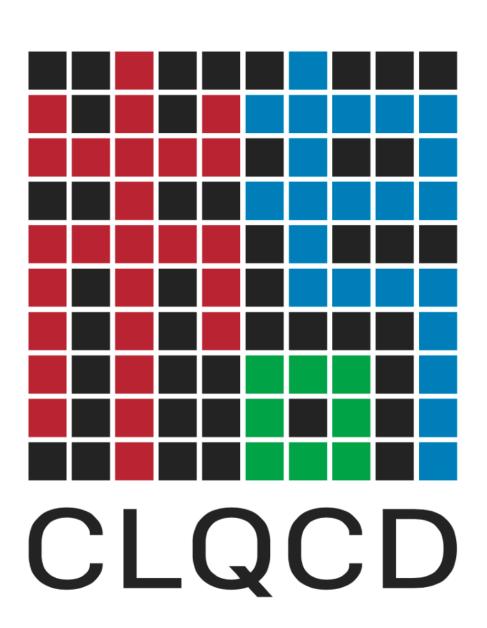
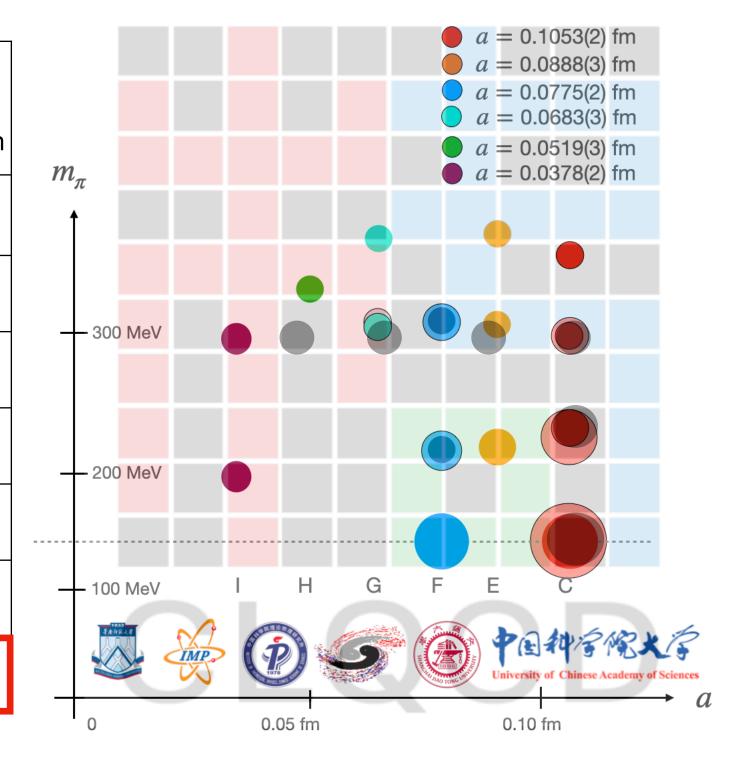
Development on precision calculation using CLQCD ensembles

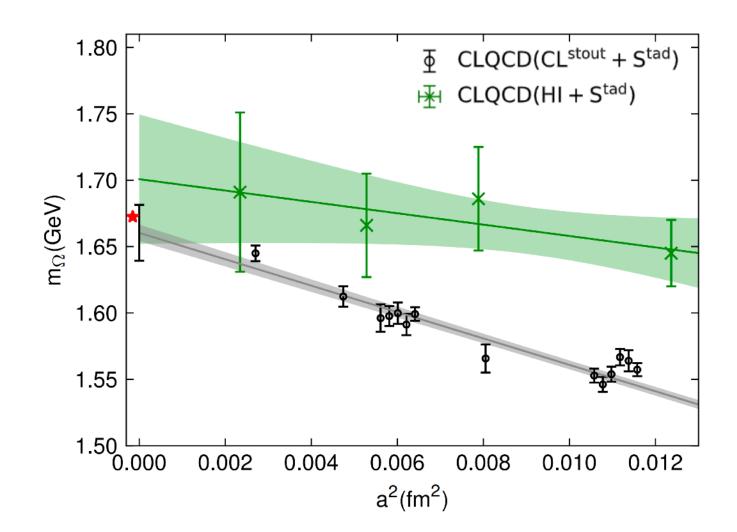


Yi-Bo Yang For CLQCD collaboration

			T		T
	Country/ Region	Smallest lattice spacing	No. of physical point ensembles	Largest spacial size	No. of fermion discretization
MILC	US	0.03 fm	5	5.8 fm	1
RBC	US	0.06 fm	3	5.5 fm	1
BMW	EN	0.05 fm	15	10 fm	2
CLS	EN	0.04 fm	2	5.5 fm	1
ETM	EN	0.05 fm	5	6.3 fm	1
PACS	JP	0.06 fm	3	10 fm	1
CLQCD	CN	0.04 fm	3	6.7 fm	2

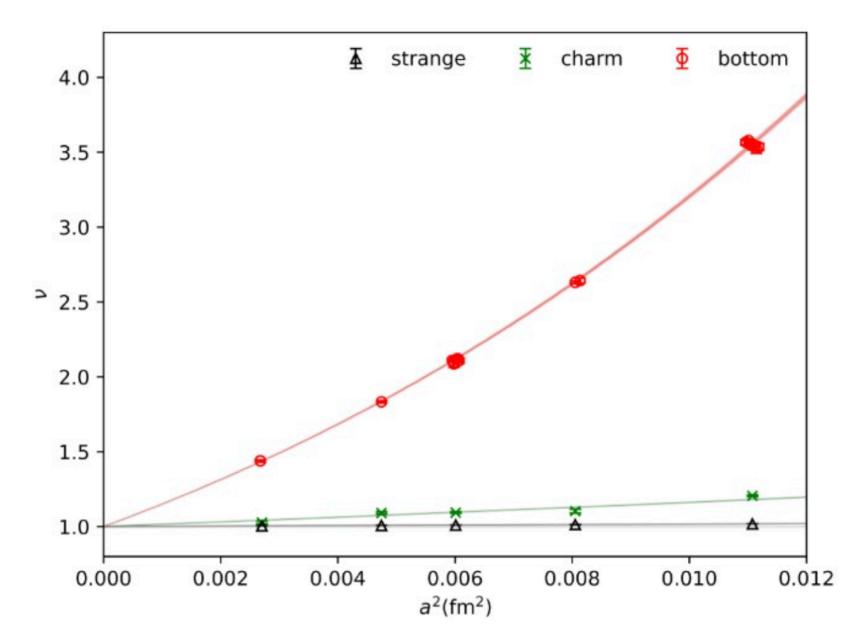


- The first
 ensemble set
 from China which
 can control most
 of the systematic
 uncertainties;
- Unique advantage on finite volume studies.



- New ensembles (HI + S^{tad}) with 2+1+1 flavor HISQ fermion can provide proper estimate of the charm sea effects;
- Compared to the current 2+1 flavor Clover fermion ensembles (CL^{stout} + S^{tad}), the discretization errors are also suppressed in kinds of the cases.

Bottom physics

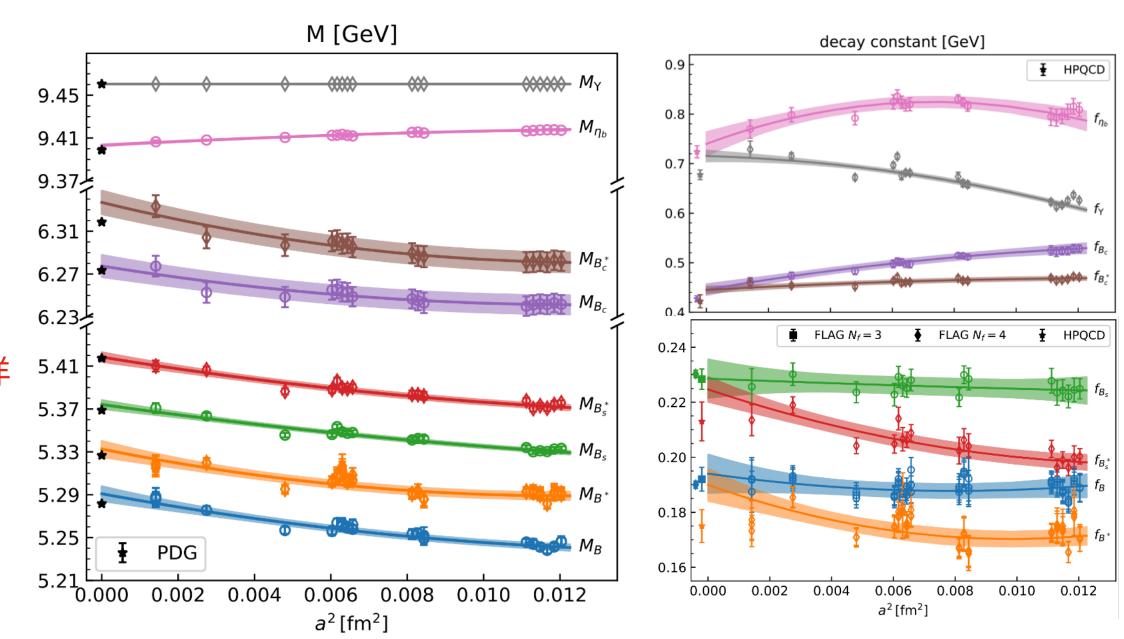


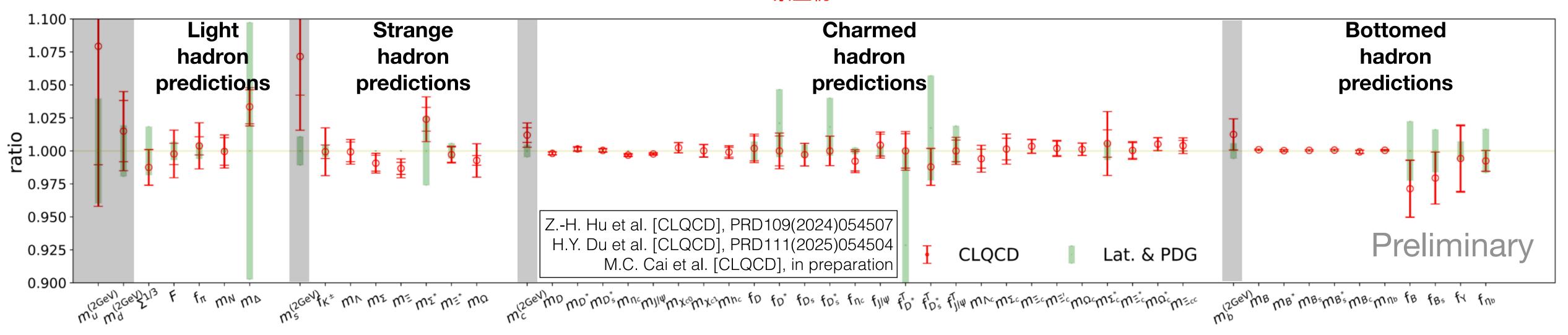
 Absorb most of the discretization errors of the bottom quark into an rescale factor along the temporal direction;

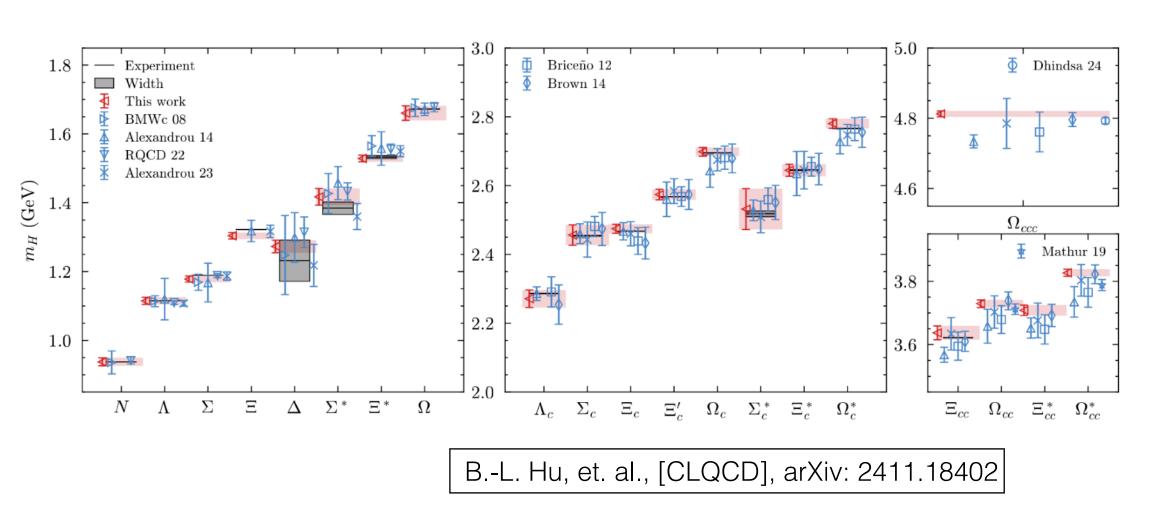
Oct.12th 14:50-15:10 分会1 杜海洋

And developed the corresponding non-perturbative renormalization.

Oct.11th 11:20-11:40 蔡孟初

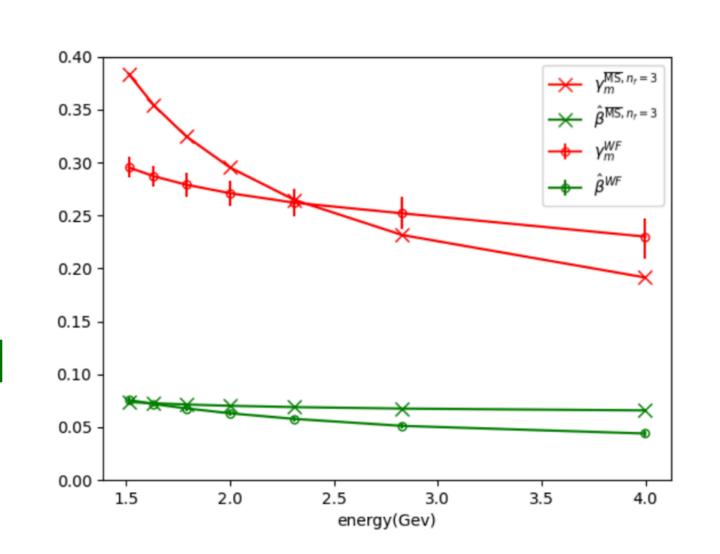


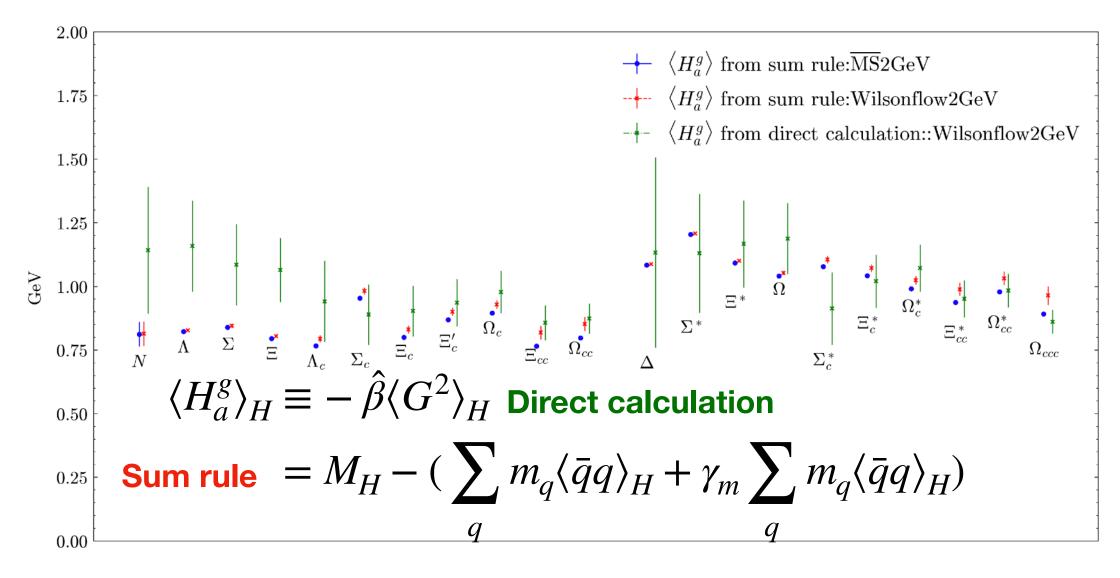




$$\gamma_m \equiv -\frac{2\mu^2}{m} \frac{\partial m}{\partial \mu^2} = \left[\frac{2}{\pi} \alpha_s + \mathcal{O}(\alpha_s^2) \right]$$

$$\hat{\beta} \equiv -\frac{1}{4\pi} \frac{\mu^2}{\alpha_s^2} \frac{\partial \alpha_s}{\partial \mu^2} = \left[\left(\frac{11}{8\pi} - \frac{N_f}{12\pi} \right) \alpha_s + \mathcal{O}(\alpha_s^2) \right]$$





- The gluon trace anomaly from baryons with different flavors are close, from both the direct calculation of $\langle H_a^g \rangle_H$ at a=0.052 fm and $m_\pi=320$ MeV and also that from sum rule;
- The $\hat{\beta}$ and γ_m under the Wilson flow and $\overline{\mathrm{MS}}$ scheme are close;
- Deviations would come from perturbative matching and kinds of systematics, including iso-spin breaking (ISB) effects and QED corrections.

