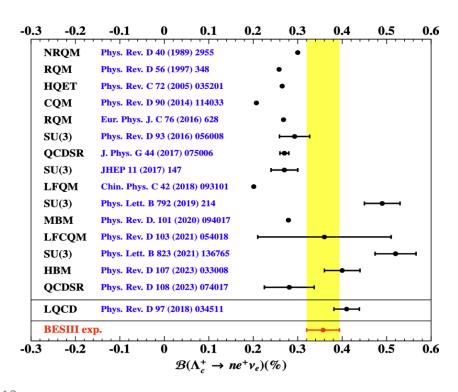
The decay constant

The value of Vcd

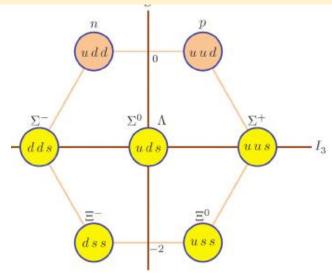

Precision~1.2%

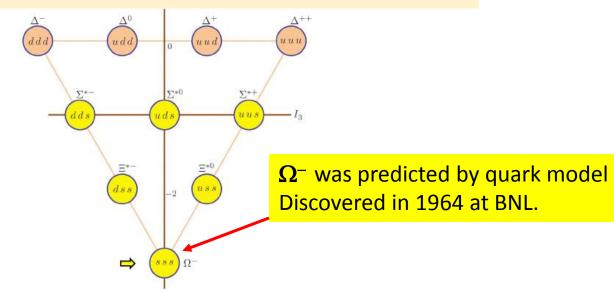

23 G.S. Huang: BESIII Overview 5th CLQCD, Huizhou 2025.10


Highlights: observation of $\Lambda_c^+ \to ne^+\nu_e$


- A novel Deep Learning is utilized to separate signals from dominant background.
- First observation of $\Lambda_c^+ \to ne^+\nu_e$
 - $\mathcal{B}(\Lambda_c^+ \to ne^+\nu_e) = (0.357 \pm 0.034_{\text{stat}} \pm 0.014_{\text{syst}})\% (> 10\sigma)$
 - $|V_{cd}| = 0.208 \pm 0.011_{\text{exp.}} \pm 0.005_{\text{LQCD}} \pm 0.001_{\tau_{\Lambda^{\pm}}}$
- This measurement demonstrates a level of precision comparable to the LQCD prediction.
- The absence of HCAL restricted us to extract the form factors.
- Still, the BF provides significant insights, shedding light on the di-quark structure within the Λ_c^+ core and the $\pi - N$ clouds in the low Q^2

Nature Commun. 16, 681 (2025)





B€5Ⅲ CPV in hyperon decays, #events do we need?

	# events	Experiment
discovered (2001)	10 ³	B factory
³) discovered (1964)	10 ⁶	Fix targets
discovered (2019)	10 ⁸	LHCb
discovered (2025)		LHCb
no evidence (10 ⁻²)	O (10 ⁸)	Fix targets
		→ BESIII, hyperon factory ?
4	discovered (1964) discovered (2019) discovered (2025)	discovered (2001) 10 ³ discovered (1964) 10 ⁶ discovered (2019) 10 ⁸ discovered (2025)

CP observables in hyperon decays

General Partial Wave Analysis of the Decay of a Hyperon of Spin $\frac{1}{2}$

T. D. Lee* and C. N. Yang

Institute for Advanced Study, Princeton, New Jersey
(Received October 22, 1957)

Phys. Rev. 108, 1645 (1957)

The amplitude of spin $\frac{1}{2}$ baryon B_i decay to a spin $\frac{1}{2}$ baryon B_f and π :

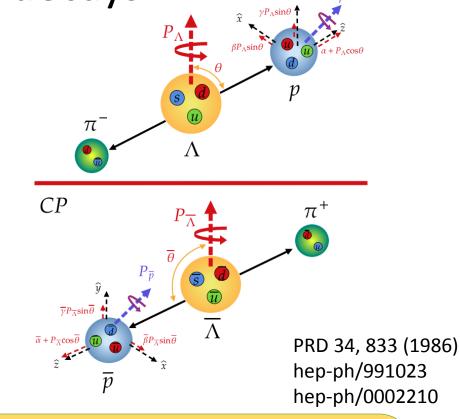
$$\mathcal{A} \sim S \sigma_0 + P \boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}$$

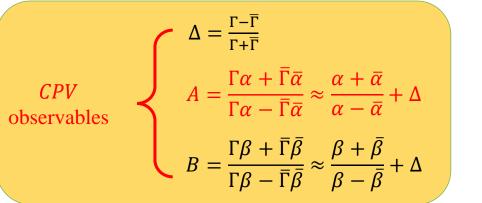
The decay parameters are defined as:

$$\alpha_Y = \frac{2 \operatorname{Re} (S^* P)}{|S|^2 + |P|^2}, \quad \beta_Y = \frac{2 \operatorname{Im} (S^* P)}{|S|^2 + |P|^2}, \quad \gamma_Y = \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2}$$

Two complex amplitudes: ϕ weak phase, δ strong phase

$$S = \Sigma^i S_i e^{i(\phi_i^S + \delta_i^S)}, \qquad P = \Sigma^i P_i e^{i(\phi_i^P + \delta_i^P)}$$


Under CP transformation:


$$\bar{S} = -\Sigma^{i} S_{i} e^{i(-\phi_{i}^{S} + \delta_{i}^{S})}, \quad \bar{P} = \Sigma^{i} P_{i} e^{i(-\phi_{i}^{P} + \delta_{i}^{P})}$$
If CP conserved: $S \stackrel{CP}{\Longrightarrow} - S$

$$P \stackrel{CP}{\Longrightarrow} P$$

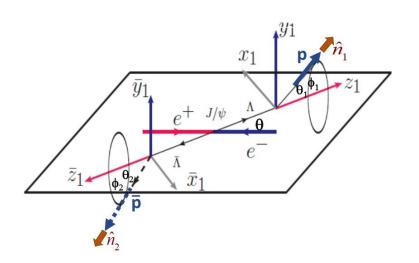
$$\alpha \stackrel{CP}{\Longrightarrow} \bar{\alpha} = -\alpha$$

$$\beta \stackrel{CP}{\Longrightarrow} \bar{\beta} = -\beta$$

26

If $\Delta \Phi \neq 0$, Λ and $\overline{\Lambda}$ are transversely polarized

Correlated 5-dim. angular distribution


$$e^+e^- \to J/\psi \to \Lambda\bar{\Lambda}$$

$$\mathcal{W}(\xi; \alpha_{\psi}, \Delta\Phi, \alpha_{-}, \alpha_{+}) = 1 + \alpha_{\psi} \cos^{2}\theta_{\Lambda}$$

