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QCD phase diagram with varying quark masses

1t order?  Boundary
of 1st-order

7

* We expect that the first order phase transition in the light mass region
expands with increasing density.

* The first order phase transition region may expand into the heavy quark
region.

* We discuss the appearance of first order phase transitions in the heavy and

dense region.
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Effective theory by hopping parameter expansion

e Expectation value of physical quantity O

(0)(B, k) = %fDU O[U](detM(;c))Nfe—Sg — %fDU O[U] e~Seft
* We expand the quark determinant in terms of the hopping parameter k.

In(detM (1)) = 288Ngjeek*P + [768 Ngitex®(3 [11+ (T3+6 Sl

plaquette 6-step Wilsot loop

U
_|_eT6 X 2NtNS3 [KNtQ + 6NtKNt+2 +6NtKNt+2r'+3NtKNt+2 ] + ...

Polyakov loop

U
- Neni31r.NeO*
+e T6 X 2VtNg [k™tQ* + -+ Next to leading terms  (for N=6)
Leading term

Seff — _6Nsite:BP — Nf Indet M (K)

m=1 m=1

Indet M (k) = Ngio z 1 (W(n) + 7 e™H/T IE (N, n) + 7 e ™H/T [ (N, n)) K"
n=

. L;—rl(Nt, n) : The terms that wind around the periodic boundary in the time
direction are important.



Effective theory based on the hopping parameter expansion

 Higher order expansion terms L(N;, n) are very strongly correlated with

the leading term: Polyakov loop (). L(N,,n) =ZL,+n(Nt,n) + Lin (N, )

L(N;,n) = L°(N;,n)c,, ReQ, ArgL}(N,,n) =~ Arg Q o

(PTEP 2022, 033B05) (arXiv:2311.11508) F| e

k2 <
0.04 — - =16 = g —

 L;(N,,n)isdominant: L;(N;,n) = L(Ng,n). |
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 Effective action in the heavy quark region
N3A [ u _H ' Lot

; (eTQ +e TQ*) 0 |

A = N¢N; Z LO(Ng, 1) Cpic™ = 12Ng 2Nt 00 | | A

n=N¢ Effective parameter E Re O

Seff = _6Nsite,B*P -

Nmax

e Even if the number of expansion terms increases
significantly, the effects of higher-order terms can be | B
incorporated. - T P

 However, as p increases, the effect of "

E . . r 8 k3 4
e"'TLy, (N;,n) (m = 2) terms increases relatively. ]
The e™'T term is missing from Sr. L




Heavy quark and high-density effective theory

detM is represented by a Polyakov loop (without spatial links) for heavy quarks
< the effect of spatial link terms can be included by using k..

Partition function of QCD  Zyep = jDU{detM(U)}Nf e S9W)
3
Mx,y — 5x,y - KE[(l - Vj) Ux,i5y,x+j + (1 + Vj)U;,j 5y,x—j]
j=1
—K(1 = YUy 48, y13 — k(1 + y)US , €726, . 5

Wilson fermion kernel

Heavy quark, high-density region Kk - 0, e#% — oo, ket? — (finite)
e.g. Blum, Hetrick, Toussaint, Phys. Rev. Lett. 76, 1019 (1996), Aarts, Stamatescu, JHEP 0809 (2008) 018
lgnore the spatial link terms and the e terms Heavy Dense QCD
M, = §x,y — Kegr(1 — V4)Ux,4eua y x+%

= detM = 1_[{1 +3C0E) + 3C207(R) + C3)2
X

C = (ZKeff)Nte“/T, local Polyakov loop 2(Xx) = %tF(U(fyl)AU(f,z)A U(f,Nt)A)

5
(N¢ is an even number.)



Symmetries in heavy dense QCD

detM = Symmetry

1_[{1 + 3CN(X) + 3C%0* (%) + C3}?2 = C* 1_[{1 +3C710* (%) + 3C20(%) + C3}?
b i

0(xX) - N* (%), C—->C 1

* The theory remains unchanged under this transformation except for
constant multiples.

e If i is kept small, from C = (2k)Nee®/T, A
C~0 u/T~0(1) C =0 u/T~ow

\ r)NeetT =1/C,

First-order

* This is a symmetry under transformations
that exchange low density for high
density and particles for antiparticles.

| Crossover

* |f the critical point is C,, the boundary of
the first-order phase transition is

(2x)Ntet/T = C.and 1/C, .