• The hadron mass and matrix elements in the real world require the full QCD+QED calculation. But since the lattice calculation can only reach an $\mathcal{O}(1\%)$ ($\mathcal{O}(0.1\%)$) in the heavy quark case) precision, one can expand the prediction in term of the polynomial of α and also $\delta_{\rm ISB} \equiv (m_d - m_u)/\Lambda_{\rm OCD}$:

$$\mathcal{M}^{\text{QCD+QED}} = \mathcal{M}^{\text{isoQCD}} + \alpha \mathcal{M}^{(0,1)} + \delta_{\text{ISB}} \mathcal{M}^{(1,0)} + \mathcal{O}(\alpha^2, \alpha \delta_{\text{ISB}}, \delta_{\text{ISB}}^2).$$

- Naive power counting suggests that both ISB and QED corrections are 1%;
- There are kinds of known results for the ISB and QED corrections:

$$m_n - m_p = 2.52_{\text{ISB}}(29) \text{ MeV} - 1.00_{\text{QED}}(16) \text{ MeV},$$

$$m_{D^+} - m_{D^0} = 2.54_{\text{ISB}}(13) \text{ MeV} + 2.14_{\text{QED}}(13) \text{ MeV}, \qquad m_{B^+} - m_{B^0} = -1.88_{\text{ISB}}(60) \text{ MeV} + 1.58_{\text{QED}}(24) \text{ MeV}.$$

BMWc, Science 347(2015)1452

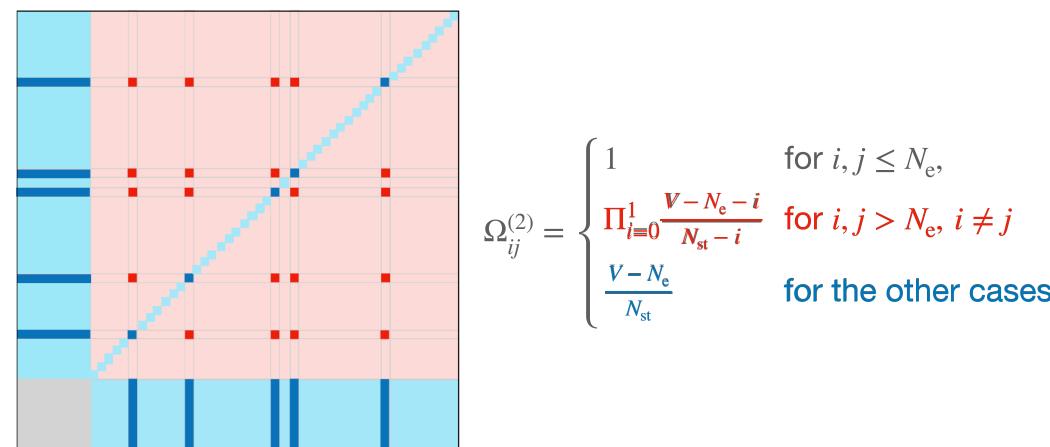
M. Rowe, R. Zwicky, JHEP(2023)089

- ISB effect is only 0.1% for the charmed hadron, how about the QED effect?
- How to understand the sizable QED correction for the charged pion mass in the chiral limit?

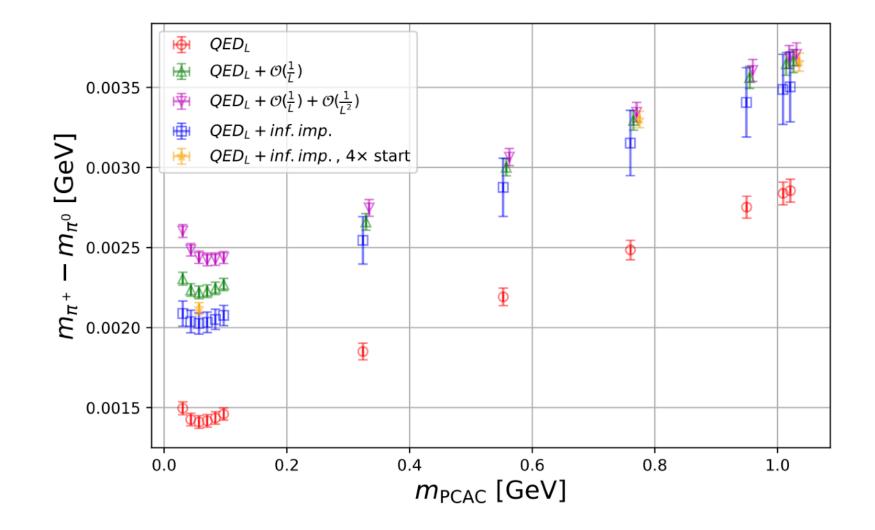
$$m_{\pi^+}|_{m_q \to 0} = 0_{m_q \bar{q}q} + 0_{\mathcal{O}(\alpha_s)G^2} + 32_{\mathcal{O}(\alpha)} \text{ MeV}$$
 given $(m_{\pi^+}^2 - m_{\pi^0}^2)|_{m_q \to 0} \simeq 1000 \text{ MeV}^2$

Outline

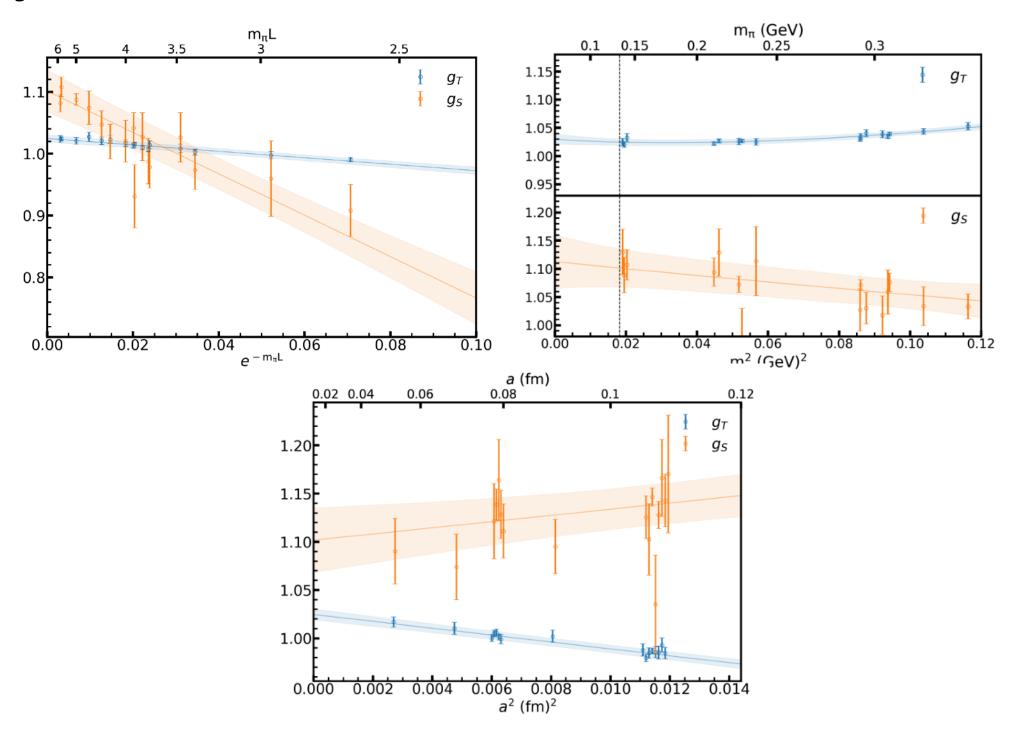
Blending method for statistical uncertainty



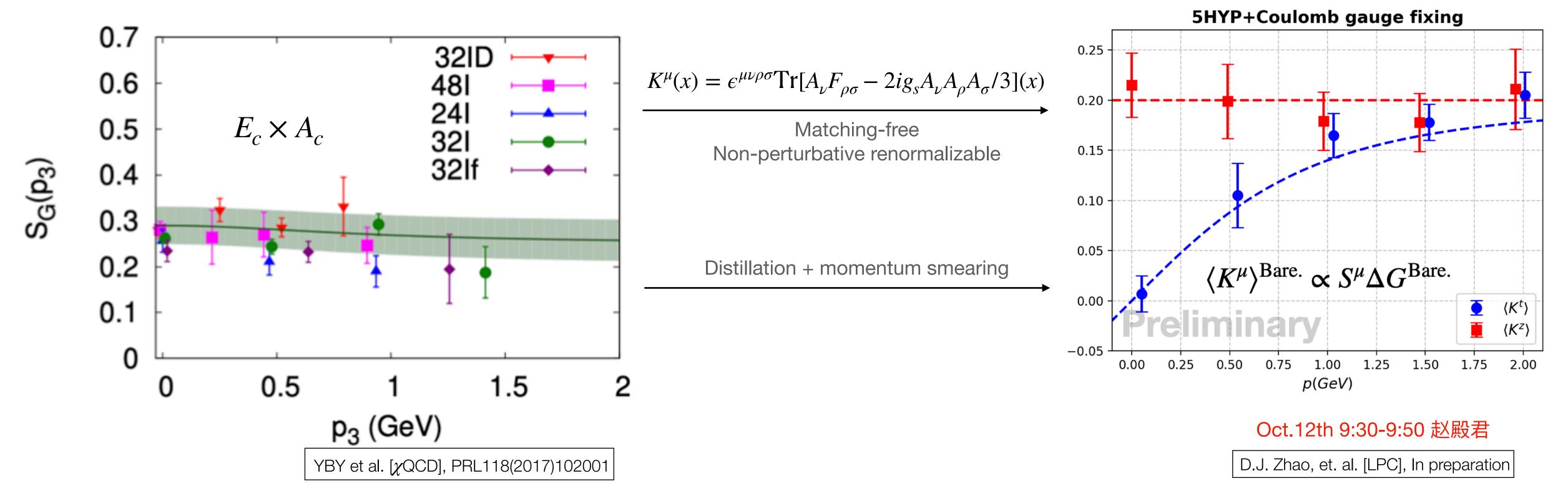
QED and ISB corrections



Systematic uncertainties of IsoQCD



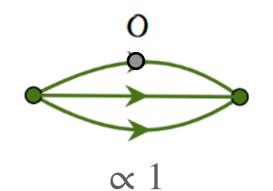
Outlook

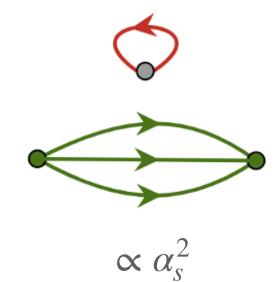


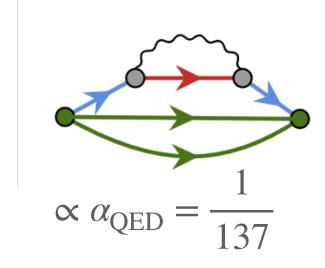
$$\hat{I}_{x,y} \to \sum_{i=1}^{N_e} \sum_{j=1}^{N_e} |\phi_i(x)\rangle \langle \phi_j(y)|$$

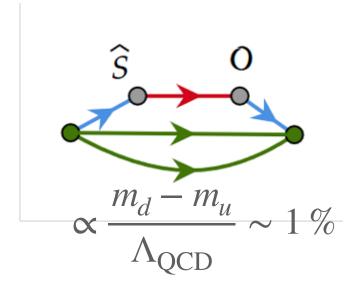
$$\nabla^2 | \phi_i(x) \rangle = \lambda_i | \phi_i(x) \rangle, \lambda_i < \lambda_{i+1}$$

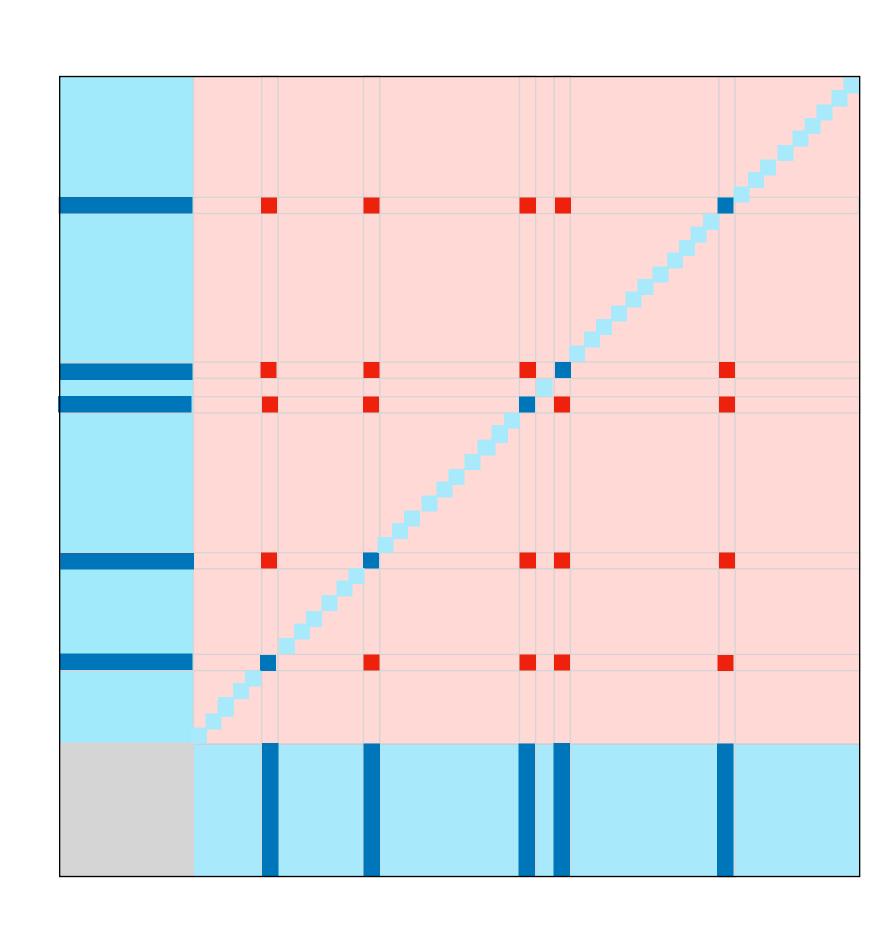
- Distillation method projected the quark propagator into its low momentum modes and suppress the excited state contaminations efficiently;
- It has been widely used in the hadron spectrum calculation and can also be applied to the gluon matrix elements;
- But incapable with the connected insertion quark diagrams since the high momentum modes are missing.