Λ

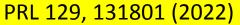
Unpolarized part

Entangled part

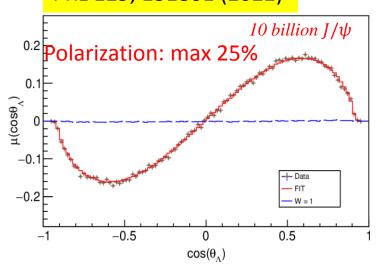
$$+ \alpha_{-}\alpha_{+} \left[\sin^{2}\theta_{\Lambda} \left(n_{1,x} n_{2,x} - \alpha_{\Psi} n_{1,y} n_{2,y} \right) + \left(\cos^{2}\theta_{\Lambda} + \alpha_{\Psi} \right) n_{1,z} n_{2,z} \right]$$

$$+ \alpha_{-}\alpha_{+} \sqrt{1 - \alpha_{\Psi}^{2}} \cos(\Delta \Phi) \sin \theta_{\Lambda} \cos \theta_{\Lambda} \left(n_{1,x} n_{2,z} + n_{1,z} n_{2,x} \right)$$

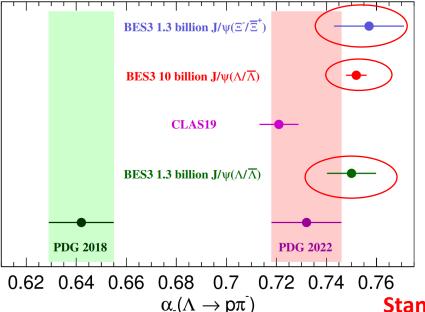
$$+\sqrt{1-\alpha_{\Psi}^2}\sin(\Delta\Phi)\sin\theta_{\Lambda}\cos\theta_{\Lambda}\left(\alpha_{-}n_{1,y}+\alpha_{+}n_{2,y}\right),$$
 Polarized part

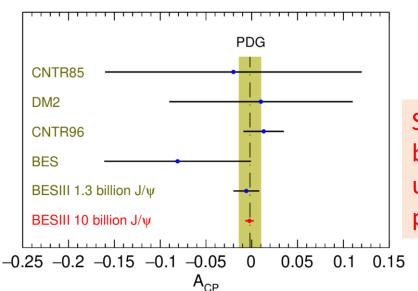

Polarization-term can be used to determine a and a simultaneously

$$0.2$$
 0.1
 0.1
 0.1
 0.1
 0.1
 0.2
 0.1
 0.1
 0.2
 0.1
 0.2
 0.3
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5


$$P_{y}(\cos\theta_{\Lambda}) = \frac{\sqrt{1-\alpha_{\psi}^{2}} \sin(\Delta\Phi)\cos\theta_{\Lambda}\sin\theta_{\Lambda}}{1+\alpha_{\psi}\cos^{2}\theta_{\Lambda}}$$

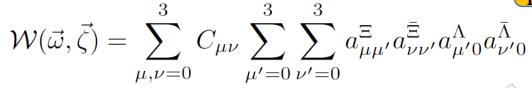
The most precise CP test $in \Lambda$ and $\overline{\Lambda}$ decay

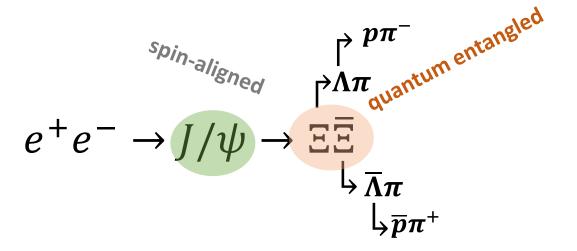


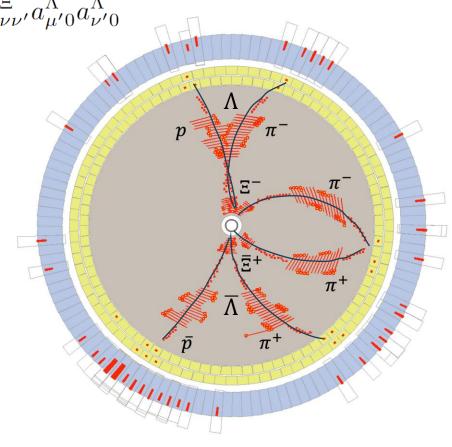

Nat. Phys. 15, 631 (2019)

Paras.	This Work (10 billion J/ψ)	Previous Results (1.3 billion J/ψ)
$lpha_{J/\psi}$	$0.4748 \pm 0.0022 \pm 0.0024$	$0.461 \pm 0.006 \pm 0.007$
ΔΦ	$0.7521 \pm 0.0042 \pm 0.0080$	$0.740\pm0.010\pm0.009$
α_{-}	$0.7519 \pm 0.0036 \pm 0.0019$	$0.750 \pm 0.009 \pm 0.004$
α_+	$-0.7559 \pm 0.0036 \pm 0.0029$	$-0.758 \pm 0.010 \pm 0.007$
A_{CP}	$-0.0025 \pm 0.0046 \pm 0.0011$	$-0.006 \pm 0.012 \pm 0.007$
α_{avg}	$0.7542 \pm 0.0010 \pm 0.0020$	

More than 10 standard deviation shift from all previous measurements


Sensitivity of A_{CP}: below 0.5% unprecedented precision


Standard model prediction : $A_{CP}^{\sim} 10^{-4}$ (PRD 34, 833 (1986))


Search for CPV in E decay

PRD 99, 056008 (2019) PLB 772, 16 (2017)

Through the sequential decays of Ξ , the CPV phase can be directly measured!

The *perfect* reaction for hyperon *CPV* searches!

Search for CPV in E decay

 Ξ^-

1.3 billion J/ψ

The precision of our analysis (73K $\Xi^-\bar{\Xi}^+$) is comparable with the measurement from HyperCP (144M events), which means that the accuracy of a single event is more than 1000 times higher than HyperCP!

