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QCD phase diagram with varying quark masses

• We expect that the first order phase transition in the light mass region 
expands with increasing density.

• The first order phase transition region may expand into the heavy quark 
region.

• We discuss the appearance of first order phase transitions in the heavy and 
dense region.
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Effective theory by hopping parameter expansion

• Expectation value of physical quantity O

• We expand the quark determinant in terms of the hopping parameter 𝜅.

• 𝐿𝑚
± 𝑁𝑡 , 𝑛 : The terms that wind around the periodic boundary in the time 

direction are important.

𝑂 𝛽, 𝜅 =
1

𝑍
𝐷𝑈𝑂׬ 𝑈 det𝑀 𝜅

𝑁f𝑒−𝑆𝑔 =
1

𝑍
𝐷𝑈𝑂׬ 𝑈 𝑒−𝑆eff

(for Nt=6)

𝑆eff = −6𝑁site𝛽𝑃 − 𝑁f ln det𝑀 𝜅

ln det𝑀 𝜅 = 288𝑁site𝜅
4𝑃 + [768 𝑁site𝜅

6(3 + +6 )]+⋯

Polyakov loop 

plaquette 

Leading term
Next to leading terms

6-step Wilson loop 

+𝑒
𝜇
𝑇6 × 2𝑁𝑡𝑁𝑠

3[𝜅𝑁𝑡Ω + 6𝑁𝑡𝜅
𝑁𝑡+2 +6𝑁𝑡𝜅

𝑁𝑡+2 +3𝑁𝑡𝜅
𝑁𝑡+2 ] + ⋯

+𝑒−
𝜇
𝑇6 × 2𝑁𝑡𝑁𝑠

3[𝜅𝑁𝑡Ω∗ +⋯

ln det𝑀 𝜅 = 𝑁site෍
𝑛=1

∞

𝑊 𝑛 + ෍

𝑚=1

∞

𝑒𝑚𝜇/𝑇 𝐿𝑚
+ 𝑁𝑡, 𝑛 + ෍

𝑚=1

∞

𝑒−𝑚𝜇/𝑇 𝐿𝑚
− 𝑁𝑡, 𝑛 𝜅𝑛



Effective theory based on the hopping parameter expansion
• Higher order expansion terms 𝐿 𝑁𝑡 , 𝑛 are very strongly correlated with 

the leading term: Polyakov loop Ω.

• 𝐿1 𝑁𝑡 , 𝑛 is dominant: 

• Effective action in the heavy quark region

𝜆 = 𝑁f𝑁𝑡 ෍

𝑛=𝑁𝑡

𝑛max

)𝐿0(𝑁𝑡, 𝑛 𝑐𝑛𝜅
𝑛 ≡ 12𝑁f 2

𝑁𝑡𝜅eff
𝑁𝑡

𝐿 𝑁𝑡 , 𝑛 ≈ 𝐿0 𝑁𝑡 , 𝑛 𝑐𝑛 ReΩ,

𝑆eff = −6𝑁site𝛽
∗𝑃 −

𝑁𝑠
3𝜆

2
𝑒
𝜇
𝑇Ω + 𝑒−

𝜇
𝑇Ω∗

Arg 𝐿1
+ 𝑁𝑡 , 𝑛 ≈ Arg Ω

• Even if the number of expansion terms increases 
significantly, the effects of higher-order terms can be 
incorporated.

• However, as μ increases , the effect of 

𝑒𝑚
𝜇

𝑇𝐿𝑚 𝑁𝑡 , 𝑛 (𝑚 ≥ 2) terms increases relatively. 

The 𝑒𝑚
𝜇

𝑇 term is missing from 𝑆eff.

𝐿1 𝑁𝑡 , 𝑛 ≈ 𝐿 𝑁𝑡 , 𝑛 .

(arXiv:2311.11508)(PTEP 2022, 033B05)

Ω

𝐿 𝑁𝑡, 𝑛 =෍

𝑚

𝐿𝑚
+ 𝑁𝑡, 𝑛 + 𝐿𝑚

− 𝑁𝑡, 𝑛

Effective parameter



Heavy quark and high-density effective theory

detM is represented by a Polyakov loop (without spatial links) for heavy quarks

↔ the effect of spatial link terms can be included by using 𝜅eff. 

