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Motivation

The partonic structure of hadron—the fundamental goal

➢ Lattice QCD is formulated in Euclidean space-time.

➢ light-cone PDFs/DAs are formulated in Mikowski space-time.

➢ Direct calculation of light-cone PDFs/DAs from first principles 

remained a major challenge for a long time.

Mismatch
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Motivation
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LaMET—transformative progress

➢ A direct pathway to access light-cone observables

➢ We can define an equal-time, spatial separated quasi-DA which can be calculated 

by lattice QCD. 

➢ Quasi-DA and LCDA are related by a rigorous factorization formula. (Matching)
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Motivation

Key numerical step in LaMET: obtain the momentum-fraction quasi-DA

from non-local matrix elements computed in Euclidean lattice
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➢ 𝑔(𝜆) is the renormalized matrix element of non-local Euclidean operator

➢ 𝑓(𝑥) is the corresponding quasi-DA in momentum space

➢ 𝑔 𝜆 and 𝑓(𝑥) are related by a Fourier transform

Our targetWe have



Motivation
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Physics-driven 𝜆-extrapolation is good and effective

➢ Only a finite and discrete set of  𝜆 values is available, leading to a limited 

inverse discrete Fourier transform (L-IDFT)

➢ Extrapolate 𝑔 𝜆 at large Euclidean separation based on physical constraint 

and perform the inverse Fourier transform to make it

(LPC)Jun Hua et.al. PRL129. 132001(2022)



Motivation
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New perspective: inverse problem approach

➢ Given the integral 𝑔(𝜆), find the function 𝑓(𝑥) (Inverse problem)

➢ Inverse problem is everywhere

➢ Inverse problem theory: mature mathematical field

➢ Strong foundation in mathematics

➢ Practical application in many field

Solutions of Ill-Posed Problems (1977)

Computational Methods for Inverse Problems (2002)

Inverse Problem Theory and Methods for Model 

Parameter Estimation (2005)

Statistical and Computational Inverse Problems (2005)

Classic books on the inverse problem theory: Recovering image using inverse problem method

(T. Albert. Inverse Problem Theory and Methods for Model Parameter 

Estimation (2005), SIAM.)



Ill-posedness
Ill-posedness is the key to the inverse problem
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➢Well-posedness: satisfy the existence, uniqueness and stability

➢ Ill-posedness: fail to satisfy any one of the above condition

The ill-posedness of limited Fourier inversion problem

➢ Existence:  guaranteed by the Wiener-Paley theorem

➢ Uniqueness: proven for the first time in our paper, provided that 𝑔(𝜆) is a continuous 

function or a convergent sequence (Ao-Sheng Xiong et al. arXiv: 2506.16689)

➢ Instability: tiny change in the data 𝑔(𝜆) can lead to a big changes in the output 𝑓(𝑥)



Ill-posedness
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Quantify the instability using SVD formulation

➢ Transform the integral equation into a 

system 𝐾𝑓 = 𝑔

➢ Singular value decomposition (SVD) of 

the 𝐾 reveals rapidly decaying singular 

values 𝜎𝑖

➢ SVD provides a general solution 

➢ the 𝑓𝛿 form noisy data 𝑔𝛿 diverges from

the true solution 𝑓 obtained with exact 

data 𝑔



Ill-posedness
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The instability of direct inversion

➢ A true solution is defined as 𝑓𝑡 𝑥 = 6𝑥(1 − 𝑥)

➢ Get the noise-free data 𝑔𝑡(𝜆) via integration

➢ Add noise to create the perturbed data 𝑔𝛿(𝜆)

➢ Reconstruct 𝑓𝛿 𝑥 from 𝑔𝛿(𝜆) by direct inversion

➢ The reconstructed 𝑓𝛿(𝑥) on the right

The inverse problem of limited discrete Fourier inversion 

is ill-posed: existence and uniqueness but instability



Ill-posedness
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Factors influencing the difficulty of ill-posed problems:

➢ Error level: the lower noise the input has, the 

easier it is to solve

➢ Behavior of the true 𝑓(𝑥): the simpler and 

smoother the true solution is, the easier it is to 

reconstruct

The limited discrete Fourier inversion problem is tractable

➢ Error level: reconstruction quality improves with lower error in the quasi-DA

➢ Solution Nature: the DA has a simple form



Inversion methods—Tikhonov regularization
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➢ Aim to find the minimizer 𝑓𝛼
𝛿 of the Tikhonov functional:

➢ Using variational principles, the solution is given by:

➢ Overcome instability by slowing down the rapid decay of singular values

➢ The regularization parameter 𝛼 can be rigorously determined using L-curve criterion

Tikhonov regularization is a standard technique for addressing ill-posed inverse problems

regulator

L-curve
data fitness



Inversion methods—Backus-Gilbert
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➢ Assumes the solution 𝑓𝑒𝑠𝑡(𝑥′) can be expressed as a linear combination of the data 𝑔(𝜆𝑖)

➢ Using variational principles, the optimal vector 𝒂 is given by:

➢ A trade off between the width 𝑙 of resolution function 𝜌 𝑥 − 𝑥′ and the solution stability, leading 

to minimizing the objective functional 𝐿[𝒂]

The Backus-Gilbert (BG) method and Tikhonov approach are conceptually similar

regulatorwidth 𝑙 normalized 

constraint
normalized constraint



Inversion methods—Bayesian approach
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➢ The Bayesian approach is based on Bayes’ theorem:

In the Bayesian framework, the unknown solution is modeled as a random variable 

characterized by a probability distribution

➢ Prior distribution 𝑝(𝒇|𝐼): encodes the knowledge about the solution 𝒇 without data

➢ Likelihood distribution 𝑝(𝒈|𝒇, 𝐼): quantifies how well the solution explain the data

➢ Posterior distribution 𝑝(𝒇|𝒈, 𝐼): The probability distribution of the final solution.



Inversion methods—Bayesian approach

15

➢ The solution to the problem is determined from the posterior distribution using 

Maximum a posteriori (MAP) estimation or posterior mean estimation

➢ Prior distribution 𝑝(𝒇|𝑰) serves as a regulator to overcome instability 

Instability corresponds to a probability distribution with large uncertainty

Prior
Likelihood

(large uncertainty) Posterior

(T. Albert. Inverse Problem Theory and 

Methods for Model Parameter Estimation 

(2005), SIAM.)



Inversion methods—ANN
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➢ Minimizing the following loss function corresponds to finding a configuration of the network 

parameters that provides the optimal solution to the problem. 

➢ ANN provides ​a​ powerful non-linear representation capacity which enables ​it​ to approximate 

highly complex mappings.

(Min-Huan Chu et.al. arXiv: 2506.16689)



Inversion methods—Results 

17

Toy models I&II：Include correlated errors and uncorrelated errors



Inversion methods—Results 
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Reconstruction results of Toy models I&II obtained by four inversion methods

Single layer

5 neurons

Multi-layers

300~400 neurons

➢ Tikhonov, Bayesian, ANN gets good result

➢ BG performs poorly: mathematical foundation is weak[1], effective for simple models but breaking down 

with complex ones

[1]Aster, R. C., Borchers, B., & Thurber, C. H. 

(2019). Parameter Estimation and Inverse 

Problems (3rdEdition), Elsevier, 135–149.



Inversion methods—Results 

19

Reconstruction results obtained by the four methods using real lattice QCD data as input

➢ Pion quasi-DA

➢ Tikhonov, Bayesian, ANN: good results and 

consistent with 𝜆 extrapolation.

➢ BG yields poorly result again.

➢ Preconditioned-BG (J. Karpie et al. JHEP 04, 057) 

is introduced to improve the result. However, it is 

heavily reliant on strong, specific priors, making 

it too inflexible and unreliable.



Conclusions&Outlook
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New perspective: inverse problem approach to solve the limited 

discrete Fourier transform

➢ The problem is ill-posed: existence and uniqueness, but instability 

➢ This ill-posed problem is tractable: the input 𝑔(𝜆) is precise and the behavior of the true 

solution 𝑓(𝑥) is simple

➢ Use four inversion methods: toy models and real physics (𝜋 meson)

➢ ANN has substantial potential for solving multi-peak spectral function reconstruction 

problem

➢ Input precision keeps better: the lattice is developing

➢ Work together: combine 𝜆 extrapolation and inverse problem approach

➢ Baryons quasi-DA: solve the two-dimensional integral equation

Outlook:

Conclusions:
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Thanks for watching
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