320K $\Xi^0\bar{\Xi}^0$ pairs

10 billion J/ψ

 Ξ^0

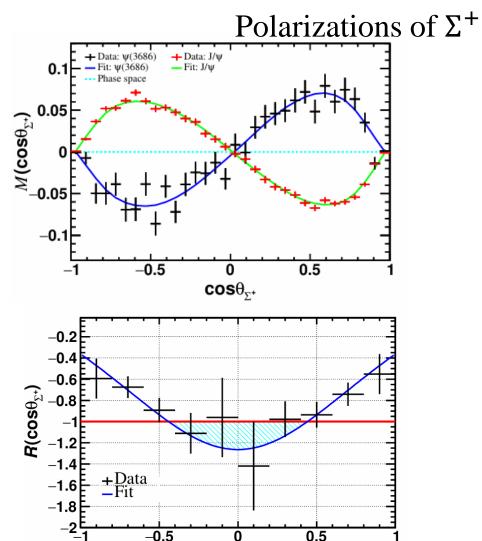
Parameter	Nature 606 (2022) 64-69	Previous result	Pare	emeter PRD 108, L031106 (2023)
a_{ψ}	0.586±0.012±0.010	0.58±0.04±0.08	$\frac{1}{\alpha_{J/\psi}}$	2 71 4 1 2 2 2 2 1 2 2 1 7
ΔΦ	1.213 ± 0.046 ± 0.016 rad	-		(rad) $1.168 \pm 0.019 \pm 0.018$
a≡	-0.376±0.007±0.003	-0.401±0.010	α_{Ξ}	$-0.3750 \pm 0.0034 \pm 0.0016$
$\phi_{\bar{z}}$	0.011±0.019±0.009rad	-0.042 ± 0.011 ± 0.0	$ar{lpha}_{\Xi}$	$0.3790 \pm 0.0034 \pm 0.0021$
ā ₌	0.371±0.007±0.002	HyperCP: PRL 93(2004) 011802	$\phi_{\Xi}(\mathbf{r})$	rad) $0.0051 \pm 0.0096 \pm 0.0018$
$ar{ar{\phi}_{\scriptscriptstyle{\Xi}}}$	-0.021±0.019±0.007rad	_	$\bar{\phi}_{\Xi}(\mathbf{r})$	<u> </u>
a_{Λ}	0.757±0.011±0.008	0.750±0.009±0.004	$lpha_{\Lambda}$	$0.7551 \pm 0.0052 \pm 0.0023$
\overline{a}_{Λ}	-0.763±0.011±0.007	-0.758±0.010±0.007	First measurements of the weak (CPV) phase $\bar{\alpha}_{\Lambda}$	$-0.7448 \pm 0.0052 \pm 0.0017$ $-\xi_S(\text{rad}) (0.0 \pm 1.7 \pm 0.2) \times 10^{-2}$
$\xi_P - \xi_S$	(1.2±3.4±0.8)×10 ⁻² rad		11.00	$-\frac{\zeta_S(\text{rad})}{-\delta_S(\text{rad})} \frac{(0.0 \pm 1.7 \pm 0.2) \times 10^{-2}}{(-1.3 \pm 1.7 \pm 0.4) \times 10^{-2}}$
$\delta_{P} - \delta_{S}$	(-4.0±3.3±1.7)×10 ⁻² rad	(10.2±3.9)×10 ⁻² rad	A_{CP}^{Ξ}	
A_{CP}^{Ξ}	(6±13±6)×10 ⁻³	-	$\Delta\phi_C^\Xi$	$E_{CP}(\text{rad}) (-0.1 \pm 6.9 \pm 0.9) \times 10^{-3}$
$\Delta \phi_{\rm CP}^{\Xi}$	(-5±14±3)×10 ⁻³ rad	_	Three CP tests in A_{CP}^{Λ}	$(6.9 \pm 5.8 \pm 1.8) \times 10^{-3}$
	$(-4\pm12\pm9)\times10^{-3}$	(-6±12±7)×10 ⁻³	Ξ^-/Ξ^0 decays $\langle \alpha_{\Xi} \rangle$	\rangle $-0.3770 \pm 0.0024 \pm 0.0014$
ACP	(-4±12±9)×10	(-0±12±7)×10	$\langle \phi_{\Xi} angle$	(rad) $0.0052 \pm 0.0069 \pm 0.0016$
$\langle \phi_{\bar{z}} \rangle$	0.016±0.014±0.007rad		$(\langle lpha_\Lambda angle$	\rangle 0.7499 \pm 0.0029 \pm 0.0013

The results of 10B J/ψ is on the way!

PRD(L) Editor's Suggestion

G.S. Huang: BESIII Overview 5th CLQCD, Huizhou 2025.10

Polarization and CP test in $\Sigma^{+}\bar{\Sigma}^{-}$ J/ ψ and $\psi(2S) \rightarrow \Sigma^{+}\bar{\Sigma}^{-}$


$$e^+e^- o J/\psi, \psi(3686) o \Sigma^+ \overline{\Sigma}^-, \ \Sigma^+ o p\pi^0, \ \overline{\Lambda} o \overline{p}\pi^0$$

10B J/ψ and 2.7B ψ (3686) 1.12 M $\Sigma^{+}\bar{\Sigma}^{-}$ pairs reconstructed

Parameter	This Letter	PRL 131, 191802 (2023)
$lpha_{J/\psi}$	$-0.5047 \pm 0.0018 \pm 0.0010$	$-0.508 \pm 0.006 \pm 0.004$
$\Delta\Phi_{J/\psi}$	$-0.2744 \pm 0.0033 \pm 0.0010$	$-0.270 \pm 0.012 \pm 0.009$
α_0	$-0.975 \pm 0.011 \pm 0.002$	$-0.998 \pm 0.037 \pm 0.009$
$ar{lpha}_0$	$0.999 \pm 0.011 \pm 0.004$	$0.990 \pm 0.037 \pm 0.011$
$\alpha_{\psi(3686)}$	$0.7133 \pm 0.0094 \pm 0.0065$	$0.682 \pm 0.030 \pm 0.011$
$\Delta\Phi_{\psi(3686)}$	$0.427 \pm 0.022 \pm 0.003$	$0.379 \pm 0.070 \pm 0.014$
$\langle \alpha_0 \rangle$	$-0.9869 \pm 0.0011 \pm 0.0016$	$-0.994 \pm 0.004 \pm 0.002$
A_{CP}	$-0.0118 \pm 0.0083 \pm 0.0028$	$0.004 \pm 0.037 \pm 0.010$

- Opposite directions of the Σ^+ polarization in J/ψ and $\psi(3686)$ decays
- Most precise measurements of the Σ^+ decay parameters
- Most precise CP test in the decays of Σ^+

arXiv:2503.17165, PRL 135, 141804 (2025)

Polarization ratio of Σ^+ between J/ψ and $\psi(3686)$ decays

5th CLQCD, Huizhou 2025.10 **31**

Search for Strong CPV in $\Sigma^0(\to \Lambda \gamma)$ decay

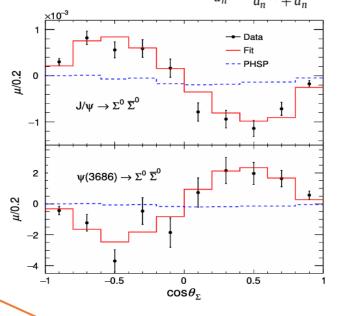
PRL 133, 101902 (2024)

The CPV sources in SM:

- Weak interaction, CKM (observed, but too small)
- Strong interaction, θ -term (Not yet observed)

 $10 \text{ B } J/\psi \text{ and } 2.7 \text{ B } \psi (3686)$

$$e^+e^- \to J/\psi, \psi(3686) \to \Sigma^0(\to \Lambda\gamma)\bar{\Sigma}^0(\to \overline{\Lambda}\gamma), \Lambda \to p\pi^-, \overline{\Lambda} \to \bar{p}\pi^+$$