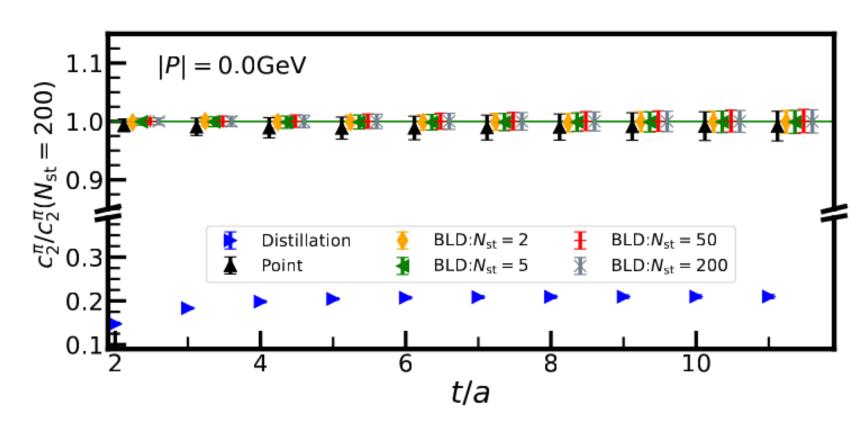




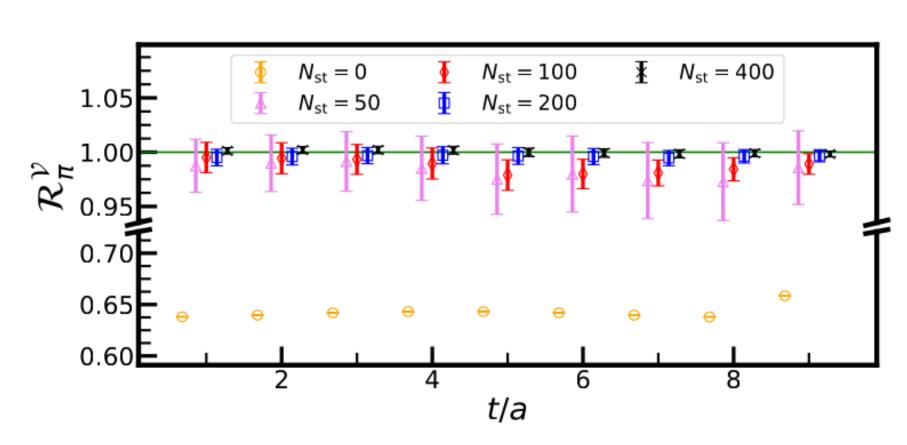


- The "blending" method projects the allto-all propagators into exact low momentum modes plus stochastic samples of high momentum modes;
- And allow us to calculate the hadron matrix element efficiently with kinds of high order diagrams (disconnected quark diagram, QED correction, isospin breaking effect et. al.).

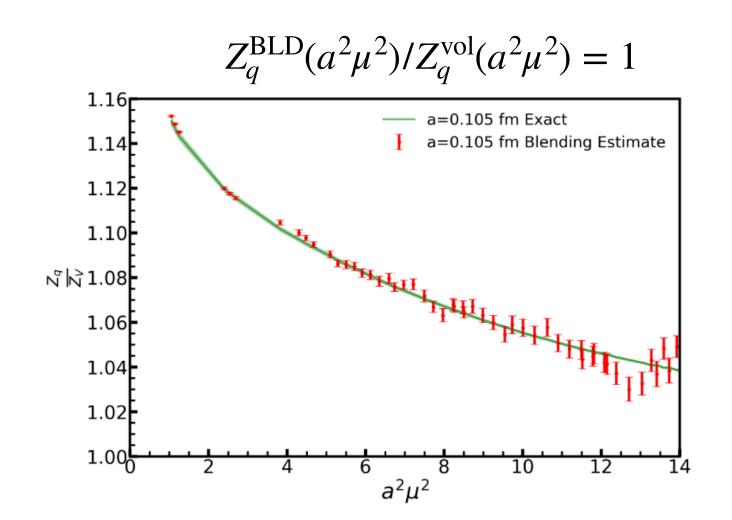
$$\Omega_{ij}^{(2)} = \begin{cases} 1 & \text{for } i, j \leq N_{\rm e}, \\ \Pi_{i\equiv 0}^{1} \frac{V-N_{\rm e}-i}{N_{\rm st}-i} & \text{for } i, j > N_{\rm e}, \ i \neq j \\ \frac{V-N_{\rm e}}{N_{\rm st}} & \text{for the other cases,} \end{cases}$$



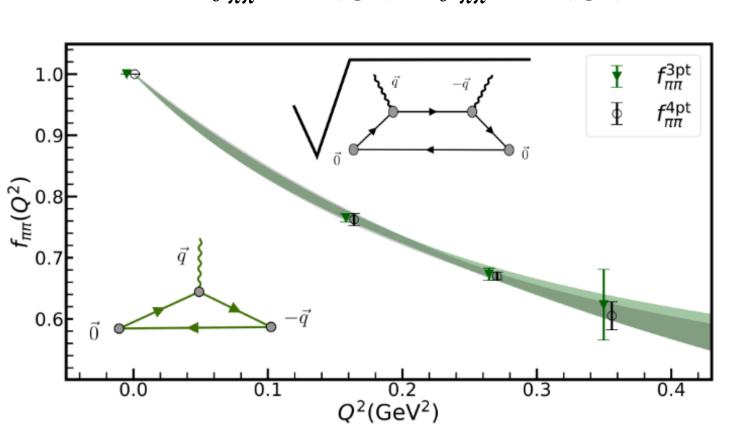
$$\langle \mathcal{V}_4^{\text{conserved}} \rangle_{\pi} = 1$$



- All-to-all propagator can be approximated unbiasedly with $\mathcal{O}(1\%)$ inversions;
- The high momentum mode turns out to be important in the full correlation functions and can not be ignored.
- Unbiasedness has been verified using two-, three-, and four-point functions.

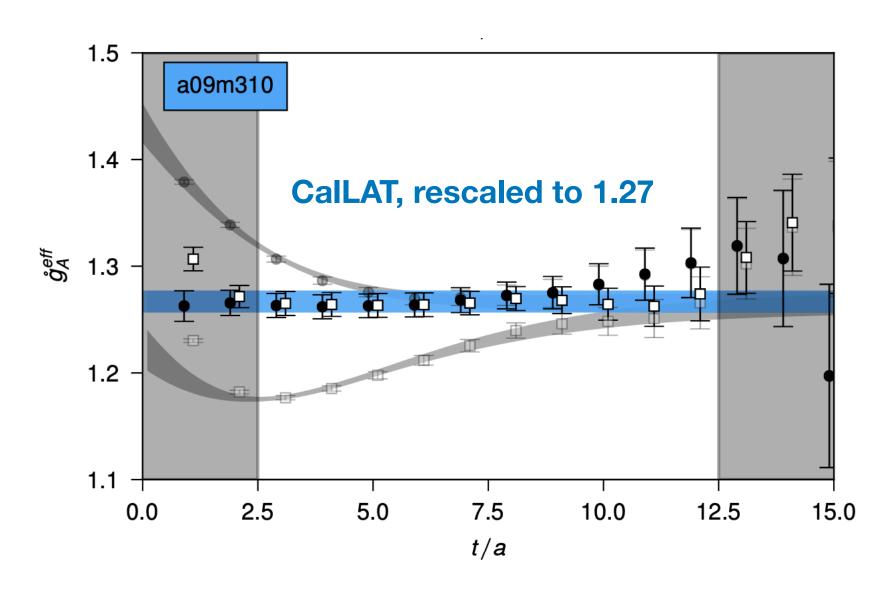


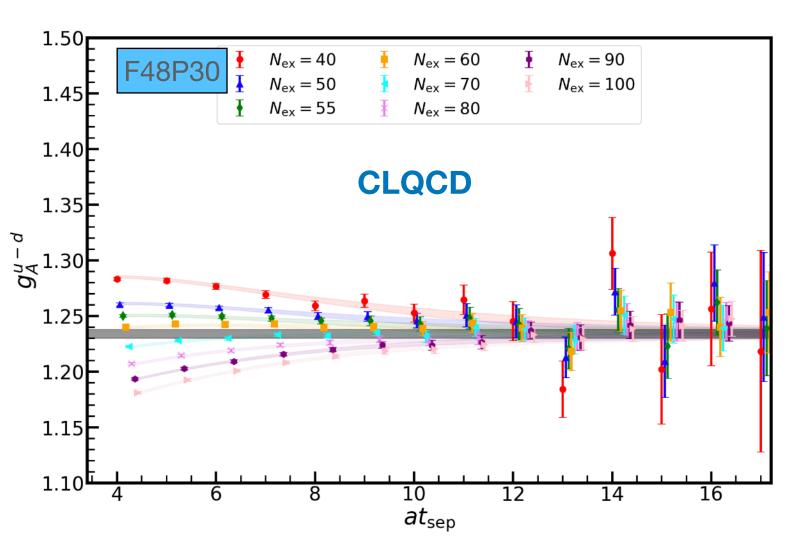
$$f_{\pi\pi}^{3\text{pt,BLD}}(Q^2) = f_{\pi\pi}^{4\text{pt,BLD}}(Q^2)$$



Blending method

Cost comparison





	Ensemble	L	Т	a(fm)	m_π	$n_{ m cfg}$	g_A^{u-d}	Propagators	Propagators for 0.35% error
CLQCD	F48P30	48	96	0.078	300	40	1.234(04)	0.19M	0.19M
CalLAT	a09m310	32	96	0.090	310	784	1.235(11)	0.06M	0.37M
RQCD	N450	48	128	0.076	287	1132	1.238(24)	0.02M	0.44M

C.C.Chang et. al., [CalLAT], Nature 558(2018)91 G.S.Bali et. al., [RQCD], PRD108(2023)094512

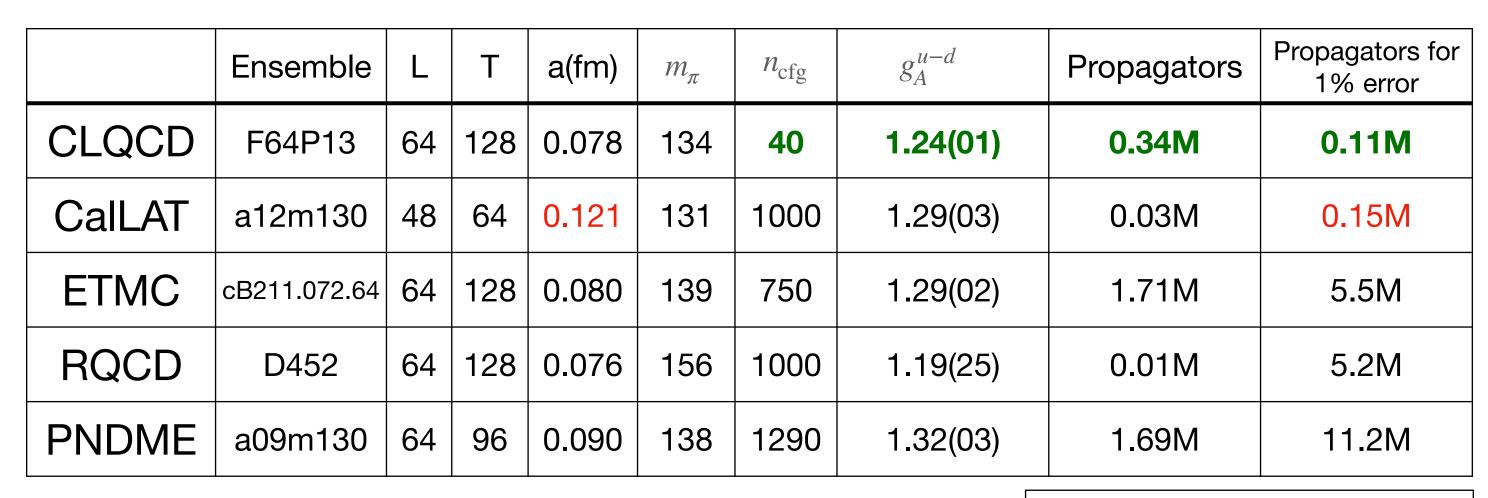
- Blending method can reach the same precision with 50% cost of either FH-inspired (CalLAT) or stochastic (RQCD) method, and also
- 1. Provide the information from arbitrary source-current-sink separations;
- 2. Reuse data in any other calculation which needs light quark propagators, including disconnected insertions.