(ZK)Nte:u'/T = CC

First—order

\



/3 center symmetry breaking

Universal properties Distribution in one configuration

* If the broken symmet.ry is the same, the Local Polyakov loop 2(%)
fundamental properties of the phase Symmetric Phase ~ Broken Phase
transition are thought to be the same. \

QCD without dynamical fermions

ImQ

Imaginary

* The Polyakov loop is the order parameter
of Z(3) center symmetry.

* The phase transition occurs when Z(3)

. R;Q -' Re QO |
center symmetry is broken spontaneously.

Z(3) spin s(x)
Symmetric Phase Broken Phase
leszN3 N1>N2,N3

* The three-state Potts model is a model that
breaks Z(3) symmetry.

Explicit symmetry breaking terms

27i/3

* The quark determinant for QCD.

* The external field term for 3-state Potts
model.

We replace the Polyakov loop with a Z(3) spin. g—2mi/3




Histogram of the order parameter

 order parameter: spatial average of s(x) or spatial average of 2(x)
 Symmetry breaking terms are added.
* Histograms of the order parameters are very similar.

. 1
3-state Potts model: magnetization M = ;sz(x) (spatial average)

First-order ~ Critical point Crossover -— 163 lattice
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model f{!ﬁggk ImM

ReM

heavy-quark QCD: Ponakov Ioop ) = %Zfﬂ(f) (spatial average)

First-order ~ Critical point Crossover
" P e 243 X 4 lattice

Heavy-
quark QCD
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Phys.Rev.D89, 034507(2014)



Distribution of coarse-grained spins

Coase-grained
e?mi/3 original Broken Phase
. 32 l“‘m“" ﬁ=|0‘40’ ”m‘lﬂo ‘ 32 lattice, B=0.40, 1, =50
N N, >Ny, Ny | [l S
) 05 t‘g __ B 05—
1 N1 e | ::% B
o —2mi/3 g,o o | 1 —> g,o -
Coarse graining -~ L
-05 0 Reﬂl 0.5 1 o Real
* Coarse-grained spin §(x, t)
’ Dalffusmn equatlog N1 = N = N Symmetric Phase
32" lattice, B=0.30, n,, =10 32" latice, B-030, 1, ~50
—S(x,t) = D—=5(x,t) T
ot dx2 1 _ _
e D: diffusion constant | |
— H e
* The magnetization value R T :
does not change even when /
coarse-grained. Ul s ] |

e Similar to the distribution of
local Polyakov loops 2(x)



Coarse graining by Gradient flow in quenched QCD

Local Polyakov loop 2(x)

* Flow equation

dBY

dt
B/ flowed gauge field

Gy flowed field strength

The symmetry break is

hard to see in the
original field, but it is
emphasized in the
flowed field.

Coarse graining does
not change the nature

of the phase transition.
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3-state Potts model as an effective model of dense QCD

' B, 9 — N T
Zocp = jDU e S9) —[{1 +3C0(X) +3C20* (%) + c3}*Nr C = (2k)NteH/
%

3-(2(9_5) - S(X) / The spin has three states. s(x) = {1,32”i/3,e—2ﬂi/3 }

1_[[1 + Cs(x) + C2s*(x) + C3]2Nr = HF(x) — exp[N;A; + N,(A, + i0) + Ny(A, — i6)]

X

( (1+C+C?*+Cc®>H*r for s(x) =1
2N
1 V3 1 V3 4 . ed1 for s(x) =1
14C|—z+—i|+C*|-=——i])+C3 f = g?2m/3 . .
Fx) = ( + ( 2+21)+ ( 5~ >+ > or s(x) =e E{€A2+leOFS(X)=€2T”/3
2N Ap—if _ ,2mi/3
1 /3 1 /3 4 , e27W for s(x) = e
(1+C<————i>+CZ(——+—i>+C3> for s(x) = e 2™/3
\ 2 2 2 2
1 3 1 V3
D Re(s() = Ny =5 (Ny + N) = =Ny = SN, ) Im(5(x)) = - (N, = )
X X

= Zpoits = ) eXP {/3 D Re(s(0)s" (2 + 1)) +h ) Re(s(@) +1iq ) Im(s<x)>}
{s} x,J X X

4 , 2 11 ‘3
h(C)=§Nfln(1+C+C +C3)—§Nf1n 1—=C—=C?*+ (3 +Z(C—Cz)2

2 2
Zc-c?)