Parameter	PRL 133, 101902 (2024)
$\overline{lpha_{J/\psi}}$	$-0.4133 \pm 0.0035 \pm 0.0077$
$\Delta\Phi_{J/\psi}$ (rad)	$-0.0828 \pm 0.0068 \pm 0.0033$
$\alpha_{\psi(3686)}$	$0.814 \pm 0.028 \pm 0.028$
$\Delta\Phi_{\psi(3686)}$ (rad)	$0.512 \pm 0.085 \pm 0.034$
$lpha_{\Sigma^0}$	$-0.0017 \pm 0.0021 \pm 0.0018$
$ar{lpha}_{\Sigma^0}$	$0.0021 \pm 0.0020 \pm 0.0022$
$lpha_{\Lambda}$	$0.730 \pm 0.051 \pm 0.011$
$ar{lpha}_{\Lambda}$	$-0.776 \pm 0.054 \pm 0.010$
A_{CP}^{Σ}	$(0.4 \pm 2.9 \pm 1.3) \times 10^{-3}$
A_{CP}^{Λ}	$(-3.0 \pm 6.9 \pm 1.5) \times 10^{-2}$

PLB **788**, 535 (2019)

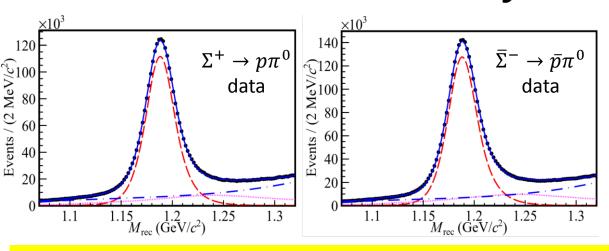
The Transition EDM SU(3) symmetry of $\Sigma^0 (\to \Lambda \gamma)$

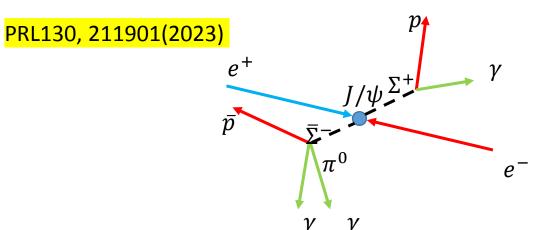
 $\frac{d_{\Sigma\Lambda}}{d_{\Sigma}} = \frac{d_{\Sigma\Lambda}^{\text{tree}} + d_{\Sigma\Lambda}^{\text{loop}}}{d_{\Sigma}} \approx -0.8$

Polarizations of Σ^0

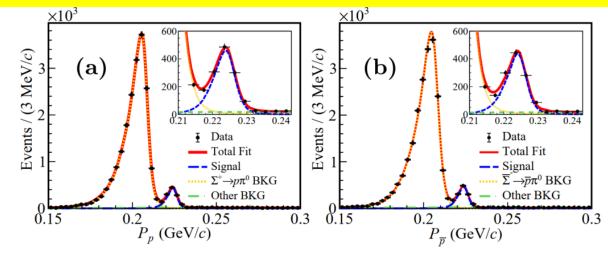
Similar behavior is observed in Σ^+ , but not in Λ or Ξ !

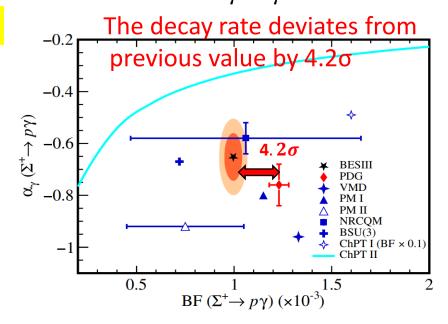
Opposite directions of the Σ^0 polarization


The first attempt to measure the P-violating decay parameter of $\Sigma \to \Lambda \gamma$.

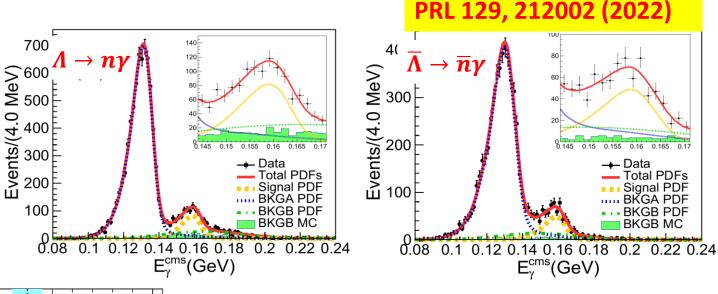

The first strong-CP test in hyperon decays.

G.S. Huang: BESIII Overview 5th CLQCD, Huizhou 2025.10




Radiative decay: $\Sigma^+ \to p\gamma$ in $J/\psi \to \Sigma^+ \overline{\Sigma}^-$

Signal side: momentum distributions of proton in the rest frame of Σ :


The CP asymmetry is calculated to be

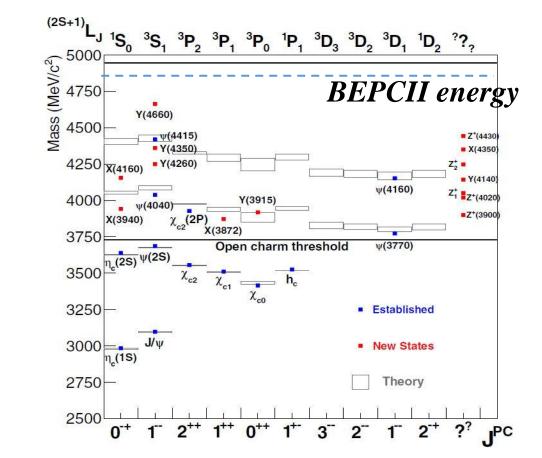
$$A_{CP} = (\alpha_{-} + \alpha_{+})/(\alpha_{-} - \alpha_{+}) = 0.095 \pm 0.087 \pm 0.022$$

$$\Delta_{CP} = (\mathcal{B}_{+} - \mathcal{B}_{-})/(\mathcal{B}_{+} + \mathcal{B}_{-}) = 0.006 \pm 0.011 \pm 0.006$$

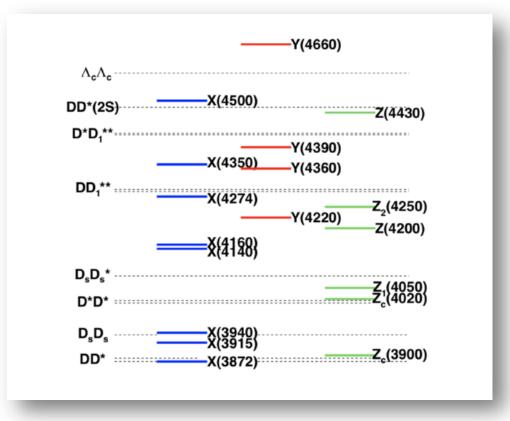
The decay rate $(0.996 \pm 0.022_{stat} \pm 0.017_{syst}) \times 10^{-3}$ The decay parameter: $-0.651 \pm 0.056_{stat} \pm 0.020_{syst}$

Radiative decay: $\Lambda \rightarrow n\gamma$ in $J/\psi \rightarrow \Lambda \Lambda$