	Ensemble	L	Т	a(fm)	m_π	$n_{ m cfg}$	$g_A^{u,\mathrm{DI}}$	Propagators	Propagators for 17% error
CLQCD	F48P30	48	96	0.078	300	40	-0.052(9)	O^{\dagger}	O^{\dagger}
PNDME	a09m310	32	96	0.090	310	1081	-0.053(6)	4.0M	1.8M

† Shared with that for g_A^{u-d}

Blending method

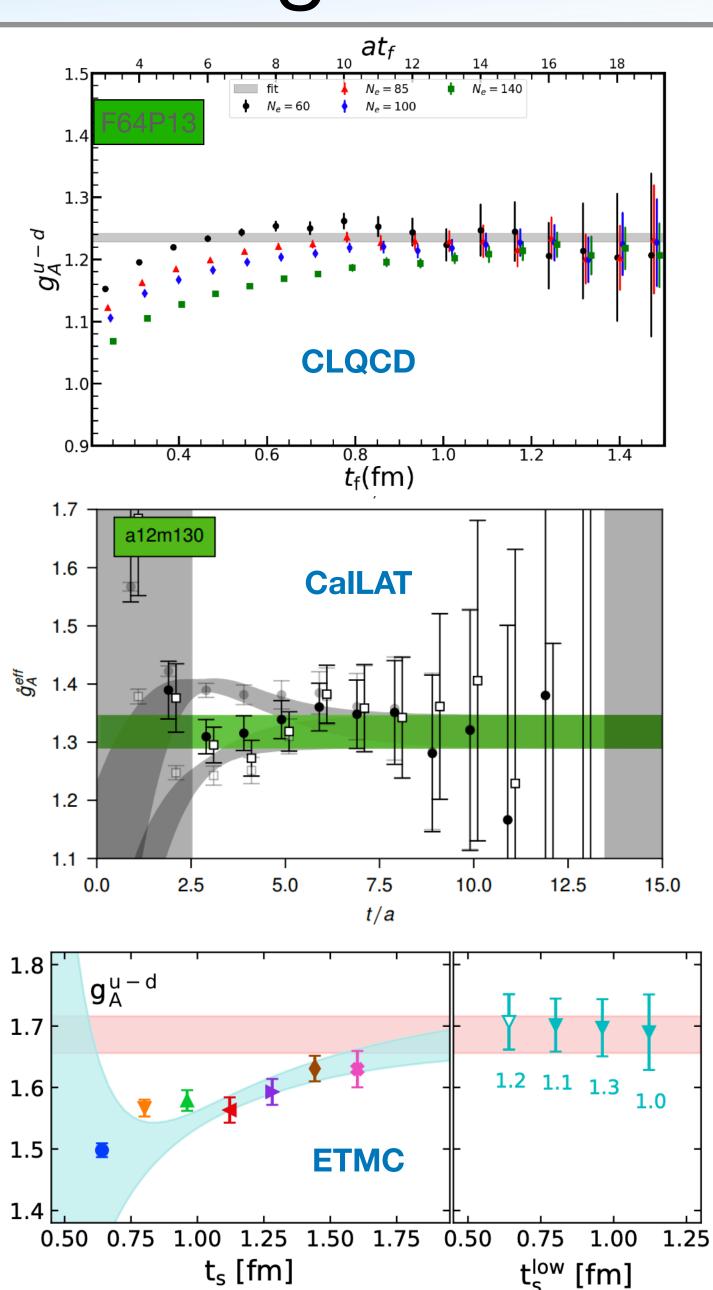
Cost comparison



Z.C.Hu, et. al.,[CLQCD] in preparation

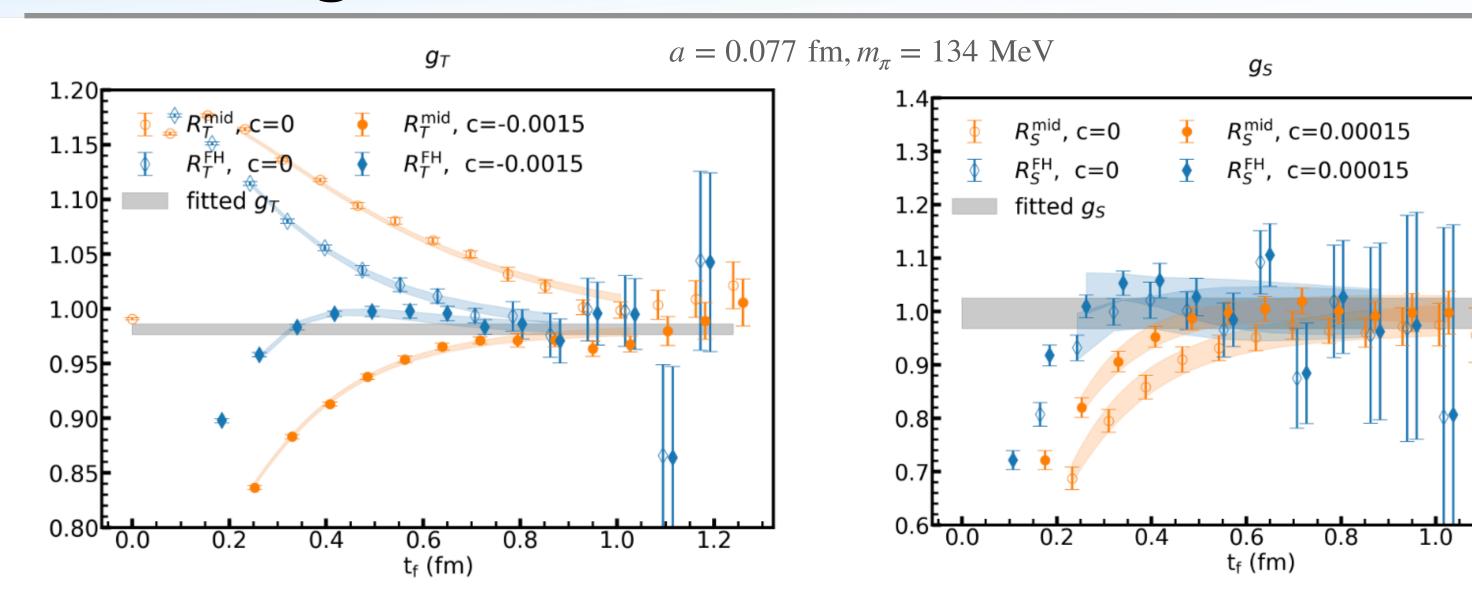
C.C.Chang et. al., [CalLAT], Nature 558(2018)91
C.Alexandrou et. al., [ETMC], PRD102(2020)054517
G.S.Bali et. al., [RQCD], PRD108(2023)094512
Y.C.Jang et. al., [PNDME], PRD109(2023)014503

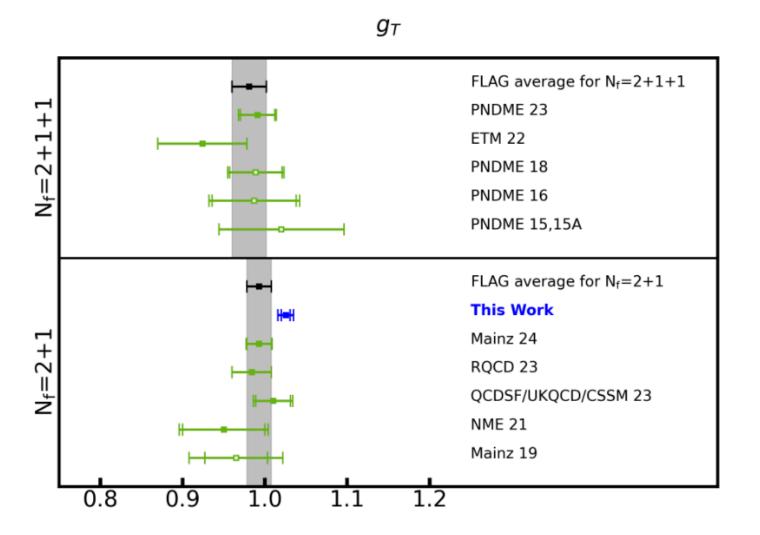
- Advantage becomes much more significant at the physical pion mass, except the CalLAT results which is only available at much larger lattice spacing;
- And also provide much more information on different source-currentsink separations and nucleon interpolation fields, which allow us to have much better control on the excited state contaminations.



Blending method

Application in g_{ST}^{u-a}



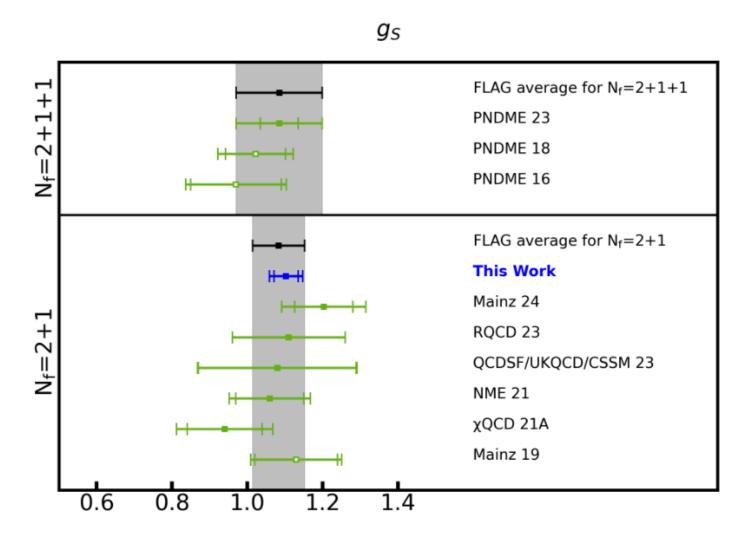


- Using the blending method, the signal at the physical pion mass can be improved by an order of magnitude;
- With the FLAG average of $m_d m_u$ and QED correction from BMWc, we predict:

$$m_n - m_p = 1.59[0.23]_{\text{tot}}(0.10)_{g_S}(0.13)_{\text{ISB}}(0.16)_{\text{QED}} \text{ MeV},$$

which agrees with the experimental value 1.293 MeV within 1.3σ .

 Direct QCD+QED calculation using CLQCD ensemble can suppress the systematic uncertainties from ISB and QED, and is in progress.

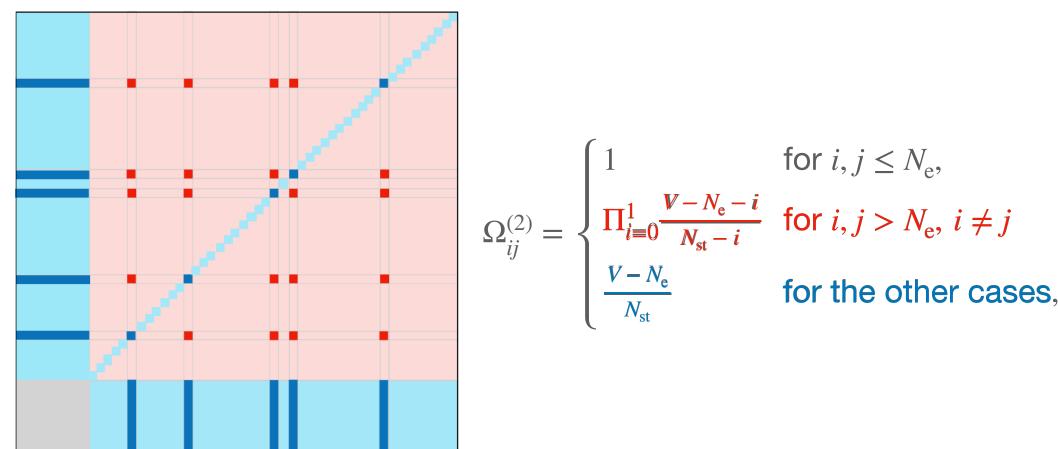


Flavor lattice average group, 2411.04268

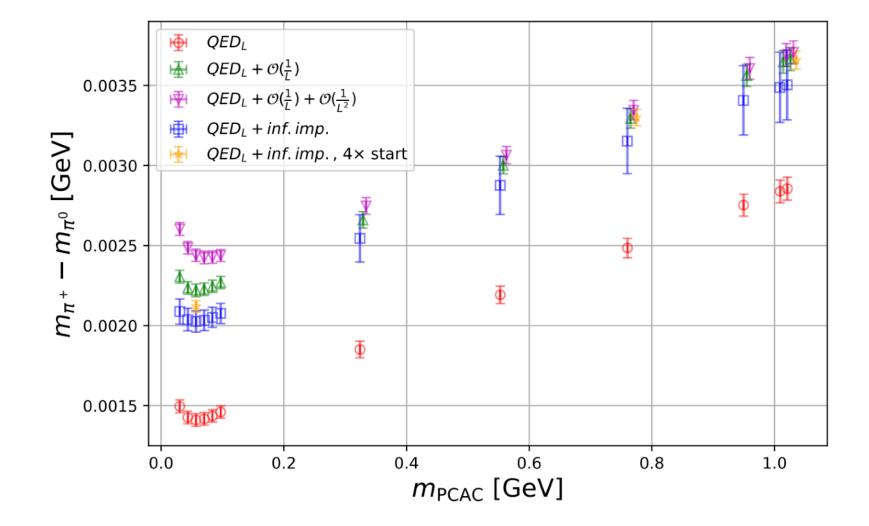
Oct.11th 17:00-17:20 分会1 王积昊 J.H. Wang, et. al. [CLQCD], In preparation

Outline

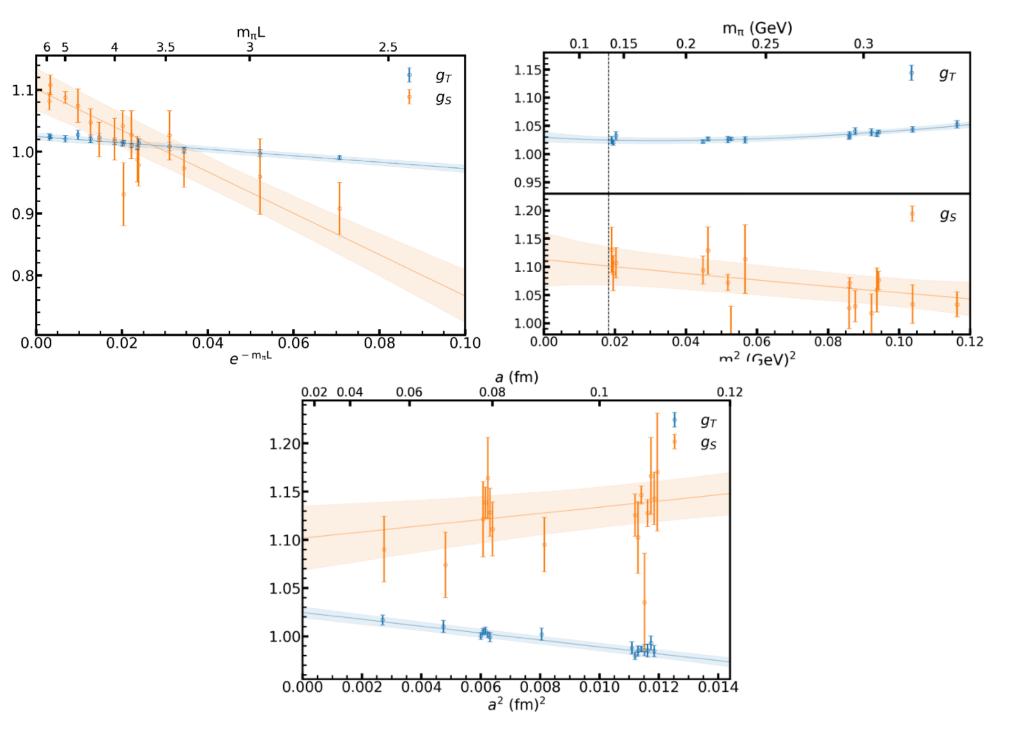
Blending method for statistical uncertainty