4
9(C) =5 Ny arctan L C C complex external magnetic field
terms with real parameters h and g.

2 2



3-D 3-state Potts model with a complex external

magnetic field
C = (2K)Ntet/T

— 2mi/3 ,—2mi/3
Zqcp = fDU e SsW) 1_[{1 +3C0(R) + 3C20° (%) + C3)2Nr s(x) = {1,e2™/3, e72m/3 |

Zpotts = Z exp {,8 z Re(s(x)s*(x +j)) + hz Re(s(x)) +iq z Im(s(x))}
{s} X,j X X

4 , 2 11 ‘3 o
h(C)=§Nfln(1+C+C +C3)—=Nelnj(1--C—=C*+C3 +Z(C—C)

3 2 2
q(C) = iN arctan @ S T ow density 2)
Nl C (2

For real u, simply h and g are real parameters.
The red curve is the parameter B s R
corresponding to HDQCD. s ]

This argument can be extended to a complex L0

chemical potential. 15
Roberge-Weiss singularity can also be discussed.




Phase structure of heavy dense QCD

The relationship between heavy quark QCD with u=0 and the standard three-state Potts
model (g=0) has been well studied.

When =0, there is a first-order phase transition at h < h, = 0.0005 and crossoverat h > h,

Due to the symmetry s = s*, if (h,, q.) is a critical point, then (h., —q,) is also a critical point.

Our conclusions

* The phase transition is first order in the low-density region, changes to a crossover at the critical
point, and then becomes first order again.

* The critical point belongs to the 3-D Ising universality class.
* As hincreases, the changes in physical quantities become milder.

Parameters corresponding to HDQCD chemical potential u

15
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quark high

low density

1014
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transition
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phase transition

High density + )
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Critical points where first-order phase transition end

((M—(MN*)
(M—(M))*)?
No volume dependence at the critical point

Binder cumulant: B, =

h. =0.00047

144 3d Ising
—— L=40

L=50
24 4 (=60
—— L=70
104 -+ L=80

f (h - hc)Ll/v g’
B,(h —h,L™1) = 4( )2+3 (V=L3) °
(f((h=RL)) St
With g = 0, the results were consistent with those by r——
[Ka rSh et al' PhyS.Lett.B 488(2000)]. 0?3660 0.3661 0.3662 0.3663 0.3664 0.3665
h. = 0.000510(8) (g = 0) o
. . . . — 3d Ising
Near h,, g is small. Using the reyvelghtmg b =0 By at B, {
method, complex terms can be incorporated.>2} b l}
Dotted lines: Fitted results 151 D e | l + *...”.:
B4 — B4-C + A(h - hC)Ll/v o Ln.»}'- E. .................................
1.6 et =
h. becomes smaller due to the effect of the ---_-_j.:.;:rr-j-_';‘i-':';':-_:_;;f;::.-.
complex external field. 14 :_'.‘.‘::;;;;:';-_-_::1-"'
h. = 0.000470(2) (g # 0) - h

The universality class is the same as the 3D
Ising model. (B, = 1.60, v = 0.63)

C, = 0.0001195(7) (= 1/C,)

B,. = 1.601(6), A=3.01(1),
h, = 0.000473(3),v = 0.624(3),
g, = 0.000478(3), 2 /dof = 1.805




Scaling law of the susceptibility peak

h.=0.00047

Susceptibility: ¥ = V{(M — {(M))?)

V=1L

Susceptibility peaks become higher as the

volume increases.
x(h = he, 174 = L2fy (h = hLYY)

The reweighting method is used.

We usenn = 0.0366,v = 0.630 and h, = 0.00047

Dashed line: Fitted results
xL72%1" = A(h — h,)LYV + B

(Fit parameters A, B)

=

The universality class is the  :
same as the 3D Ising model.
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physical quantities in the crossover region

Zpotts = Z exp {,8 Z Re(s(x)s*(x +j)) + hz Re(s(x)) +iq Z Im(s(x))}
{s} X,J X X
=F

We compute physical quantities in the crossover
region by the reweighting method.

B=030,h=01

When q is large and the volume is large, the sign
problem is severe.