$\begin{array}{c} 1 \\ 0.5 \\ (\lambda u \leftarrow V)^{\lambda} \\ 0 \\ -0.5 \end{array}$	*	● BESIII • PDG ☆ VDM • PM I △ PM II ■ NRCQM ▼ QM • BSU(3) ★ ChPT	
-0.5	5.5σ		
_1	<u>*</u>		
' 0	$\begin{array}{c} 1 \\ BF(\Lambda \rightarrow n\gamma) \end{array}$	2	3
	$BF(\Lambda \rightarrow n\gamma)$	(X10°)	

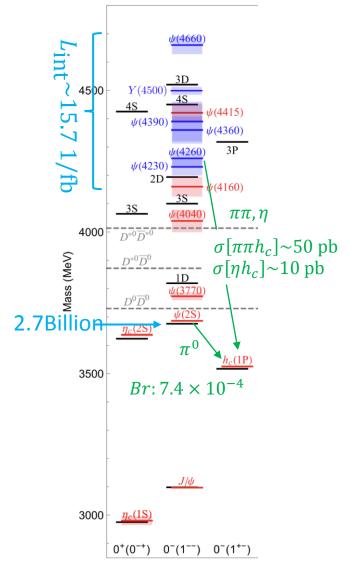

Variables	Λ→γn	$\overline{\Lambda} \rightarrow \gamma \overline{n}$	
BF ($\times 10^{3}$)	$0.834 \pm 0.046 \pm 0.$	$0.876\pm0.071\pm0.082$	
$lpha_{m{\gamma}}$	$-0.13\pm0.13\pm0.02$	$0.21 \pm 0.15 \pm 0.06$	
Δ_{CP}	$-0.025 \pm 0.049 \pm 0.060$		
A_{CP}	$-0.25 \pm 0.61 \pm 0.15$		

Theoretical attentions: L.S. Geng, Q. Zhao, R.M. Wang et al.

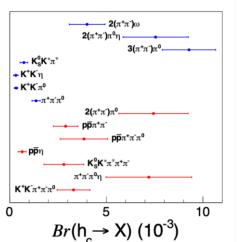

BF of $\Lambda \to n\gamma$, with improved precision, smaller than PDG value by 5.5σ

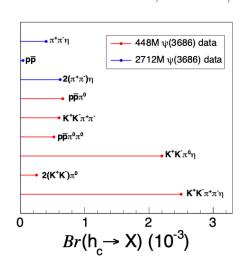
Overpopulated charmonium spectrum

arXiv:1511.01589, arXiv:1812.10947



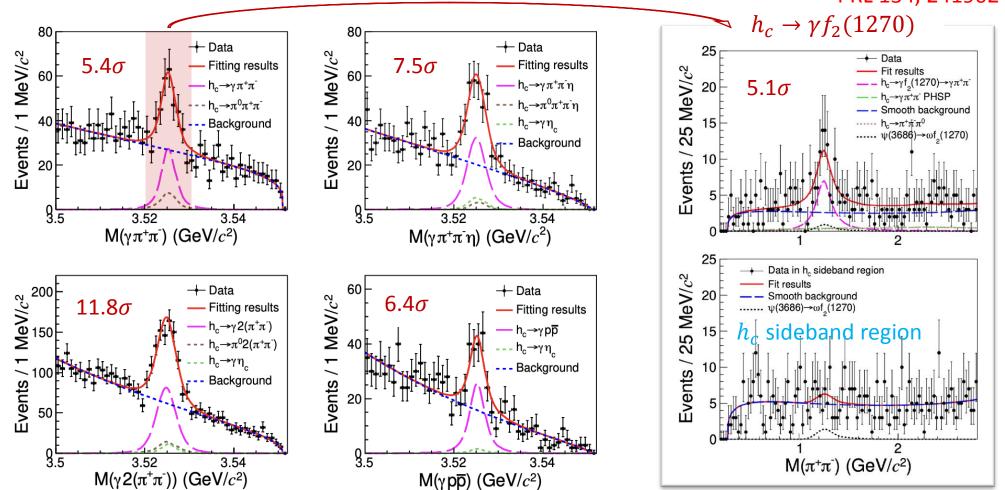
Overpopulated observed charmonium-like states, i.e. "XYZ":


- Most of them are close to the mass thresholds of charmed meson pairs
- Some are not accommodated as conventional meson
 ==> candidate of exotic hadron states
- More efforts are needed to pin down their nature



Highlight: Production and decay properties of h_c

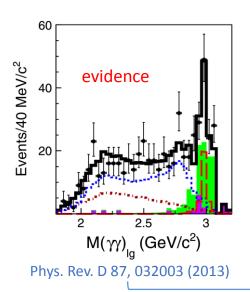
- P-wave singlet charmonium state, first observed by CLEO
- First measurement of $B[\psi' \to \pi^0 h_c]$ by BESIII PRL104, 132002 (2010)
- 2M h_c particle in 2.7B ψ' events, possible to explore h_c decay mode with $Br \sim 10^{-4}$; 0.7M h_c particle from XYZ scan sample
- Decay of h_c :
 - pQCD prediction: $h_c \rightarrow \gamma gg \sim 5.5\%$ PRD 66, 014012 (2002)
 - pQCD and NRQCD predictions of $h_c \rightarrow$ light hadrons: 48% and 8%

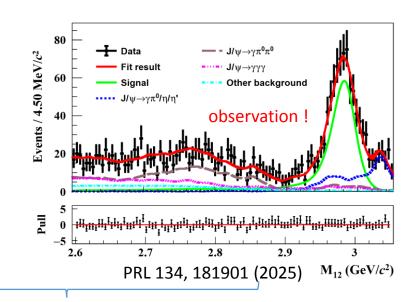

PRD 65. 094024 (2002)

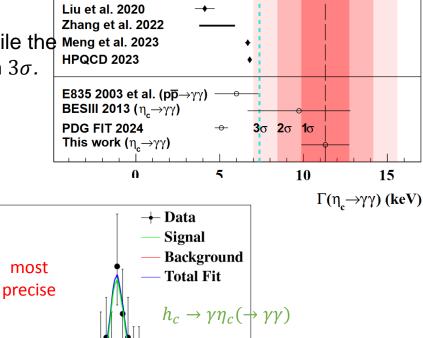
\mathbf{BESM} Highlight: Production and decay properties of h_c

Observation of h_c radiative decays and $h_c \rightarrow \gamma f_2(1270)$

arXiv:2501.15447 PRL 134, 241902 (2025)




BESI Highlight: measurements of $\eta_c \rightarrow \gamma \gamma$


arXiv: 2412.12998 **PRL** 134, 181901 (2025)