QED and ISB corrections



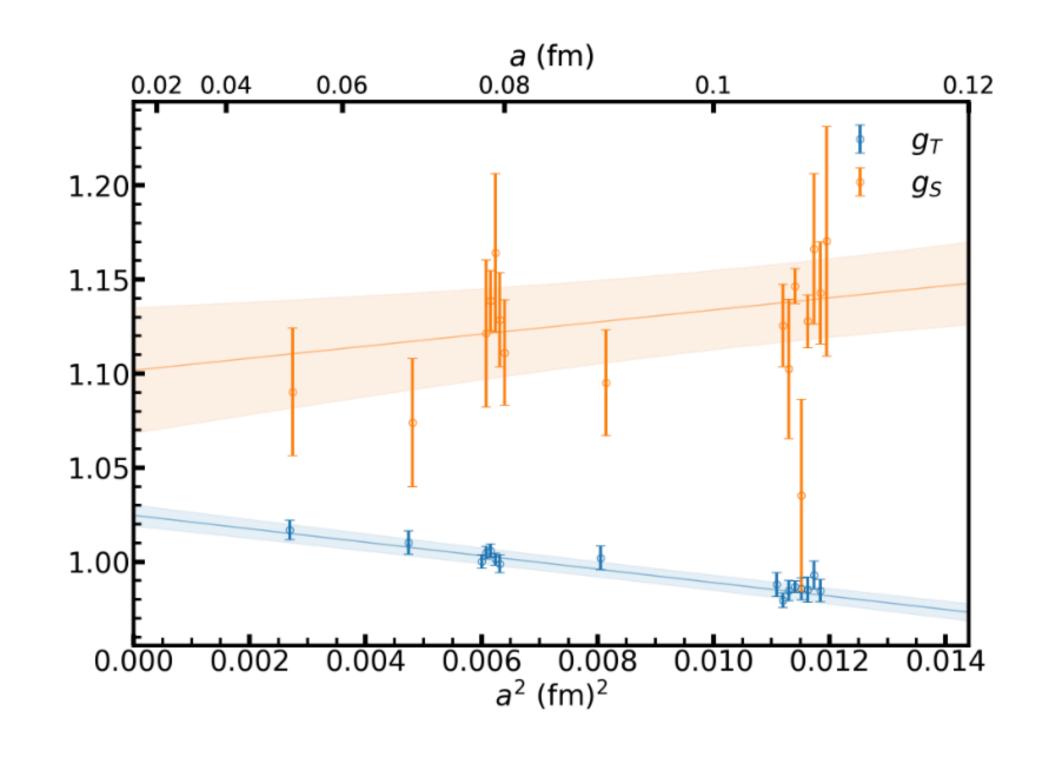
Systematic uncertainties of IsoQCD



Outlook

Systematic uncertainties

Continuum extrapolation

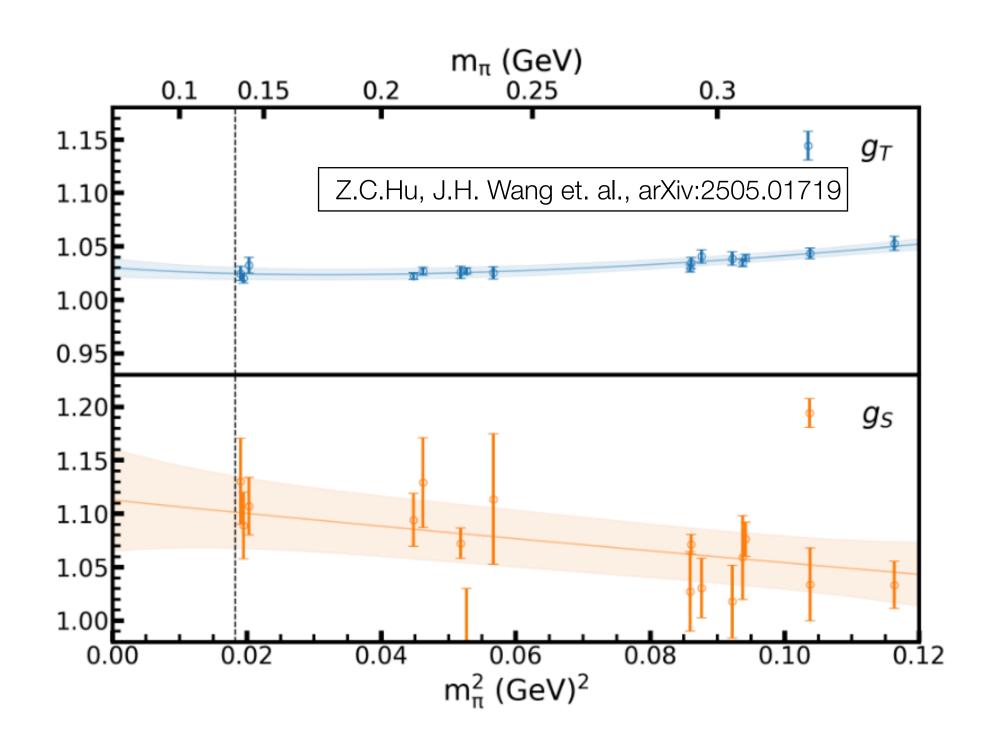


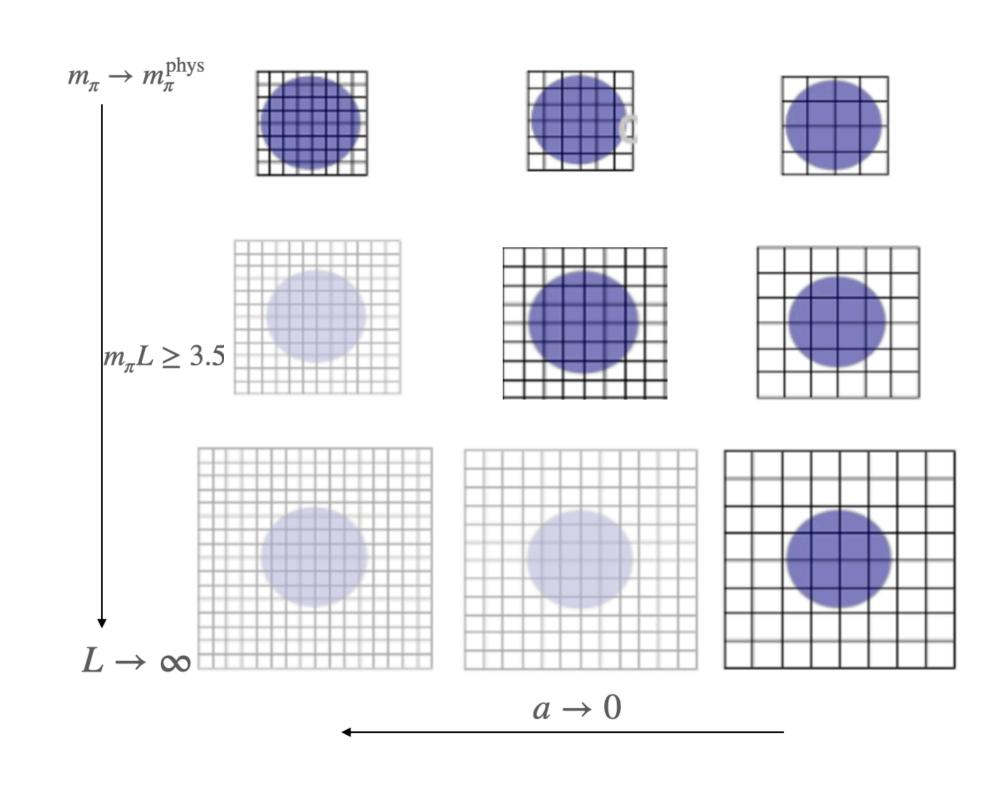
$m_{\pi} ightarrow m_{\pi}^{ m phys}$		
$m_{\pi}L \geq 3.5$		
$L o \infty$		
-	$a \rightarrow 0$	

- Ensemble
 L
 T
 a(fm)
 $m_π$

 H48P32
 48
 96
 0.052
 320

 I64P29
 64
 128
 0.038
 290
- The cost at $a \sim 0.05$ fm is ~16x of that at $a \sim 0.10$ fm with the same V;
- Different discretized fermion and gauge action can only have consistent prediction after the continuum extrapolation.
- Current FLAG "green star" grade requires 3 different lattice spacing a with two of them smaller than 0.1 fm, and $a_{\rm max}^2/a_{\rm min}^2 \ge 2$.
- Such a requirement can be satisfied efficiently using the ensembles at relatively heavy $m_\pi \simeq 300~{
 m MeV}$. J.H. Wang, et. al. [CLQCD], In preparation





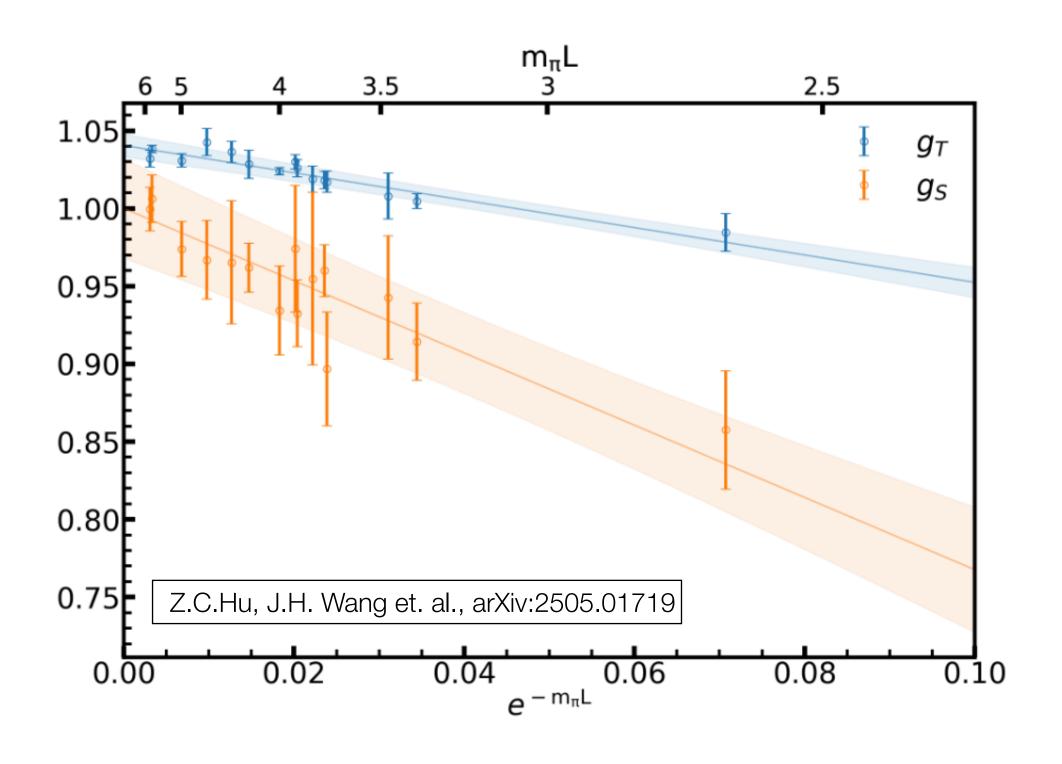
Ensemble	L	Т	a(fm)	m_{π}
C48P14	48	96	0.105	135
C64P14	64	96	0.105	135
F64P13	64	128	0.077	134

- The cost at $m_\pi \simeq 135~{
 m MeV}$ is ~4x of that at $m_\pi \simeq 310~{
 m MeV}$, and requires additional 4x statistics to reach similar precision;
- Current FLAG "green star" grade requires 3 different m_π with $m_{\pi, \rm min} <$ 200 MeV in the chiral extrapolation, or $m_{\pi, \rm case1} = 135 \pm 10$ MeV and $m_{\pi, \rm case2} <$ 200 MeV.
- Such a requirement can be satisfied efficiently using the ensembles at the coarsest lattice spacing.

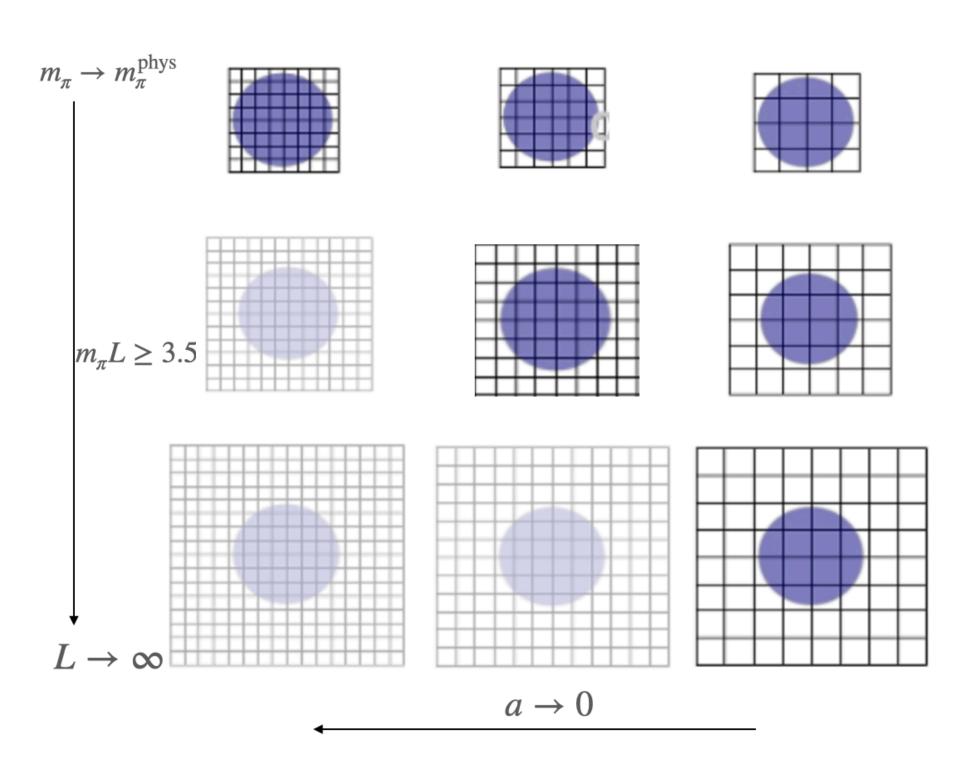
 J.H. Wang, et. al. [CLQCD], In preparation]

Systematic uncertainties

Infinite volume extrapolation



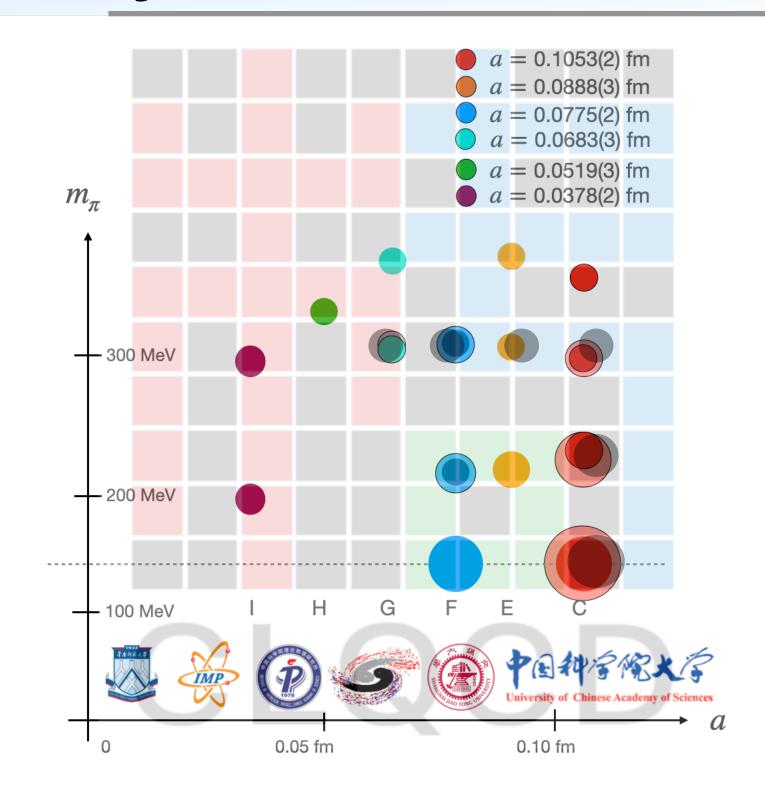
Ensemble	L	Т	a(fm)	
C48P14/C64P14	48/64	96	0.105	135
C24P23/C32P23/C48P23	24/32/48	64/96	0.105	227
C24P29/C32P29/C48P29	24/32/48	64/72	0.105	290
F32P21/F48P21	32/48	96	0.077	210
F32P30/F48P30	32/48	64/96	0.077	300