Partition function of QCD

Wilson fermion kernel

Heavy quark, high-density region 𝜅 → 0, 𝑒𝜇𝑎 → ∞, 𝜅𝑒𝜇𝑎 → (finite)

e.g. Blum, Hetrick, Toussaint, Phys. Rev. Lett. 76, 1019 (1996), Aarts, Stamatescu, JHEP 0809 (2008) 018

Ignore the spatial link terms and the e−𝜇𝑎 terms
M𝑥,𝑦 = δ𝑥,𝑦 − 𝜅eff(1 − γ4)𝑈𝑥,4e

𝜇𝑎δ𝑦,𝑥+෡4

⇒ det𝑀 =ෑ

Ԧ𝑥

1 + 3𝐶𝛺 Ԧ𝑥 + 3𝐶2𝛺∗ Ԧ𝑥 + 𝐶3 2

𝐶 = 2𝜅eff
𝑁𝑡𝑒𝜇/𝑇,  local Polyakov loop  𝛺 Ԧ𝑥 =

1

3
tr(𝑈 Ԧ𝑥,1 ,4𝑈 Ԧ𝑥,2 ,4…𝑈 Ԧ𝑥,𝑁𝑡 ,4

)
5

𝑍QCD = න𝒟𝑈{detM 𝑈 }𝑁f e−𝑆𝑔(𝑈)

𝑀𝑥,𝑦 = 𝛿𝑥,𝑦 − 𝜅෍

𝑗=1

3

[(1 − 𝛾𝑗)𝑈𝑥,𝑖𝛿𝑦,𝑥+ Ƹ𝑗 + 1 + 𝛾𝑗 𝑈𝑦,𝑗
† 𝛿𝑦,𝑥− Ƹ𝑗]

−𝜅 1 − 𝛾4 𝑈𝑥,4𝑒
𝜇𝑎δ𝑦,𝑥+෡4 − 𝜅(1 + γ4)𝑈𝑦,4

† e−𝜇𝑎δ𝑦,𝑥−෡4

(𝑁𝑡 is an even number.)

Heavy Dense QCD



Symmetries in heavy dense QCD
Symmetry

𝛺 Ԧ𝑥 → 𝛺∗ Ԧ𝑥 , 𝐶 → 𝐶−1

• The theory remains unchanged under this transformation except for 
constant multiples.

det𝑀 =

ෑ

Ԧ𝑥

1 + 3𝐶𝛺 Ԧ𝑥 + 3𝐶2𝛺∗ Ԧ𝑥 + 𝐶3 2 = 𝐶6ෑ

Ԧ𝑥

1 + 3𝐶−1𝛺∗ Ԧ𝑥 + 3𝐶−2𝛺 Ԧ𝑥 + 𝐶−3 2

• If 𝜅 is kept small, from 𝐶 = 2𝜅 𝑁𝑡𝑒𝜇/𝑇,

𝐶 ≈ 0 ⇔ 𝜇/𝑇 ≈ 𝑂 1 𝐶−1 ≈ 0 ⇔ 𝜇/𝑇 ≈ ∞

• This is a symmetry under transformations 
that exchange low density for high 
density and particles for antiparticles.

• If the critical point is 𝐶𝑐, the boundary of 
the first-order phase transition is 

2𝜅 𝑁𝑡𝑒𝜇/𝑇 = 𝐶𝑐 and 1/𝐶𝑐 .
𝜅

𝜇/𝑇

2𝜅 𝑁𝑡𝑒𝜇/𝑇 = 𝐶𝑐

2𝜅 𝑁𝑡𝑒𝜇/𝑇 = 1/𝐶𝑐

First-order

First-order

Crossover

0



Z3 center symmetry breaking

7

𝑁1 ≈ 𝑁2 ≈ 𝑁3 𝑁1 > 𝑁2, 𝑁3

Z(3) spin 𝑠(𝑥)

𝑁1
𝑁2

𝑁3

Symmetric Phase Broken Phase

Symmetric Phase Broken Phase

Local Polyakov loop 𝛺 Ԧ𝑥

Distribution in one configuration

Re W Re W

Im
W

1

𝑒−2𝜋i/3

𝑒2𝜋𝑖/3

Universal properties

• If the broken symmetry is the same, the 
fundamental properties of the phase 
transition are thought to be the same.