The imaginary terms are expressed as the number of spins

V3
qz Im(sj) = CI7(N2 — N3)
J

N, — N3 is Gaussian distributed.
Using the reweighting method, the energy

incorporating the complex external field is Fitline  Targetq
< J3 sign problem | no sign problem
ECOS{ — (N>, — N }> ' Bo3h o - SRy
<E>q = q\/z ( 2 3) 0 = <E>OeF(q2) . F(qz) l////,,Z/ - F(qz)
3 7 )/’////
<COS {q WA (N, — N3)}> 0 : JT
Assuming a Gaussian distribution, F(q*) ~ Aq® | . -

We extrapolate F(q*) and get (E),



Energy and Magnetization by reweighting method

* Results by reweighting method ol ¢
* The volume dependence is small, when h is large. q N
* As h increases, the change becomes milder. 5] Gty

* When h is large, the phase transition is a crossover. e

Energy
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Tensor renormalization group analysis

e 3-D 3-state Potts model with a complex external field
* TRG has nothing to do with the sign problem.
* Higher Order Tensor Renormalization Group (HOTRG)

Low
" density

0.
q 0.0

ol High

density

0 L5 2.0 2.5 3.0 3.5 4.0

* The truncation error of the singular value decomposition is small in the crossover region.

Energy density =~ HOTRG (Dcut=8) |Magnetization density
0-\_\_\ T T T I = T = \— 1 T T T -
N T "n=10.4200
05 o h=05,q=044 — | .l
\ h=05,q=00 - - -
ak h=01,9=01 — | 0rr
h=01,9=00 o6
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[==)
prs

e
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— —

h

! ! ! | —
0 0.1 02 03 n4 05 0.6 07 0.8 0 0.1 0.2 03 04

p

Solid line: Parameters corresponding to HDQCD
Dash line: Parameters ignoring the complex phase

Same result as the reweighting method. The larger h, the milder the change.

T
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Volume: 10243



Phase quenched QCD (lgnore complex phase) (isospin )

Q= Qgr + i)
Effective action for heavy quarks ( R+ i)

Setf = —6Ngitef*P — N3 A (cosh% Ogr + is%‘h\%\ﬂl)

The e™*/T terms (cosh(mu/T) terms) are missing from Seg. (M = 2)
However, e™*/Tterms only contribute when the density is extremely high.
If we ignore the complex phase, Monte-Carlo simulation is possible.

For N¢ = 2, this is QCD with an isospin chemical potential.

Pion condensation is expected in the high-density region.

The effect of the complex phase must be added, but there may be other
phase structures present.

There are no singularity in the large h region of 3-state Potts model.

For large h, Z(3) center symmetry is completely broken. The phase transition
is irrelevant to the symmetry.

We do not conclude that there is no further singularity in HDQCD.



Plaguette in phase quenched QCD (isospin QCD)

* As cosh(u/T) increases, the change in plaquette becomes steeper.

* This behavior is consistent with the existence of a pion-condensed phase at

large u.
* The strong coupling expansion of (P) does not depend on A cosh(u/T).

* Confinement phase: (P) is consistent with the strong coupling expansion.
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The A cosh(u/T) term forces the deconfinement phase.

Lattice size: 303 X 6
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b |—
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Ejiri, Pos (LATTICE2024), ???




Polyakov loop in phase quenched QCD (isospin QCD)

0.8

0.6

04

0.2

First order phase transitionat A = 0

Regarding the Polyakov loop ({2gr) , if we look closely at the changing part,
the change becomes steeper as u increases.

Effect from the complex phase may be important. [Ejiri, PoS (LATTICE2024), 162]
: - ; _— S
Discontinuity at large u? > first-order transition (QR)~(QR) =035

(-Q'R>,8=9_<-QR>,B=O.5

— 1T T T T T T T 1
(€2 - Qﬁ=ﬂ.5)"’(9|3=9 ) Qﬁ={).5)

4 4.5

first-order transition



Summary

Phase structure of heavy dense QCD is discussed through the effective theory
of the 3-state Potts model.

The phase transition is first order in the low-density region, changes to a
crossover at the critical point, and then becomes first order again.

The critical point belongs to the 3-D Ising universality class.

As h increases, the changes in physical quantities become milder.

However, we do not conclude that there is no further singularity in HDQCD.
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