- The cost at $L\sim 5\,$ fm is 8x of that at $L\sim 2.5\,$ fm, and χ PT suggests an $e^{-m_\pi L}$ behavior with $m_\pi L\geq 3$;
- Current FLAG "green star" grade requires $m_\pi L \sim 3.2$ with $m_\pi \sim 135$ MeV, or at least three L in the infinite volume extrapolation.
- Such a requirement can be satisfied efficiently using the ensembles at the coarsest lattice spacing and or heavier m_{π} ;

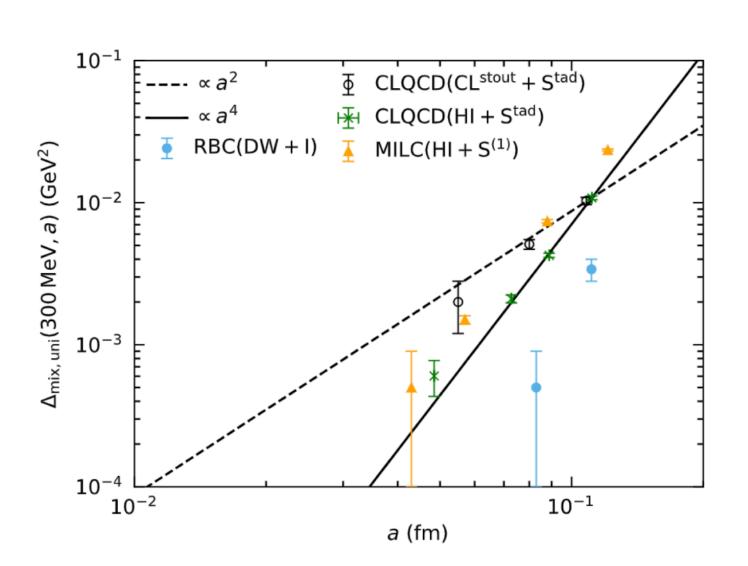
Systematic uncertainties

Charmed sea effects



$$\begin{split} O_{H}(m_{q}, a, 1/L) \\ &= \sum c_{1,q=l,s,c,b..}(m_{q} - m_{q}^{\text{phys}}) + c_{2}e^{-m_{\pi}L} \\ &+ \begin{cases} O_{H}^{N_{f}=2+1}(m_{\pi}^{\text{phys}}, 0) + c_{3,\text{CL}}^{1}a^{2}, \text{ CL on CL} \\ O_{H}^{N_{f}=2+1+1}(m_{\pi}^{\text{phys}}, 0) + c_{3,\text{HI}}a^{2}, \text{ CL on HI} \end{cases} \end{split}$$

- New ensembles (HI + S^{tad}) with 2+1+1 flavor HISQ fermion can provide proper estimate of the charm sea effects with much lower cost;
- Joint fit using both the 2+1 flavor
 (CL^{stout} + S^{tad}) and 2+1+1 (HI + S^{tad})
 ensembles can provide proper
 estimate of the charmed sea
 effects;



• The mixed action effect of using clover-valence and HISQ-sea is $\mathcal{O}(a^4)$ and smaller than the similar MILC ensembles.

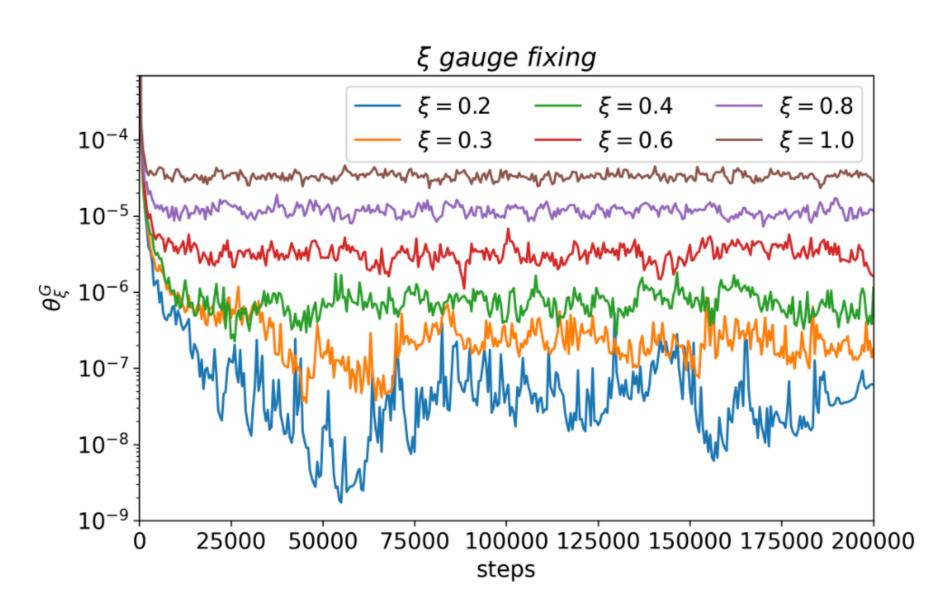
Oct.11th 16:40-17:00 分会2 张遵贤 Oct.11th 17:00-17:20 分会2 林彤巍

Z.X. Zhang et al. [CLQCD], in preparation

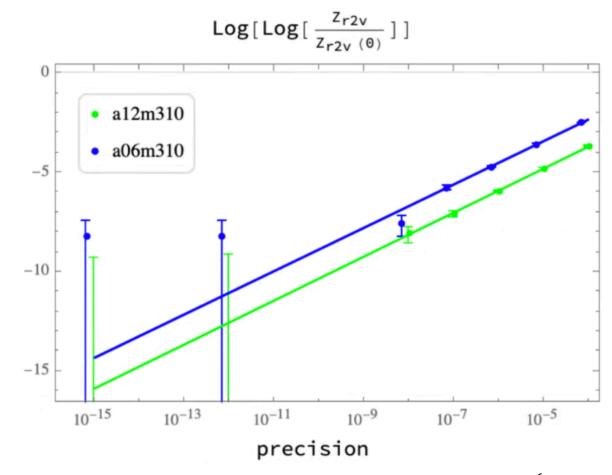
T.W. Lin et al. [CLQCD], in preparation

Non-perturbative

renormalization



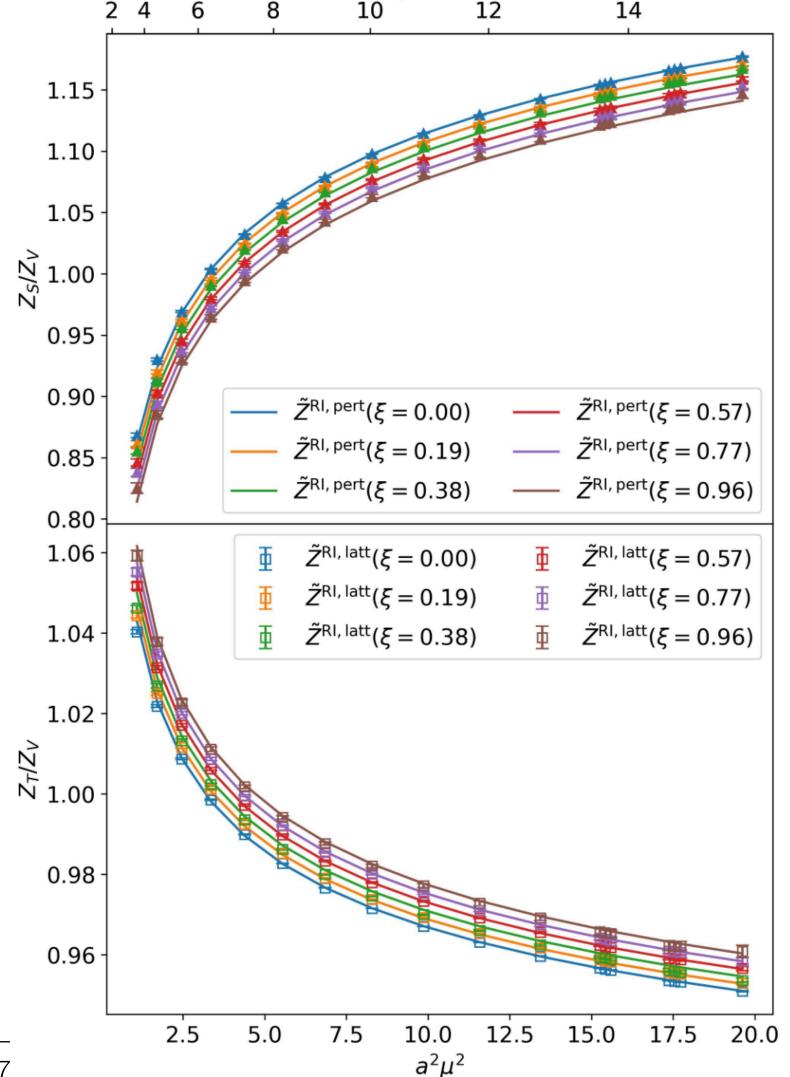
- Most of the non-perturbative renormalizations are limited to the Landau gauge.
- The "plateau" of the gauge fixing residual of the ξ gauge fixing increases rapidly on ξ , roughly $10^{-7+2.5\xi}$.



• The quantities with precise ξ gauge fixing can be estimated using an empirical form

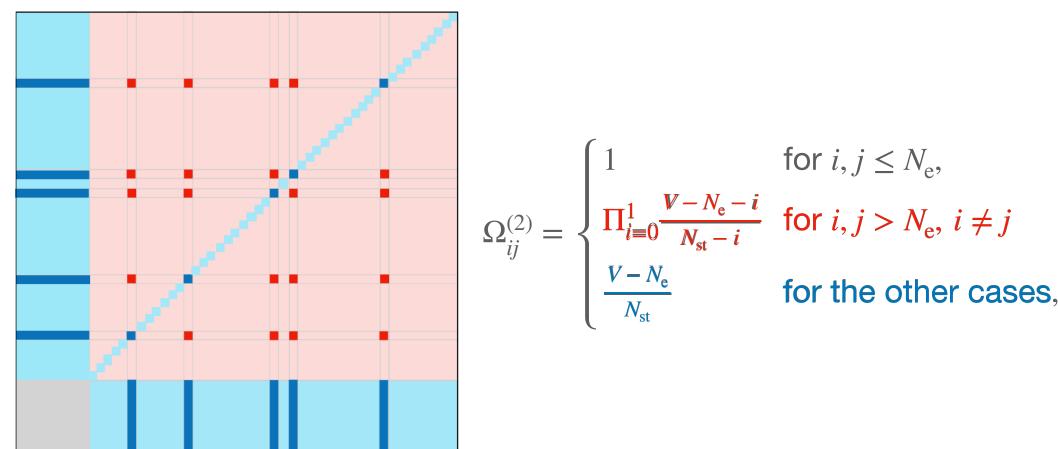
$$X(\theta) = X(0)e^{-c(X)\theta^{n(X)}},$$
 with $X(\theta)$ at different residual θ .

• ξ dependence of the RI-MOM renormalization constants can be reproduced at 0.2% level after the continuum extrapolation, up to $\xi \sim 1$.

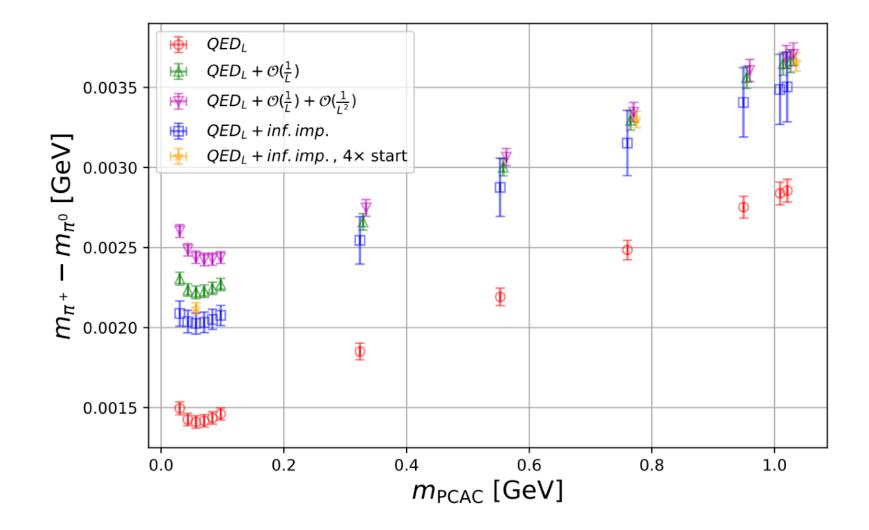


Outline

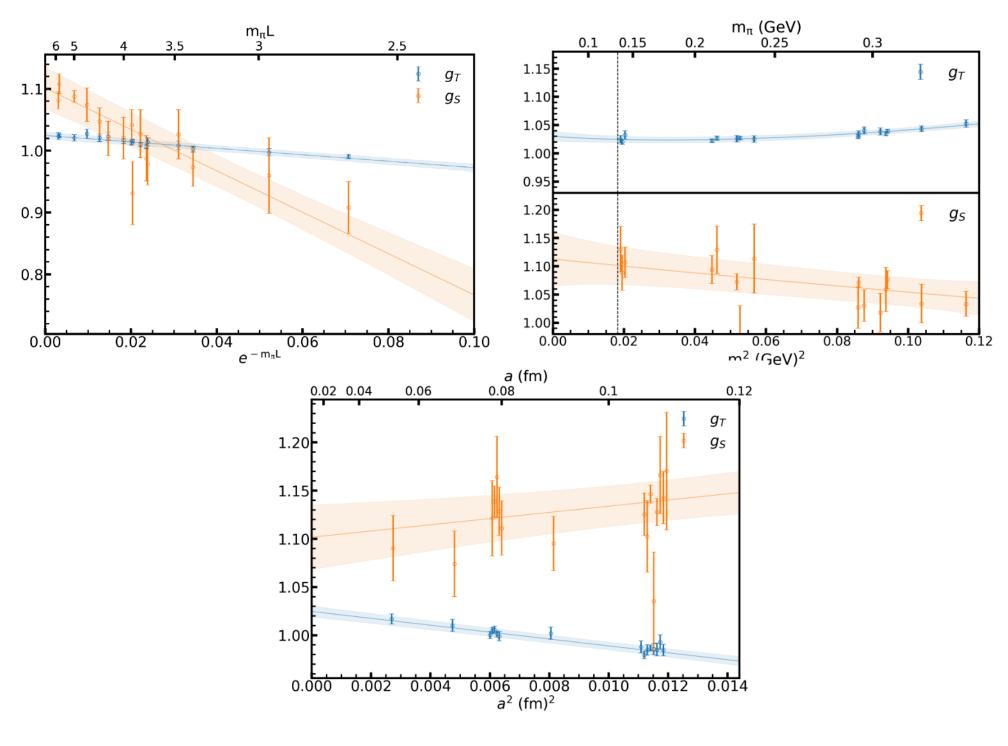
Blending method for statistical uncertainty