QCD without dynamical fermions

• The Polyakov loop is the order parameter 
of Z(3) center symmetry. 

• The phase transition occurs when Z(3) 
center symmetry is broken spontaneously.

• The three-state Potts model is a model that 
breaks Z(3) symmetry. 

Explicit symmetry breaking terms

• The quark determinant for QCD.

• The external field term for 3-state Potts 
model.

We replace the Polyakov loop with a Z(3) spin.



Histogram of the order parameter

• order parameter: spatial average of 𝑠 𝑥 or spatial average of 𝛺 Ԧ𝑥

• Symmetry breaking terms are added.

• Histograms of the order parameters are very similar.

Re W
Im W

Re W
Im W

Re W
Im W

~ Critical pointFirst-order Crossover

3-state Potts 
model 

Heavy-
quark QCD

Im𝑀Im𝑀Im𝑀

Re𝑀Re𝑀Re𝑀

163 lattice

3-state Potts model: magnetization   𝑀 =
1

𝑉
σ𝑥 𝑠 𝑥 (spatial average)

heavy-quark QCD: Polyakov loop    𝛺 =
1

𝑉
σ Ԧ𝑥𝛺 Ԧ𝑥 (spatial average)

Phys.Rev.D89, 034507(2014)

243 × 4 lattice
First-order ~ Critical point Crossover



Distribution of coarse-grained spins

Coarse graining
• Coarse-grained spin ǁ𝑠 𝑥, 𝑡

• Diffusion equation
𝜕

𝜕𝑡
ǁ𝑠 𝑥, 𝑡 = 𝐷

𝜕2

𝜕𝑥2
ǁ𝑠 𝑥, 𝑡

• 𝐷: diffusion constant

• The magnetization value 
does not change even when 
coarse-grained.

• Similar to the distribution of 
local Polyakov loops 𝛺 Ԧ𝑥

Symmetric Phase

Broken Phase

𝑁1 ≈ 𝑁2 ≈ 𝑁3

𝑁2 > 𝑁1, 𝑁3

𝑁1

𝑁2

𝑁3

𝑒2𝜋𝑖/3

𝑒−2𝜋𝑖/3
1

original

Coase-grained



Coarse graining by Gradient flow in quenched QCD 

• Flow equation
𝜕𝐵𝜇

𝑎

𝜕𝑡
𝑡, 𝑥 = 𝐷𝜈𝐺𝜇𝜈

𝑎 𝑡, 𝑥

𝐵𝜇
𝑎: flowed gauge field

𝐺𝜇𝜈
𝑎 : flowed field strength

• The symmetry break is 
hard to see in the 
original field, but it is 
emphasized in the 
flowed field.

• Coarse graining does 
not change the nature 
of the phase transition.

original Coase-grained

Broken Phase

Symmetric Phase

Local Polyakov loop 𝛺 Ԧ𝑥

original Coase-grained



3-state Potts model as an effective model of dense QCD 

ℎ 𝐶 =
4

3
𝑁𝑓 ln 1 + 𝐶 + 𝐶2 + 𝐶3 −

2

3
𝑁𝑓 ln 1 −

1

2
𝐶 −

1

2
𝐶2 + 𝐶3

2

+
3

4
𝐶 − 𝐶2 2

𝑞(𝐶) =
4

3
𝑁𝑓 arctan

3
2
(𝐶 − 𝐶2)

1 −
𝐶
2 −

𝐶2

2 + 𝐶3 11

𝐶 = 2𝜅 𝑁𝑡𝑒𝜇/𝑇𝑍QCD = න𝒟𝑈 e−𝑆𝑔(𝑈)ෑ
Ԧ𝑥

1 + 3𝐶𝛺 Ԧ𝑥 + 3𝐶2𝛺∗ Ԧ𝑥 + 𝐶3 2𝑁𝑓

𝑍potts =෍

𝑠

exp 𝛽෍

𝑥,𝑗

Re 𝑠 𝑥 𝑠∗(𝑥 + 𝑗) + ℎ෍

𝑥

Re 𝑠(𝑥) + 𝑖𝑞෍

𝑥

Im 𝑠(𝑥)