- As the simplest decay of η_c , $\eta_c \to \gamma \gamma$ serves as a benchmark for QCD calculation.
- Most measurements come from the time reversal process $\gamma \gamma^{(*)} \rightarrow \eta_c$
- BESIII has the unique opportunity to directly measure $\eta_c \to \gamma \gamma$ via $J/\psi \to \gamma \eta_c$ (first observation) or $h_c \rightarrow \gamma \eta_c$ (absolute branching fraction, most precise).
- Measured $B(J/\psi \to \gamma \eta_c) \times B(\eta_c \to \gamma \gamma)$ is consistent with theoretical predictions, while the Meng et al. 2023 individual $\Gamma(\eta_c \to \gamma \gamma)$ deviates from the most recent LQCD prediction by more than 3σ .

$$\Gamma(\eta_c \to \gamma \gamma) = (11.30 \pm 0.56_{\text{stat.}} \pm 0.66_{\text{syst.}} \pm 1.14_{\text{ref.}}) \text{ keV}$$

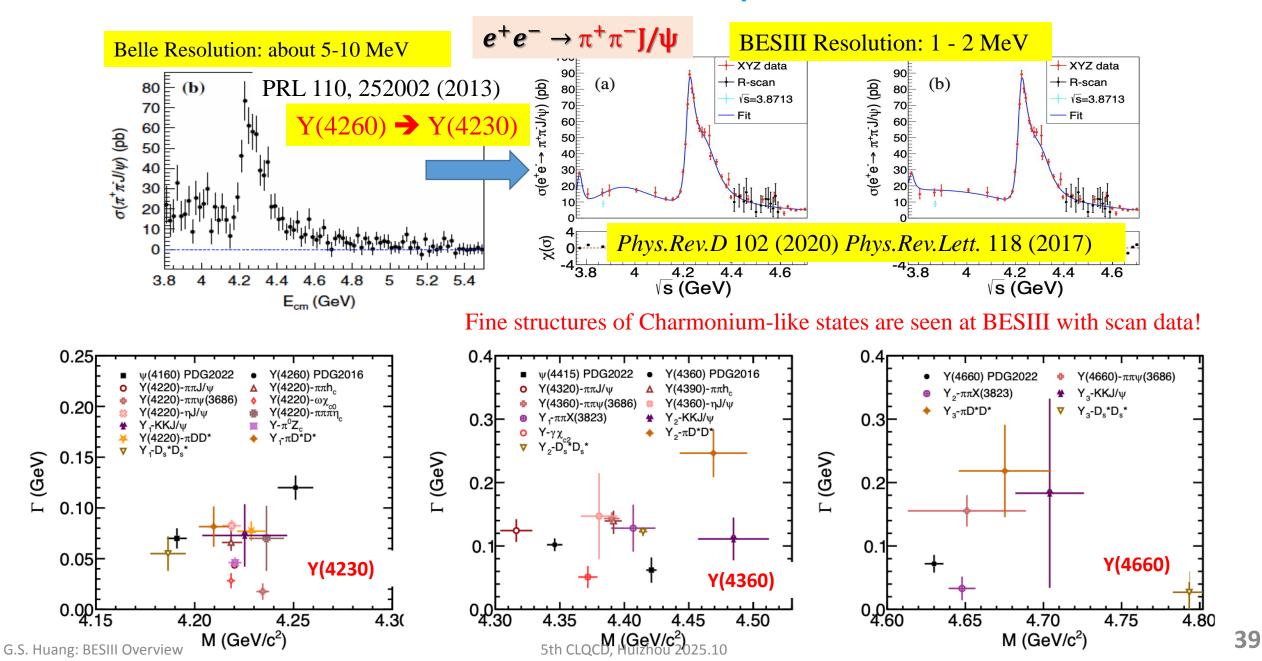
The first measurement of absolute branching fraction via $h_c \rightarrow \gamma \eta_c$ will provide a brand new reference