QED and ISB corrections



Systematic uncertainties of IsoQCD



Outlook

• The QCD+QED calculation can be done under the quenched QED approximation using QED_L for the valence fermion:

$$U_{\mu}^{\text{QCD+QED}} = U_{\mu}^{\text{QCD}} e^{-iee_q A_{\mu}}, A_{\mu}(x) = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} e^{-ip \cdot x} A_{\mu}(p), P_{A_{\mu}(p)}|_{\vec{p} \neq 0} \propto e^{-\frac{1}{2N_V} \hat{p}^2 A_{\mu}^2(p)}.$$

• The QED finite volume correction (FVC) of hadron masses using QED_L is independent of the hadron structure until $\mathcal{O}(1/(m_H L)^3)$:

$$\delta_{\text{QED-FVC}} m_H = e_H^2 \frac{c_1}{L} (1 + \frac{2}{m_H L} + \mathcal{O}(\frac{1}{(m_H L)^2})).$$

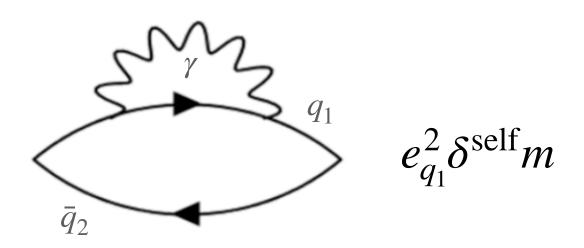
BMWc, Science 347(2015)1452

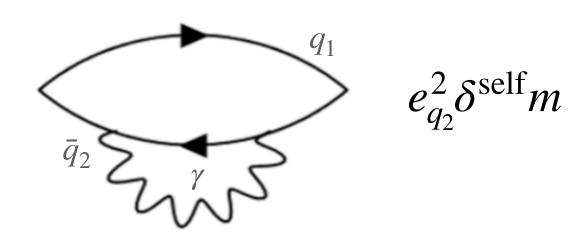
Thus the QED-FVC of neutral particles using QED_L are highly suppressed, likes that using QED_∞ .

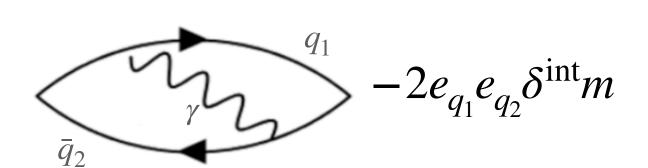
ullet One can further improve QED_L by enlarging the weights of the near-zero momentum modes:

$$\delta_{\text{QED-FVC}}^{\text{inf.imp.}} m_H = \mathcal{O}(\frac{e_H^2}{(m_H L)^2}), \; P_{A_\mu(p)}^{\text{inf.imp.}} \mid_{\vec{p} \neq 0} \propto e^{-\frac{1 + 1.4856 \delta(p^2 - \frac{4\pi^2}{L^2})}{2N_V} \hat{p}^2 A_\mu^2(p)}.$$
 Z. Davoudi et.al., PRD99(2019)034510

• One can define the neutral pion uncorrected (NPU) scheme by tuning the bare mass $m_q^b(e_q)$ of the quark with a QED charge e_q , to ensure the neutral iso-vector pseudoscalar meson mass to be the same as that using the QED-neutral quark with bare mass $m_q^b(0)$:







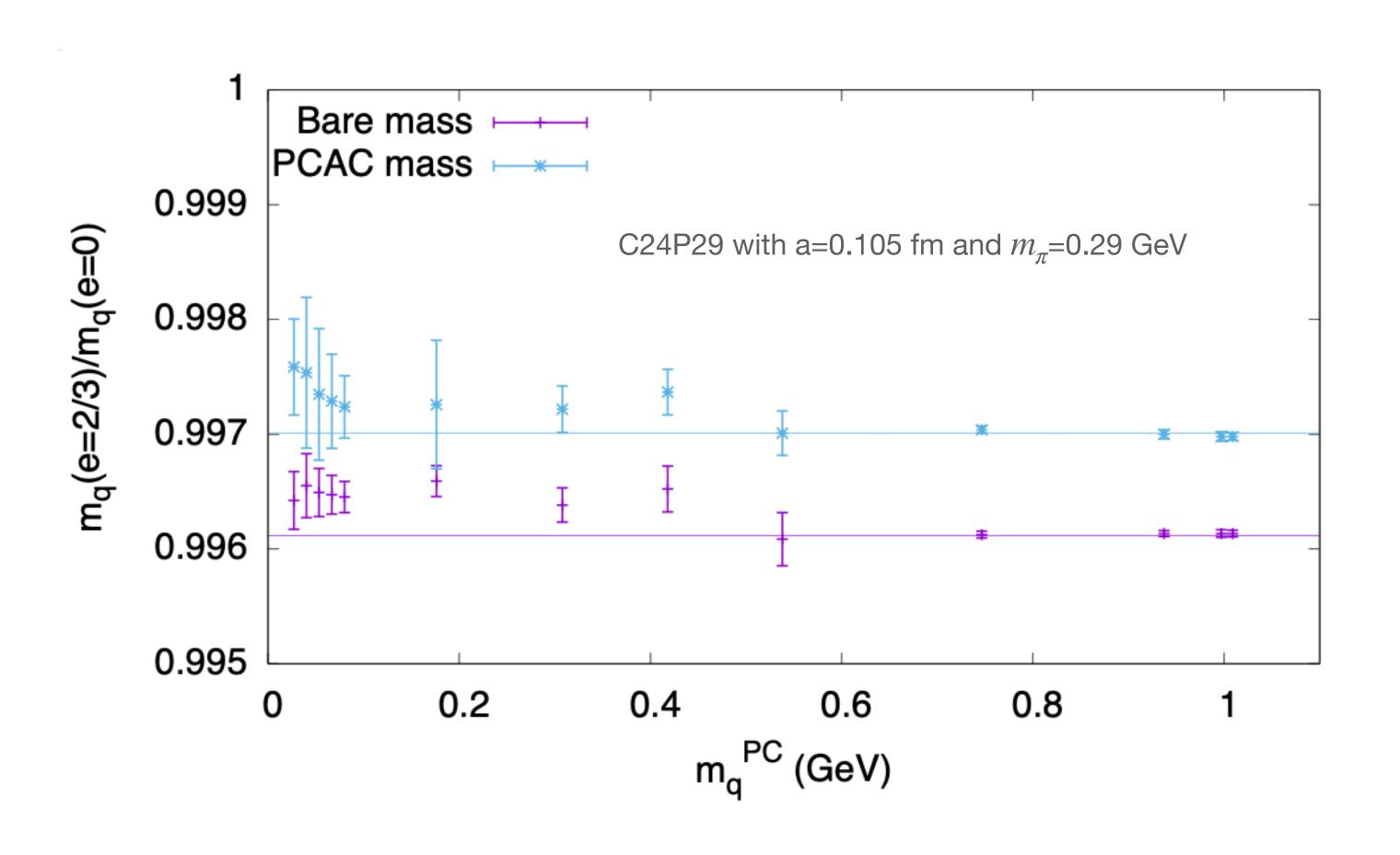
$$m_{\eta_q}^{\text{QCD+QED}}(m_q^b(e_q)) = m_{\eta_q}^{\text{QCD}}(m_q^b(0)).$$

• Using the QED quark diagram decomposition, we have $(\delta^{\text{self}} m = m^{\text{QCD+QED}} - m^{\text{QCD}})$:

$$\begin{split} \delta m_{\pi^0} &= \frac{5}{18} \delta^{\text{self}} m_{\pi^0} - \frac{5}{18} \delta^{\text{int}} m_{\pi^0} + \mathcal{O}(\alpha \alpha_s^2, \alpha^2), \\ \delta m_{\pi^+} &= \frac{5}{18} \delta^{\text{self}} m_{\pi^+} + \frac{4}{18} \delta^{\text{int}} m_{\pi^+} + \mathcal{O}(\alpha \alpha_s^2, \alpha^2), \\ \delta m_{\eta_c} &= \frac{4}{9} \delta^{\text{self}} m_{\eta_c} - \frac{4}{9} \delta^{\text{int}} m_{\eta_c} + \mathcal{O}(\alpha \alpha_s^2, \alpha^2) \\ \delta m_{\eta_b} &= \frac{1}{9} \delta^{\text{self}} m_{\eta_b} - \frac{1}{9} \delta^{\text{int}} m_{\eta_b} + \mathcal{O}(\alpha \alpha_s^2, \alpha^2) \end{split}$$

- $\delta^{\mathrm{self}} m_{\eta_q}$ requires from the QED UV renormalization and a matching condition.
 - The NPU scheme defines $\delta^{\rm self} m_{\eta_q} = \delta^{\rm int} m_{\eta_q} \text{, and then}$ $\delta m_{\pi^+} = \frac{1}{2} \delta^{\rm int} m_{\pi^+}$ $+ \mathcal{O}(\alpha \alpha_s^2, \alpha^2)$

Quark mass renormalization



- For the u-type quarks:
- 1. PCAC quark mass is changed by 0.30(5)%,
- 2. Bare quark mass $m_q^b m_q^{\rm crti}$ is changed by 0.39(5)%,

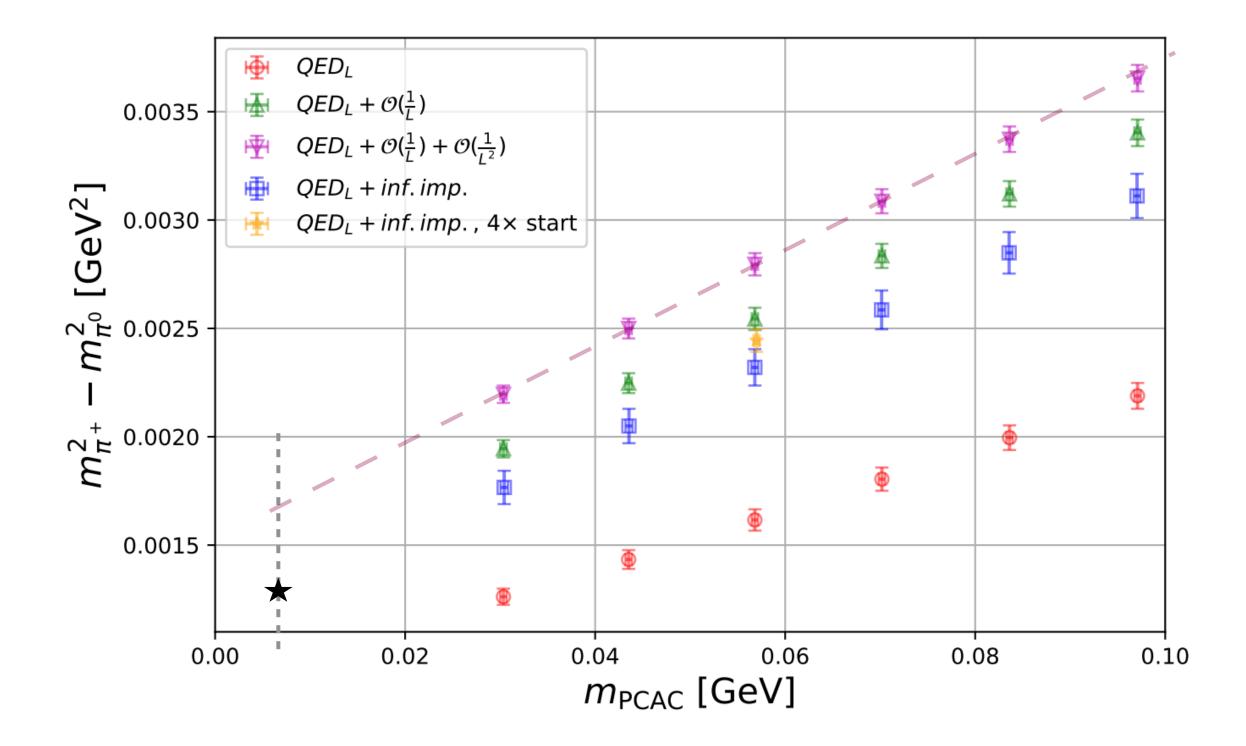
using the NPU scheme, with their difference coming from the additive chiral symmetry breaking of the clover fermion;

- The correction would be quark mass independent and more statistics is necessary to verify it.
- The perturbative calculation shows that the QED UV scale dependence is 0.12% from a=0.105 fm to a=0.052 fm.
- That of the d-type quarks will be suppressed by a factor of 4.

$$\delta_{\text{QED-FVE}} m_H^2 = e_H^2 m_H \frac{2c_1}{L} (1 + \frac{2}{m_H L} + \mathcal{O}(\frac{1}{(m_H L)^2}))$$

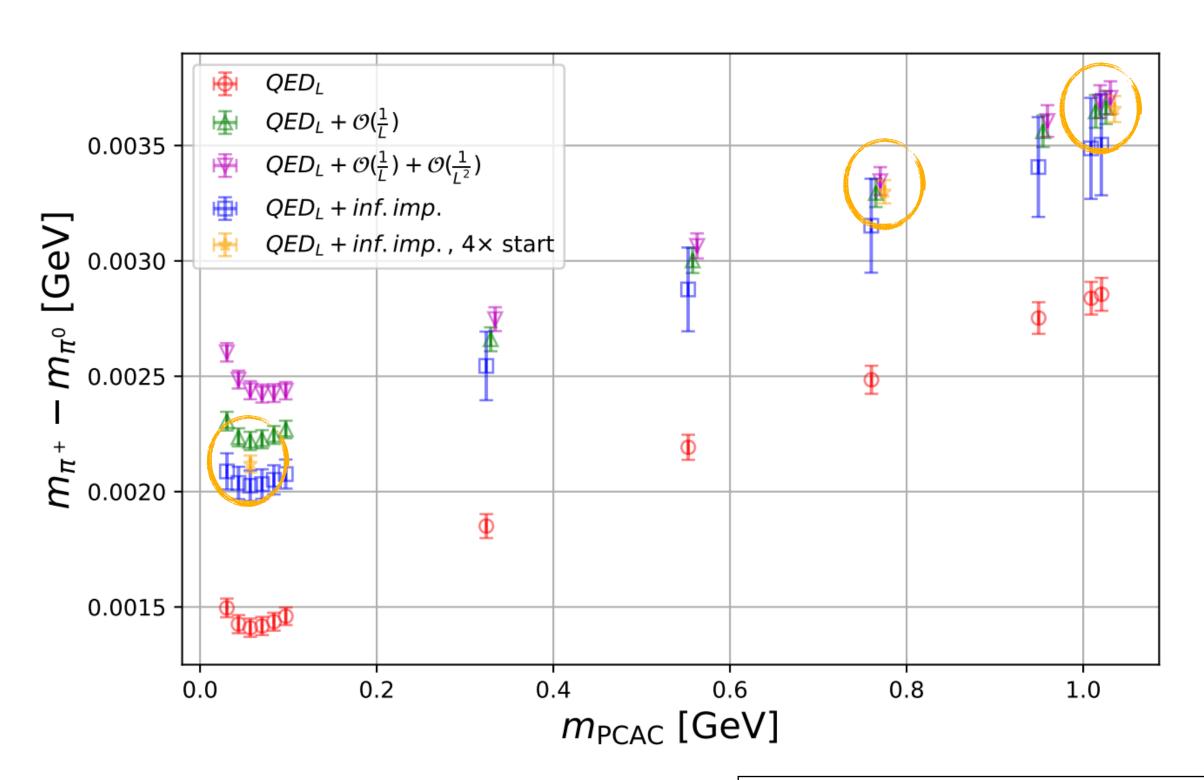
$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\mathcal{O}(\frac{1}{L}) \qquad \mathcal{O}(\frac{1}{L^2})$$



C24P29 with a=0.105 fm and m_{π} =0.29 GeV

- Ignoring the iso-spin breaking (ISB) correction, the mass difference between $m_{\pi^+}[\bar{q}(e_q)\gamma_5 q(e_q)]$ and $m_{\pi^0}[\bar{q}(-e_q)\gamma_5 q(e_q)]$ is a pure QED correction;
- With the NNLO QED-FVC, we have $m_{\pi^+}^2 m_{\pi^0}^2 = 1.5 \times 10^3 \ \mathrm{MeV^2}$ after the chiral extrapolation of the valence quark mass, at a=0.105 fm and m_{π}^{sea} =0.29 GeV, which is not far away from the **physical value**.
- The inferred improved QED_L result can include the $\mathcal{O}(1/L)$ FVC automatically and closes to the NLO QED_L result.