ෑ

𝑥

1 + 𝐶𝑠 𝑥 + 𝐶2𝑠∗ 𝑥 + 𝐶3 2𝑁𝑓 =ෑ

𝑥

𝐹 𝑥 = exp 𝑁1𝐴1 +𝑁2 𝐴2 + 𝑖𝜃 + 𝑁3 𝐴2 − 𝑖𝜃

𝐹 𝑥 =

1 + 𝐶 + 𝐶2 + 𝐶3 2𝑁𝑓 for 𝑠 𝑥 = 1

1 + 𝐶 −
1

2
+

3

2
𝑖 + 𝐶2 −

1

2
−

3

2
𝑖 + 𝐶3

2𝑁𝑓

for 𝑠 𝑥 = 𝑒2𝜋𝑖/3

1 + 𝐶 −
1

2
−

3

2
𝑖 + 𝐶2 −

1

2
+

3

2
𝑖 + 𝐶3

2𝑁𝑓

for 𝑠 𝑥 = 𝑒−2𝜋𝑖/3

≡ ൞

𝑒𝐴1 for 𝑠 𝑥 = 1

𝑒𝐴2+𝑖𝜃 for 𝑠 𝑥 = 𝑒2𝜋𝑖/3

𝑒𝐴2−𝑖𝜃 for 𝑠 𝑥 = 𝑒2𝜋𝑖/3

෍

𝑥

Re 𝑠(𝑥) = 𝑁1 −
1

2
𝑁2 + 𝑁3 =

3

2
𝑁1 −

1

2
𝑁site, ෍

𝑥

Im 𝑠(𝑥) =
3

2
𝑁2 − 𝑁3

The spin has three states. 𝑠(𝑥) = 1, 𝑒2𝜋𝑖/3, 𝑒−2𝜋i/33𝛺 Ԧ𝑥 → 𝑠(𝑥)

complex external magnetic field 
terms with real parameters h and q.



3-D 3-state Potts model with a complex external 
magnetic field

𝑍QCD = න𝒟𝑈 e−𝑆𝑔(𝑈)ෑ
Ԧ𝑥

1 + 3𝐶𝛺 Ԧ𝑥 + 3𝐶2𝛺∗ Ԧ𝑥 + 𝐶3 2𝑁𝑓

𝑍potts =෍

𝑠

exp 𝛽෍

𝑥,𝑗

Re 𝑠 𝑥 𝑠∗(𝑥 + 𝑗) + ℎ෍

𝑥

Re 𝑠(𝑥) + 𝑖𝑞෍

𝑥

Im 𝑠(𝑥)

ℎ 𝐶 =
4

3
𝑁𝑓 ln 1 + 𝐶 + 𝐶2 + 𝐶3 −

2

3
𝑁𝑓 ln 1 −

1

2
𝐶 −

1

2
𝐶2 + 𝐶3

2

+
3

4
𝐶 − 𝐶2 2

𝑞(𝐶) =
4

3
𝑁𝑓 arctan

3
2 (𝐶 − 𝐶2)

1 −
𝐶
2 −

𝐶2

2 + 𝐶3

𝐶 = 2𝜅 𝑁𝑡𝑒𝜇/𝑇

𝑠 𝑥 = 1, 𝑒2𝜋𝑖/3, 𝑒−2𝜋i/3

high density

low density

ℎ

𝑞

𝑁𝑓 = 2

This argument can be extended to a complex 
chemical potential.
Roberge-Weiss singularity can also be discussed.

For real 𝜇, simply ℎ and 𝑞 are real parameters.
The red curve is the parameter 
corresponding to HDQCD.

𝐶 → 𝐶−1

symmetry

𝐶 increases

𝐶 = 1



High density

low density 𝑁𝑓 = 2

Critical point

Critical point

First-order
Crossover

𝑞

ℎ

Phase structure of heavy dense QCD

The relationship between heavy quark QCD with 𝜇=0 and the standard three-state Potts 
model (𝑞=0) has been well studied.

When 𝑞=0, there is a first-order phase transition at ℎ < ℎ𝑐 ≈ 0.0005 and crossover at ℎ > ℎ𝑐

Due to the symmetry 𝑠 → 𝑠∗, if (ℎ𝑐 , 𝑞𝑐) is a critical point, then (ℎ𝑐 , −𝑞𝑐) is also a critical point.

Our conclusions

• The phase transition is first order in the low-density region, changes to a crossover at the critical 
point, and then becomes first order again.