3.53

 $M(h)(GeV/c^2)$

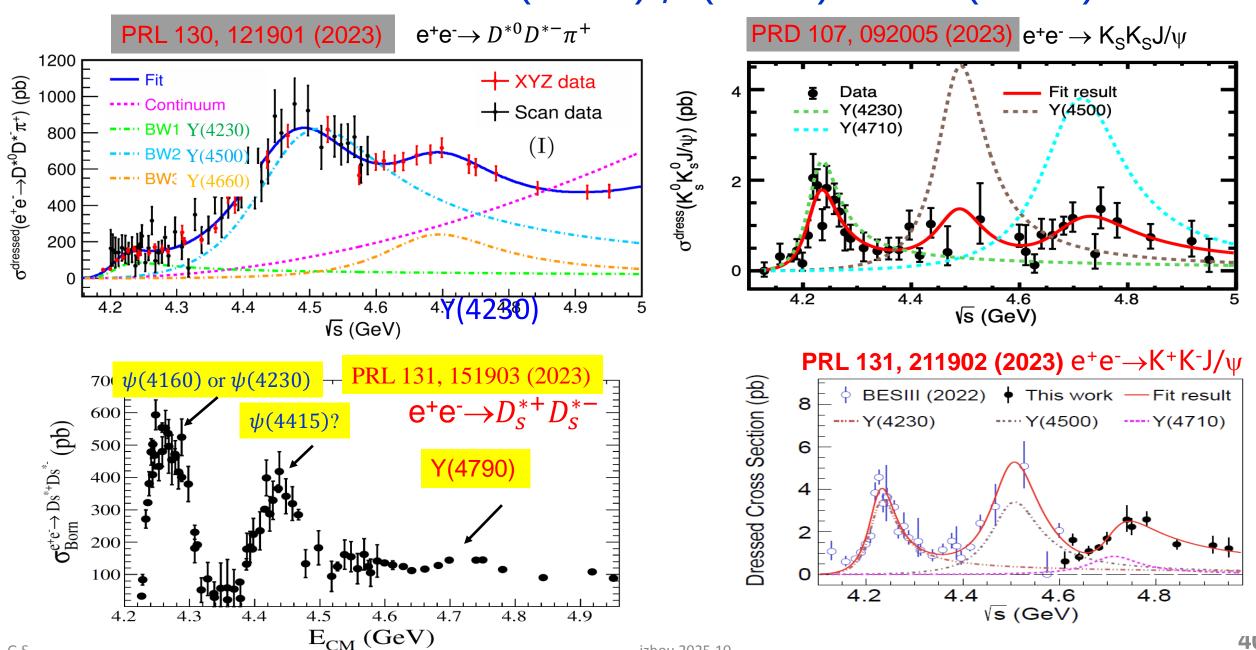
Dudek et al. 2006 →

CLQCD 2016 +

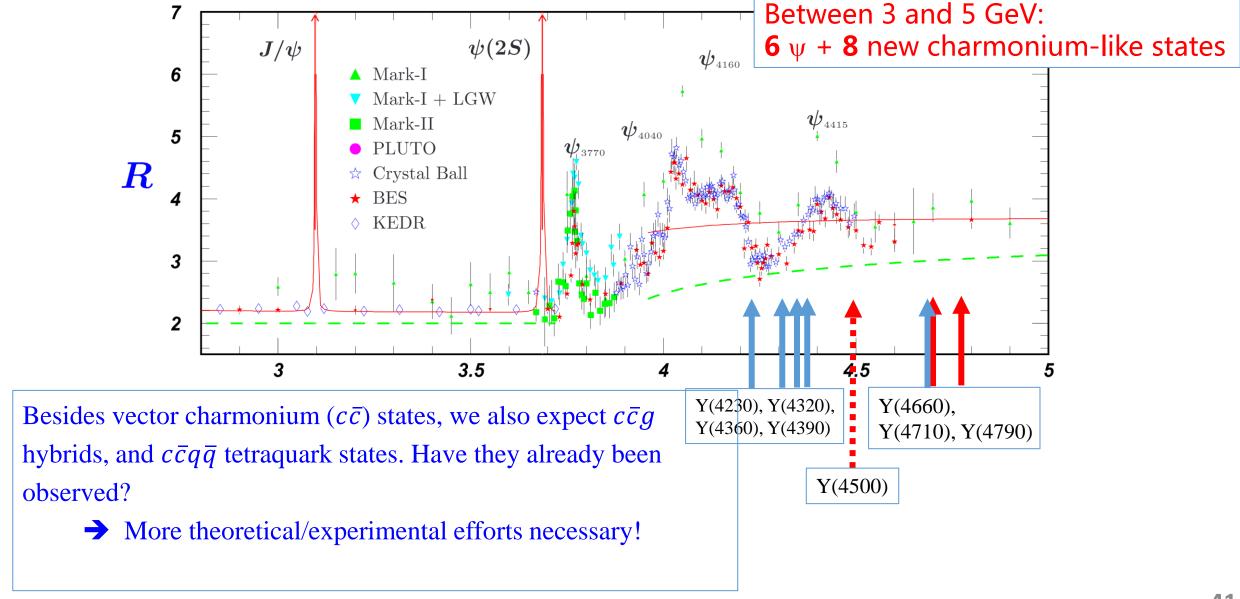

Chen et al. 2017 Feng et al. 2017

Li et al. 2020

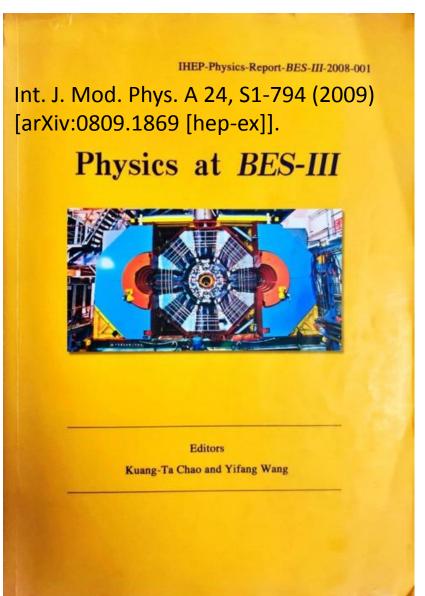
Precise test of LQCD: hyperfine mass splitting


The vector Y states from scan data near open-charm thresholds

G.S.


More Y states: Y(4500), Y(4710) and Y(4790)

40


How many vectors in charmonium energy region?

G.S. Huang: BESIII Overview 5th CLQCD, Huizhou 2025.10

BESIII Prospects

Chin. Phys. C 44, 040001 (2020) [arXiv:1912.05983 [hep-ex]].

Future Physics Programme of BESIII*

Abstract: There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESIII and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESIII, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESIII during the remaining operation period of BEPCII. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCII to higher luminosity.

DOI: 10.1088/1674-1137/44/4/040001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAPS and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and IOP Publishing Lid

Yellow book

White book

Received 25 December 2019, Published online 26 March 2020

^{*} Supported in part by National Key Basic Research Program of China (2013/CB85/700); National Natural Science Foundation of China (NSFC) (11335008, 11425524, 11625524, 11625524), 1163500, 1179504, 11825056, 11935018; the Chinese Academy of Science (CAS) Large-Science Science From Control of China (NSFC) (1132508), 1179504, 11825056, 11935018; the China China (NSFC) and CAS (01532257, 01532258, U1732258); CAS Key Research Program of Frontier Science (QYZD)-SSW-SLH003, QYZD)-SSW-SLH040); 100 Talents Program of CAS; CAS PIP1; the Thousand Talents Program of China; IN-PAC and Shanghai Key Laboratery for Particle Physics and Cosmology; German Research Foundation DFG under Contracts Nos. Collaborative Research Center CRC 1044, POR 2359; Initian Nationale di Fisica Nicoleare, Italy, Konital(jile Nederlander Akademie van Wetenschapen (KNAW) (53540-CDP03); Ministry of Development of Turkey (DPT20084; 120470), National Science and Technology fand, The Knat and Akiew Weltenschapen (KNAW) (5350-(2016)); The Sweeting Science of University of Contracts (11025) (11025); The Sweeting Control (11025) (11025

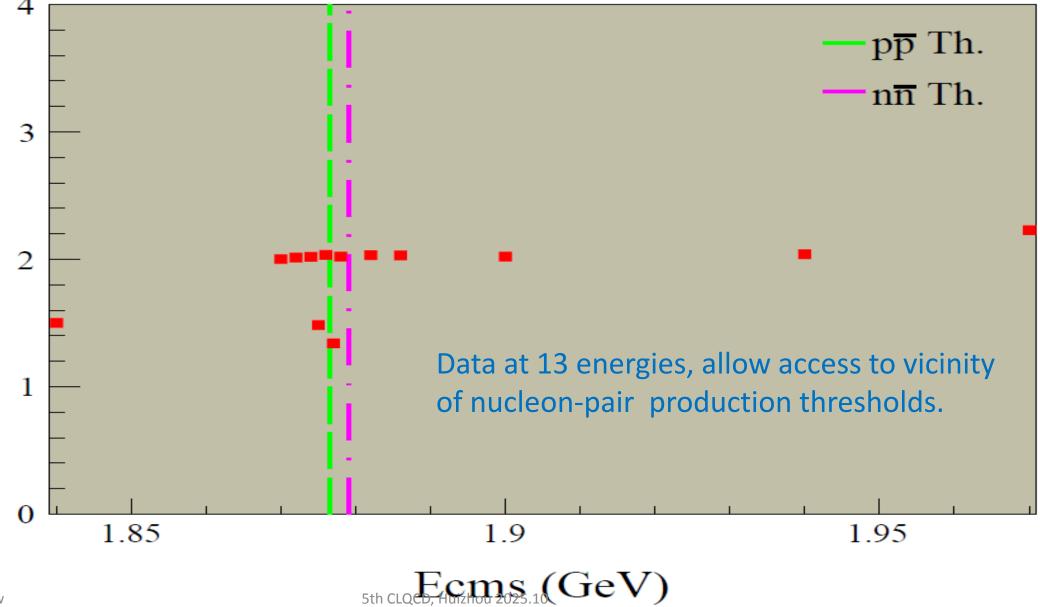

White book: planned future data

Table 7.1: List of data samples collected by BESIII/BEPCII up to 2019, and the proposed samples for the remainder of the physics program. The most right column shows the number of required data taking days in current $(T_{\rm C})$ or upgraded $(T_{\rm U})$ machine. The machine upgrades include top-up implementation and beam current increase.