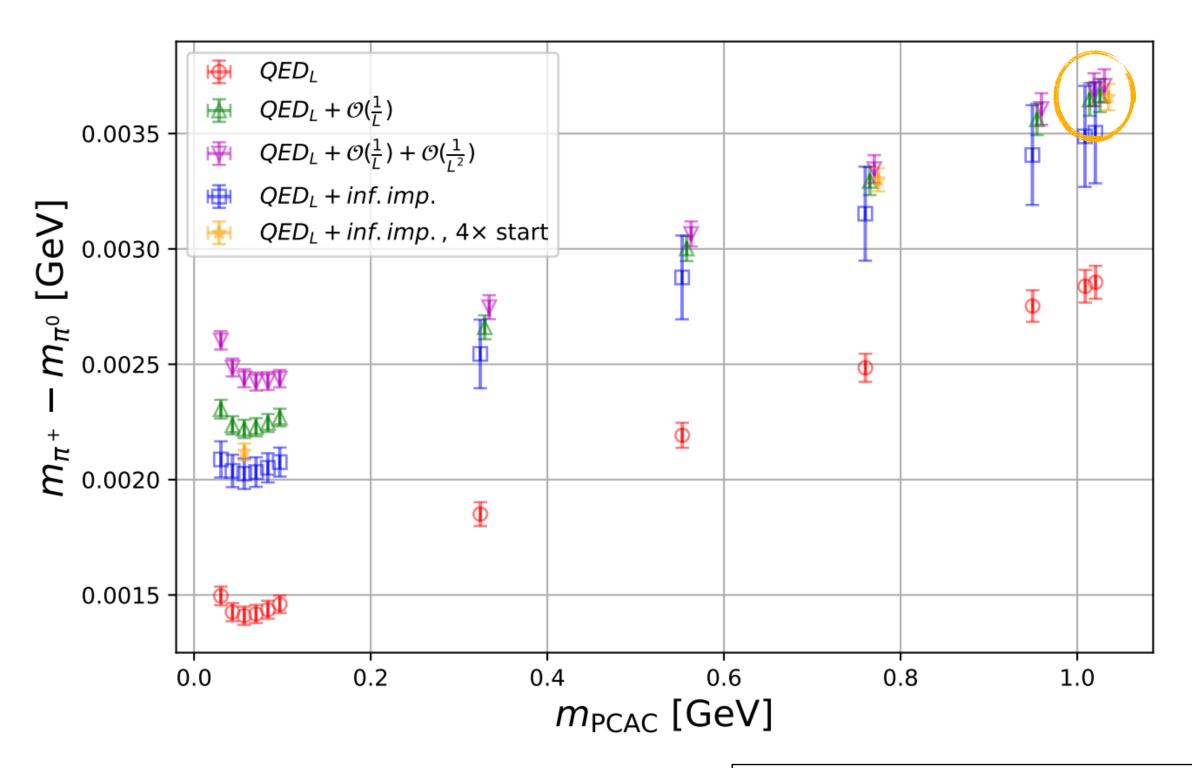
Y.Y. Liu et al. [CLQCD], in preparation

C24P29 with a=0.105 fm and m_π =0.29 GeV

- With heavier quark mass, the NNLO QED-FVC becomes negligible and then only the NLO QED-FVE matters;
- The inferred improved ${\rm QED}_L$ result becomes closer to the NLO QED-FVE result with heavier quark mass, while the statistical uncertainty is larger;
- The agreement becomes even better after the statistics of the inferred improved QED_L result is improved.

QED corrections

Impact on the charm physics



Y.Y. Liu et al. [CLQCD], in preparation

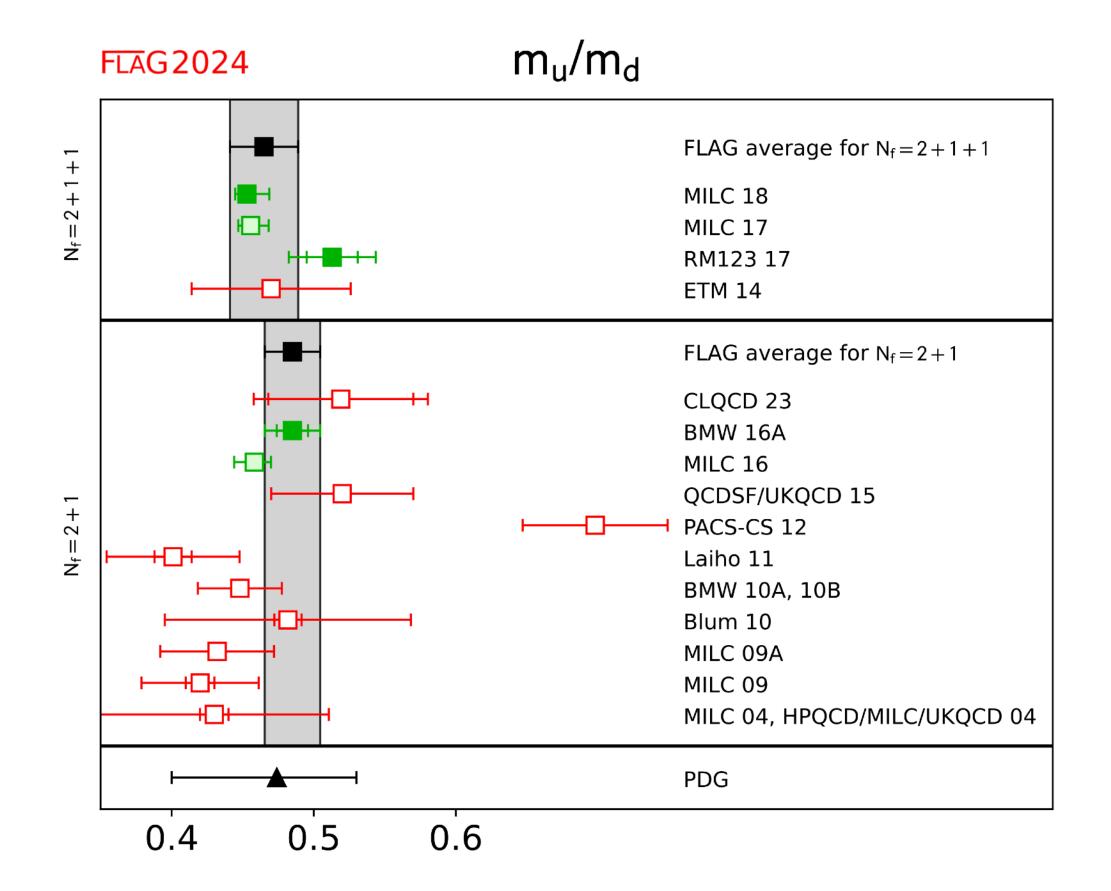
C24P29 with a=0.105 fm and m_{π} =0.29 GeV

- For the charm quark:
- 1. QED interaction correction $-3.7*2\times(2/3)^2\simeq-3.2(1)$ MeV of m_{η_c} is also similar with -3.0(1) MeV obtained in 2009.07667.
- 2. QED self energy correction will be $3.7 \times (2/3)^2 \simeq 1.6(1)$ MeV which is 0.15% of the charm quark mass;
- 3. Combining the QED interaction correction $-4.7(5)e_ce_l$ MeV of m_{D^0} obtained in 2009.07667 and ignoring the light quark self energy correction, we have $\delta_{\rm QED}m_{D^0}=-0.5(2)$ MeV and $\delta_{\rm QED}m_{D^{+(s)}}=2.6(2)$ MeV which also agree with those from literature.

ISB corrections

Proton-neutron mass difference:

$$m_n - m_p = m_u \left(\frac{\partial m_n}{\partial m_u} - \frac{\partial m_p}{\partial m_u}\right) + m_d \left(\frac{\partial m_n}{\partial m_d} - \frac{\partial m_p}{\partial m_d}\right) + \delta^{\text{QED}} m_p^{\text{isoQCD}} = (m_d - m_u) g_S^{u-d} + \delta^{\text{QED}} m_p^{\text{isoQCD}}.$$



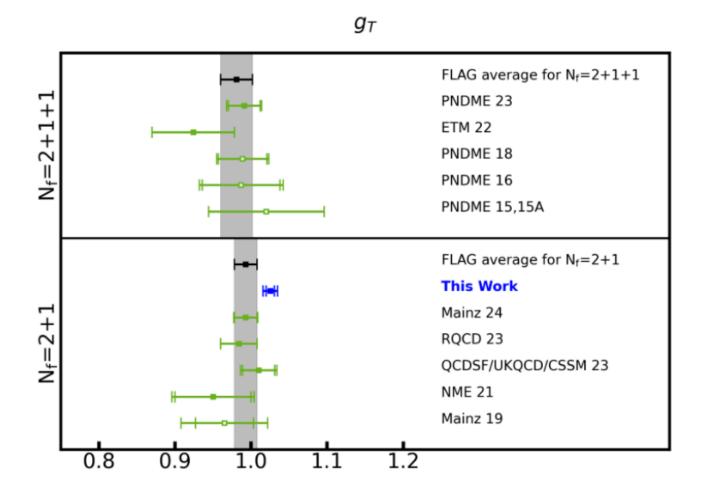
- Determination of m_d-m_u requires the QED correction of $m_{K^+}-m_{K^0}=g_{S,K}^l(m_d-m_u)+\delta^{\rm QED}m_K^{\rm isoQCD};$
- CLQCD 23 used the QED corrections $\delta^{\rm QED} m_K^{\rm isoQCD} = 2.07(15) \, {\rm MeV} \, {\rm from \, literature \, and \, then \, our} \\ {\rm D.Giusti \, et \, al. \, [RM123], \, PRD95(2017)114504} \\ {\rm prediction \, of \, } m_u/m_d \, {\rm is \, NOT \, used \, for \, the \, FLAG \, average;} \\$

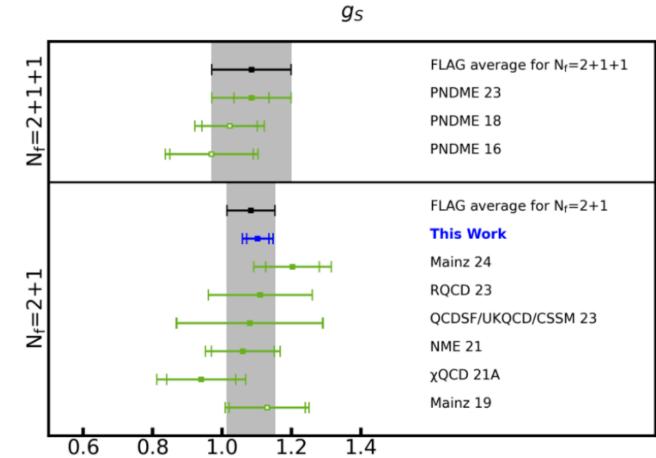
Flavor lattice average group, 2411.04268

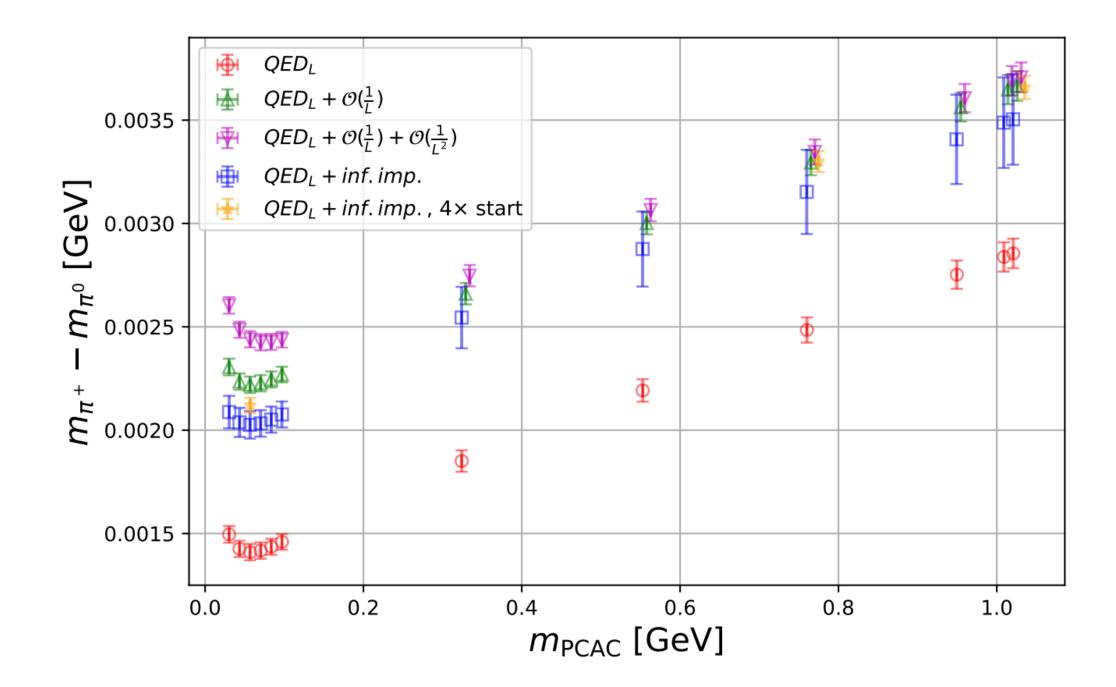
Direct QCD+QED correction on the CLQCD ensembles using the NPU scheme could provide more precise determination of the QED and ISB corrections.

Summary

- CLQCD ensembles can now provide high precision hadron matrix elements through the blending method;
- And also control all the systematic uncertainties of the iso-symmetric QCD.







- The QCD+QED simulation on the CLQCD ensemble C24P29 (a=0.105 fm and m_π =0.29 GeV) agrees with that in the literature reasonably;
- The QED corrections of the charm and bottom quark masses would be around 3-4 MeV.