• The critical point belongs to the 3-D Ising universality class.

• As ℎ increases, the changes in physical quantities become milder.

First-order phase 
transition

First-order 
phase transition

Crossover

quark mass 𝑚

chemical potential 𝜇

Physical Point

Heavy 
quark high 

density

QCD critical point ?

Parameters corresponding to HDQCD



Critical points where first-order phase transition end
• Binder cumulant:  𝐵4 =

(𝑀− 𝑀 4⟩

𝑀− 𝑀 2 2

• No volume dependence at the critical point

• With 𝑞 = 0, the results were consistent with those by 
[Karsh et al, Phys.Lett.B 488(2000)].

ℎ𝑐 = 0.000510 8 (𝑞 = 0)

• Near ℎ𝑐, 𝑞 is small. Using the reweighting 
method, complex terms can be incorporated.

• Dotted lines: Fitted results

𝐵4 = 𝐵4𝑐 + 𝐴 ℎ − ℎ𝑐 𝐿
1/𝜈

• ℎ𝑐 becomes smaller due to the effect of the 
complex external field.

ℎ𝑐 = 0.000470 2 (𝑞 ≠ 0)

• The universality class is the same as the 3D 
Ising model. 𝐵4𝑐 ≈ 1.60, 𝜈 ≈ 0.63

• 𝐶𝑐 = 0.0001195(7) (= 1/𝐶𝑐)

𝐵4𝑐 = 1.601 6 , A=3.01(1), 
ℎ𝑐 = 0.000473 3 , 𝜈 = 0.624(3),
𝑞𝑐 = 0.000478 3 , 𝜒2/dof = 1.805

𝐵4 ℎ − ℎ𝑐 , 𝐿
−1 =

𝑓4 ℎ − ℎ𝑐 𝐿
1/𝜈

𝑓2 ℎ − ℎ𝑐 𝐿
1/𝜈

2 + 3

ℎ

𝐵4 at 𝛽𝑐

𝛽

(𝑉 = 𝐿3)



ℎ − ℎ𝑐 𝐿
1/𝜈

𝜒𝐿−2+𝜂

Scaling law of the susceptibility peak
• Susceptibility: 𝜒 = 𝑉 𝑀 − 𝑀 2

• Susceptibility peaks become higher as the 
volume increases.

𝜒(ℎ − ℎ𝑐 , 𝐿
−1) = 𝐿2−𝜂𝑓2 ℎ − ℎ𝑐 𝐿

1/𝜈

• The reweighting method is used.

• We use 𝜂 = 0.0366, 𝜈 = 0.630 and ℎ𝑐 = 0.00047

• Dashed line: Fitted results
𝜒𝐿−2+𝜂 = 𝐴 ℎ − ℎ𝑐 𝐿

1/𝜈 + 𝐵

(Fit parameters 𝐴, 𝐵)

𝛽

The universality class is the 
same as the 3D Ising model.

𝑉 = 𝐿3



𝐹 𝑞2

𝑞2

𝑁2 −𝑁3 (𝑉 = 323)

physical quantities in the crossover region

• We compute physical quantities in the crossover 
region by the reweighting method.

• When 𝑞 is large and the volume is large, the sign 
problem is severe.

• The imaginary terms are expressed as the number of spins

𝑞෍

𝑗

Im 𝑠𝑗 = 𝑞
3

2
𝑁2 − 𝑁3

• Using the reweighting method, the energy 
incorporating the complex external field is

𝐸 𝑞 =
𝐸cos 𝑞

3
2 𝑁2 − 𝑁3

0

cos 𝑞
3
2

𝑁2 − 𝑁3
0

≡ 𝐸 0𝑒
𝐹 𝑞2

• Assuming a Gaussian distribution, 𝐹 𝑞2 ≈ 𝐴𝑞2

• We extrapolate 𝐹 𝑞2 and get 𝐸 𝑞

𝑍potts =෍

𝑠

exp 𝛽෍

𝑥,𝑗

Re 𝑠 𝑥 𝑠∗(𝑥 + 𝑗) + ℎ෍

𝑥

Re 𝑠(𝑥) + 𝑖𝑞෍

𝑥

Im 𝑠(𝑥)

𝑁2 − 𝑁3 is Gaussian distributed.