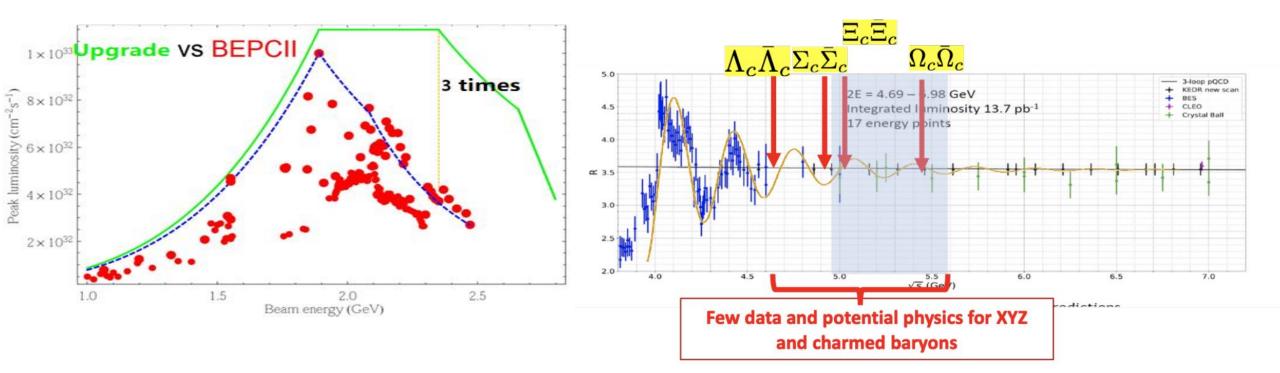
Energy	Physics motivations	Current data	Expected final data	$T_{ m C}$ / $T_{ m U}$	=
1.8 - 2.0 GeV	R values	N/A	$0.1 \; \mathrm{fb^{-1}}$	60/50 days	
	Nucleon cross-sections	,	(fine scan)	,	Only part 2024
2.0 - 3.1 GeV	R values	Fine scan	Complete scan	250/180 days	-
	Cross-sections	(20 energy points)	(additional points)		
J/ψ peak	Light hadron & Glueball	$3.2 \; {\rm fb^{-1}}$	$3.2 \; {\rm fb^{-1}}$	N/A	-
•	J/ψ decays	(10 billion)	(10 billion)		
$\psi(3686)$ peak	Light hadron & Glueball	0.67 fb^{-1}	$4.5 \; { m fb^{-1}}$	150/90 days	Computated 2024
V	Charmonium decays	(0.45 billion)	(3.0 billion)		Completed 2024
$\psi(3770)$ peak	D^0/D^{\pm} decays	$2.9 \; {\rm fb^{-1}}$	20.0 fb^{-1}	610/360 days	-
3.8 - 4.6 GeV	R values	Fine scan	No requirement	N/A	
	XYZ/Open charm	(105 energy points)			
$4.180 \; \mathrm{GeV}$	D_s decay	$3.2 \; {\rm fb^{-1}}$	$6 \; {\rm fb^{-1}}$	140/50 days	
	XYZ/Open charm				
	XYZ/Open charm				
$4.0 - 4.6 \; \mathrm{GeV}$	Higher charmonia	$16.0 \; { m fb^{-1}}$	$30 \; {\rm fb^{-1}}$	770/310 days	DEDCH II
	cross-sections	at different \sqrt{s}	at different \sqrt{s}		BEPCII-U
4.6 - 4.9 GeV	Charmed baryon/ XYZ	$0.56 \; \mathrm{fb^{-1}}$	$15 \; {\rm fb^{-1}}$	1490/600 days	
	cross-sections	at 4.6 GeV	at different \sqrt{s}		
$4.74~{ m GeV}$	$\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section	N/A	$1.0 \; { m fb^{-1}}$	100/40 days	- /
$4.91~{ m GeV}$	$\Sigma_c \bar{\Sigma}_c$ cross-section	N/A	$1.0 \; {\rm fb^{-1}}$	120/50 days	_
$4.95~{ m GeV}$	Ξ_c decays	N/A	$1.0 \; {\rm fb^{-1}}$	130/50 days	_

1.84-1.97 GeV: low extremes of BEPCII

Lum. (pb^{-1})

BEPCII upgrades in 2024

BEPCII upgrade (installation: 2024. 7- 2024. 12)

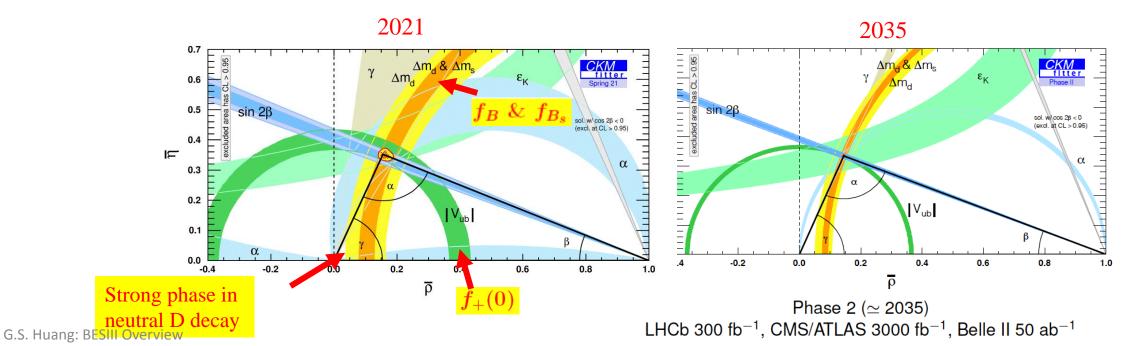

Highest beam energy: 2.8 GeV

Luminosity: 1.2×10^{33} cm⁻²s⁻¹ ($4.0 \sim 5.0$ GeV)

 $(0.4-0.7) \times 10^{33}$ cm⁻²s⁻¹ (5.0 ~ 5.6 GeV)

BESIII will collect about **60 fb⁻¹** between 4.0 - 5.6 GeV, and to study potential physics:

- ✓ Cover energy up to 5.6 GeV
- ✓ Deeper studies of the XYZ states
- ✓ Study the ground-state charmed baryons
- ✓ Provide information on charm-quark fragmentation function



Summary

- > BESIII is running smoothly, and very productive now;
- ➤ BEPCII upgrades have been finished in 2024, more data taking above 4.0 GeV, up to 5.6 GeV to study: excited charmonium, charmonium-like states, XYZ particles, charmed baryon ...
- > Advantages at BECPII/BESIII: scan data near thresholds, quantum-entangled meson and baryon pairs
- > BESIII plays leading role in hadron physics, flavor physics (charmed hadron and strange hadron).

Charm is still needed for precise test of the SM!