𝐹 𝑞2

𝑞2

Target qFit line
sign problem no sign problem

= 𝐸



High
density

Low
density

𝑁𝑓 = 2

ℎ

𝑞

Energy and Magnetization by reweighting method 

• Results by reweighting method

• The volume dependence is small, when ℎ is large. 

• As ℎ increases, the change becomes milder.

• When ℎ is large, the phase transition is a crossover.

〇 Parameters ignoring the complex phase, 𝑞 = 0.
× Parameters corresponding to HDQCD

Energy Magnetization

𝛽 𝛽

Volume: 163



Tensor renormalization group analysis

• 3-D 3-state Potts model with a complex external field

• TRG has nothing to do with the sign problem.

• Higher Order Tensor Renormalization Group (HOTRG)

• The truncation error of the singular value decomposition is small in the crossover region.

Volume: 10243

HOTRG (Dcut=8)Energy density Magnetization density

𝛽 𝛽

High
density

Low
density

𝑁𝑓 = 2

ℎ

𝑞

Solid line: Parameters corresponding to HDQCD
Dash line: Parameters ignoring the complex phase

Same result as the reweighting method. The larger ℎ, the milder the change.



Phase quenched QCD (Ignore complex phase) (isospin μ) 

• Effective action for heavy quarks

• The 𝑒𝑚𝜇/𝑇 terms (cosh 𝑚𝜇/𝑇 terms) are missing from 𝑆eff. (𝑚 ≥ 2)

• However, 𝑒𝑚𝜇/𝑇terms only contribute when the density is extremely high.

• If we ignore the complex phase, Monte-Carlo simulation is possible.

• For 𝑁f = 2, this is  QCD with an isospin chemical potential.

• Pion condensation is expected in the high-density region.

• The effect of the complex phase must be added, but there may be other 
phase structures present.

• There are no singularity in the large ℎ region of 3-state Potts model.

• For large ℎ, Z(3) center symmetry is completely broken. The phase transition 
is irrelevant to the symmetry.

• We do not conclude that there is no further singularity in HDQCD.

𝑆eff = −6𝑁site𝛽
∗𝑃 − 𝑁𝑠

3𝜆 cosh
𝜇

𝑇
ΩR + 𝑖 sinh

𝜇

𝑇
ΩI

Ω = ΩR + 𝑖ΩI



Plaquette in phase quenched QCD (isospin QCD)
• As cosh 𝜇/𝑇 increases, the change in plaquette becomes steeper.

• This behavior is consistent with the existence of a pion-condensed phase at
large 𝜇.  

• The strong coupling expansion of ⟨𝑃⟩ does not depend on 𝜆 cosh 𝜇/𝑇 .

• Confinement phase: ⟨𝑃⟩ is consistent with the strong coupling expansion. 

• The 𝜆 cosh 𝜇/𝑇 term forces the deconfinement phase.
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𝑃 =
𝛽

18
+

𝛽2

216

Strong coupling value 
𝜆 cosh

𝜇

𝑇

Lattice size: 303 × 6

Ejiri, Pos (LATTICE2024), ???



Polyakov loop in phase quenched QCD (isospin QCD)

• First order phase transition at 𝜆 = 0

• Regarding the Polyakov loop ⟨ΩR⟩ , if we look closely at the changing part, 
the change becomes steeper as 𝜇 increases.

• Effect from the complex phase may be important. [Ejiri, PoS (LATTICE2024), 162]

Discontinuity at large 𝜇?  → first-order transition?
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ΩR − ΩR 𝛽=0.5

ΩR 𝛽=9− ΩR 𝛽=0.5

first-order transition 

𝜆 cosh
𝜇

𝑇



Summary

Phase structure of heavy dense QCD is discussed through the effective theory 

of the 3-state Potts model.

• The phase transition is first order in the low-density region, changes to a 
crossover at the critical point, and then becomes first order again.

• The critical point belongs to the 3-D Ising universality class.

• As ℎ increases, the changes in physical quantities become milder.

• However, we do not conclude that there is no further singularity in HDQCD.

First-order phase 
transition

First-order 
phase transition

Crossover

quark mass 𝑚

chemical potential 𝜇

Physical Point

Heavy 
quark high 

density

QCD critical point ?

High density

low density 𝑁𝑓 = 2

Critical point

Critical point

First-order
Crossover

𝑞

ℎ


